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Abstract—The coefficients of the Markov binomial distribu-
tion are solved in terms of the underlying state-contingent
probabilities of the Markov chain. This will be useful for
researchers concerned with the analysis of data generated by
a discrete Markov chain. The paper exploits the regenerative
nature of the problem and solves the difference equations known
to define the distribution. The LLN, CLT and LIL are then
available by standard methods. The LIL may be new, while the
CLT coincides with existing work.

Index Terms—Markov chains, mathematical statistics, Hid-
den Markov Models, difference equations

I. INTRODUCTION

D ISCRETE Markov chains are employed in many fields,
including environmental science, queuing theory, eco-

nomics and genetics. The literature on Hidden Markov Mod-
els is the most prominent example. In some cases researchers
may be interested in the probability of observing m vistis to
some state in n trials. For the important case of the two-state
Markov chain, such a probability is governed by the Markov
binomial distribution.

A recursion relationship for the general Markov Bino-
mial distribution was proposed in [1]. For the calculation
of probabilities it is highly practical, but for the analysis
of functions of these probabilities the recursive structure
is problematic. By taking a regenerative approach to the
problem this paper solves the recursion, under a specific
initial condition, yielding a closed form expression for the
Markov Binomial coefficients.

Limit results have long existed for particular types of er-
godic chain, which induce correlation in successive Bernoulli
trials, see references in [2]. [1] may be the first to find
such expressions for a general ergodic chain, and to find a
method of calculating precise probabilities in finite samples.
The limit results below augment their Central Limit Theorem
with a version of the Law of the Iterated Logarithm. Both are
direct applications of established results for Markov chains
possessing an accessible atom, given in [3].

In addition it may be possible to apply the regenerative
method of Section II to Markov chains on general state
spaces, which is not well studied in the literature. The price,
however, is that the Markov chain must now start in a
chosen state. In an applied context this may not be a large
sacrifice; for example, considering the number of successes
in a production run that begins with success with probability
1 may be a reasonable approximation when failure rates
are small. In general, the requirement is identical to that in
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the regenerative bootstrap literature, in which only complete
regenerative data blocks can be studied, [4],.

Section II proposes a recursion for the probability that a
Markov chain visits a certain state m times in n periods. In
Section III this recursion is applied to the two-state Markov
chain to yield the Markov binomial coefficients. Limits
are studied in Section 4, with the normalising constants
expressed in terms of the elements of the transition matrix
of the Markov chain. Section 5 concludes, noting potential
applications and extensions.

II. OCCUPATION TIMES IN REGENERATIVE MARKOV
CHAINS

Consider a generic Markov chain, in discrete time, on
some space X . For such a process all transition probabilities
can be described as products of the one-period transition
probability kernel P (x,A). Here x ∈ X is the initial
condition, and events A ∈ B(X), take place on a set of
subsets of the state space.

Pr(xt+1 ∈ A|xt = x) = P (x,A)

Pr(xt+2 ∈ A|xt = x) =

∫
X

P (x, dy)P (y,A) (1)

Pr(xt+k ∈ A|xt = x) =

∫
X

P (x, dy)P k−1(y,A)

Given the initial condition, time is irrelevant and the t
subscripts disappear on the right hand side of (1). If there is
some set α is such that Pr(xt+k ∈ S|xt ∈ α) is equal for all
x ∈ α, then it is clear from (1) that returns to set α will be
regeneration times of the chain. For a discrete Markov chain,
any state i ∈ X will have this property. In general such a set
is known as an ‘atom’ of the Markov chain P , see [3]. If the
Markov chain visits such a set, α, from any starting point it
is known as an ‘accessible atom’. Many models in queuing
theory and control (beyond the discrete Markov chain) posess
accessible atoms. The following is applicable only to such
atoms, but it may be possible to extend the results to chains
which do not possess accessible atoms via the Nummelin
splitting technique. This is not discussed here.

Define the occupation time on a finite sample, ηA, as

ηA :=
n∑
t=1

1xt∈A (2)

where 1x is the indicator function of the event x. We
seek the probability distribution φm,n = Pr(ηA = m)
for observations on some given sample {xt}nt=1. Let A
be the set of interest, and presume that visits to set A
define regeneration times of the chain. Define the probability
distribution associated with the first return times to A as,
fk = Pr(τA = k), and let qk be the tail of this distribution,
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qk = Pr(τA > k). Then provided that the sample {xt} is a
set of observations arising after a visit to A, (i.e. x0 ∈ A)
the occupation time can be redefined in terms of first return
times:

ηA = max{k : τA(k) ≤ n} (3)

Consider the probability that there is only one visit to A in
the sample {xt}. This is the probability that the first return
occurs in less than or equal to n periods, and that the second
return takes place after n. If the first return takes place in the
ith period, the probability that the second return takes place
after n − i periods is simply the probability of observing a
return time greater than n−i. Formally, this can be expressed
as

φ1,n = Pr(τA(1) ≤ n, τA(2) > n)

=
n∑
i=1

Pr(τA(1) = i, τA(2)− τA(1) > n− i)

=
n∑
i=1

Pr(τA(1) = i) Pr(τA(2)− τA(1) > n− i)

=
n∑
i=1

Pr(τA = i) Pr(τA > n− i) (4)

=
n∑
i=1

fiqn−i

= {fn} ∗ {qn}

where the notation {an} ∗ {bn} refers to the convolution
of two sequences. The fourth line used that the return
time distributions, Pr(τA(j) = k), are the same for all j.
Similarly, consider the probability of two hits in n trials.
If the first return occurs in the ith period after 0, then
there are a remaining n − i periods in which precisely one
further visit to the set A must occur. Again, the probability
of 1 occurrence in n − i trials is independent of the date
from which we begin measuring, suggesting we should find
φ2,n =

∑n
i=1 fiφ1,n−i.

φ2,n = Pr(τA(1) ≤ n, τA(2) ≤ n, τA(3) > n)

=
n∑
i=1

Pr
{
τA(1) = i, τA(2)− τA(1) ≤ n− i,

τA(3)− τA(2) > (n− i)− τA(2)
}

=
n∑
i=1

Pr(τA = i) Pr
{
τA(2)− τA(1) ≤ n− i,

τA(3)− τA(2) > (n− i)− τA(2)
}

By the independence of regeneration times, the second
probability in the final line is just the probability of seeing
exactly one visit to state A in n−i periods, φ1,n−i. Therefore

φ2,n =

n∑
i=1

Pr(τA = i)φ1,n−i

=
n∑
i=1

fiφ1,n−i

= {fn} ∗ {φ1,n}

which is the convolution of the distribution of first return
times, with the probability that there is only one hit in n
trials. Of course, the latter can be calculated, for any n, from
(4). If we continue for general m, we have

φm,n = {fn} ∗ {φm−1,n}
= {fn}m∗ ∗ {qn} (5)

The distribution of the occupation time is seen to be a
function only of the distribuition of the first-return time on
the chosen set, fn, and the tail of that distribution, qn. The
notation {}m∗ refers to m-fold convolution. If we can work
out the return time distribution for A, then the distribution of
the occupation time on A can be calculated from (5). This is
a recursive operation; for given n, calculate φ1,n from (4),
and then employ (5) for m = 2 . . . n.

III. THE MARKOV BINOMIAL DISTRIBUTION

A. Return time distribution and conjectured solution

Equations (4) and (5) are now applied to the two-state,
ergodic Markov chain. To establish notation, let X = {0, 1}2
and let zt be a vector on this space such that zt+1 = P ′zt +
vt+1 with

P =

[
p00 p01
p10 p11

]
(6)

where pij = 1 − pii, and pii ∈ (0, 1). The random
variable vt+1 has a discrete support which depends on zt. For
example, if zt = [0, 1]′, then with probability p11, vt+1 takes
value [(−p10), (1 − p11)]′, so that zt+1 = [0, 1]′ again; or,
with probability p10, vt+1 takes the value [(1−p10), (−p11)]′,
and zt+1 = [1, 0]′, which corresponds to a change of regime.
Further define

Xt = [0 1] zt

so that Xt keeps track of occurences of the second regime,
which is taken, wlog, as the regime of interest.

Then η1 =
∑n
i=1Xi, and define

φm,n := Pr(η1 = m)

as the distribution of interest. To derive the φm,n coeffi-
cients the first return time probabilities, fn, and the tail of
this distribution, qn, are required. The first retrun time prob-
abilities are available from the joint probabilities of the Xi

variables. Denote the sequence {X1X2 . . . Xn−1} = {Xs},
then

fn = Pr(Xn = 1, {Xs} = {0}|X0 = 1)

By the properties of (6)

f1 = p11

fn = p10p
n−2
00 p01 n ≥ 2 (7)

Note that f0 = 0 by the definition of return times. This
implies that the upper tail, qn = 1−

∑n
i=1 fi, satisfies

q0 = 1

qn = p10p
n−1
00 n ≥ 1 (8)
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Even with these simple expressions for fn and qn, the
φm,n become difficult to compute directly. However, it is
easier to find a pattern in the m-fold convolutions of the
first return times. Define the m-fold convolution of the first
return times as ψm,n so the occupation time distribution can
be re-written as

φm,n = {ψm,n} ∗ {qn} (9)

Consider the sequence ψ2,n = {fn} ∗ {fn}, for n ≥ 3

ψ2,3 = f1f2 + f2f1

= 2p11(p10p01)

ψ2,4 = 2f1f3 + f2f2

= 2p11(p10p01)p00 + (p10p01)2

ψ2,5 =
4∑
i=1

fif5−i

= 2p11(p10p01)p200 + 2(p10p01)2p00

ψ2,6 =
5∑
i=1

fif6−i

= 2p11(p10p01)p300 + 3(p10p01)2p200

This suggests

ψ2,n = 2p11(p10p01)pn−300 + (n− 3)(p10p01)2pn−400

The coefficients for ψ3,n = {ψ2,n} ∗ {fn} likewise fall
into a pattern for n ≥ 4, suggesting

ψ3,n = 3p211(p10p01)pn−400 + 3(n− 4)p11(p10p01)2pn−500

+

n−5∑
j=1

j · (p10p01)3pn−600

Two further terms in the sequence are given in Appendix
A. Considering the evolution of the ψm,n series over m =
1 . . . 5, a general pattern is suggested for these coefficients,
with n > m

ψm,n =
m∑
k=1

(
m

k

)(
n− (m+ 1)

k − 1

)
pm−k11 (p10p01)kp

n−(m+k)
00

(10)
It is clear from the definitions that ψm,j = 0 for j < m,

while ψm,m = pm11. If (10) is then applied to (9), together
with these initial conditions, this gives an expression for the
Markov binomial coefficients:

φm,n = pm11p10p
n−(m+1)
00 +

n−m−1∑
j=1

m∑
k=1

(
m

k

)(
j − 1

k − 1

)
βm,n,k

+ψm,n (11)

where βm,n,k = pm−k11 pk+1
10 pk01p

n−(m+k+1)
00 . The coeffi-

cients φm,n have been calculated for all m ≤ 50, and
compared to coefficients derived using the recursive approach
in [1]. In all cases discrepancies are less than 10−16, which
is less than the numerical accuracy of the calculation of
the binomial coefficients by nchoosek in Matlab. This is
approximately 2500 non-trivial coefficient comparisons.

B. Combinatorial interpretation and proof by induction

The Markov binomial distribution is defined recursively
in [1]. Their result is presented in (13) for reference. If the
conjecture (11) solves the recursion (13) then it is indeed an
expression for the Markov Binomial coefficients.

Let pn(m) := Pr(
∑n
i=1Xi = m), be defined by the

recursion (13). If the conjecture (11) is correct, pn(m) will
turn out to be an alternative notation for φm,n. Following
[1], write pn(m) as the sum of the disjoint events

p0n(m) = Pr(
n∑
i=1

Xi = m,Xn = 0)

p1n(m) := Pr(
n∑
i=1

Xi = m,Xn = 1)

Further, define the initial condition in the current regener-
ative setting

p01(0) = p10 p01(1) = 0 (12)
p11(0) = 0 p11(1) = p11

Then

pn+1(m) = p00p
0
n(m) + p10p

1
n(m) + (13)

p01p
0
n(m− 1) + p11p

1
n(m− 1)

The difficulty of solving (13) with (11) is that (11) does
not break the probability down into two disjoint parts, p0n(m)
and p1n(m). By considering the combinatorial interpretation
of (11) it is possible to find, for m = 1 and m = 2, the
expressions for p0n(m) and p1n(m). For such m it is possible
to show that (11) solves (13) under initial condition (12).

Some tedious arithmetic allows the argument to be gen-
eralized for all m ≥ 1 and n > m. In particular we find
p1n(m) = ψm,n, and therefore p0n(m) = φm,n − ψm,n. It is
then possible to show these definitions satisfy (13).

First, consider the probability of observing one visit to
state 1 in n trials, for n ≥ 2

φ1,n = p11p10p
n−2
00 + (n− 2)p210p01p

n−3
00 +

p10p
n−2
00 p01 (14)

The sole visit to state 1 can occur either on the first trial
(first term), on the last trial (last term), or in one of the
(n− 2) remaining intermediate trials. This implies

p0n(1) = p11p10p
n−2
00 + (n− 2)p210p01p

n−3
00

p1n(1) = p10p
n−2
00 p01 (15)

then (13) implies

pn+1(1) = p00p
0
n(1) + p10p

1
n(1) + p01p

0
n(0)

= p00
(
p11p10p

n−2
00 + (n− 2)p210p01p

n−3
00

)
+p10

(
p10p

n−2
00 p01

)
+ p01

(
p10p

n−1
00

)
= p11p10p

n−1
00 + (n− 1)p210p01p

n−2
00

+p10p
n−1
00 p01

= φ1,n+1
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as required. Note p0n(0) is given by the distribution qn
derived above.

For the probability of observing 2 successes in 3 or more
trials, the combinatorial interpretation is still clear

φ2,n = p211p10p
n−3
00 + 2p11(p10p01)pn−300

+2(n− 3)p11p
2
10p01p

n−4
00 (16)

+(n− 3)(p10p01)2pn−400 +
n−4∑
j=0

j · p310p201pn−500

The first term is the probability of both successes
occurring in the first two events; the second captures
events {1, 0, . . . 0, 1} and {0, 0, . . . , 1, 1}; thirdly, there
are (n − 3) ways that each of {0, . . . 0, 1, 1, 0, . . .} and
{1, 0, . . . , 0, 1, 0, . . .} can occur; fourth are the (n−3) possi-
bilities {0, . . . , 0, 1, 0, . . . , 0, 1}; and finally, all the possible
occurrences involving three transitions from regime 1 to
regime 0: {0, . . . , 1, 0, . . . , 1, 0, . . .}. Thus (16) implies

p0n(2) = p211p10p
n−3
00 + 2(n− 3)p11p

2
10p01p

n−4
00

+
n−4∑
j=0

j · p310p201pn−500 (17)

p1n(2) = 2p11(p10p01)pn−300 + (n− 3)(p10p01)2pn−400

Applying (13) to (16), with m = 2 and using (15) and
(17) one finds

pn+1(2) = p00p
0
n(2) + p10p

1
n(2)

+p01p
0
n(1) + p11p

1
n(1)

= p00
{
β2,n,0 + 2(n− 3)β2,n,1 +

n−4∑
j=0

jβ2,n,2
}

+ p10
{

2p11(p10p01)pn−300

+ (n− 3)(p10p01)2pn−400

}
+ p01

{
β1,n,0 + (n− 2)β1,n,1

}
+ p11p10p

n−2
00 p01

= p211p10p
n−2
00 + 2p11(p10p01)pn−200

+ 2(n− 2)p11p
2
10p01p

n−3
00

+ (n− 2)(p10p01)2pn−300

+
n−3∑
j=0

j · p310p201pn−400

= φ2,n+1

as required. Notice that both p1n(1) and p1n(2) involve
equal numbers of transitions into and out of state 1; that
is, terms (p10p01)k appear, but terms pk+1

10 pk01 do not. This
is true in general - if the process is to be in state 1 on date
n, then it must have, for every exit from state 1, p10, a return
to state 1, p01. The case where the process never leaves state
1, but finishes in state one is the event φm,m which happens
with probability pm11 and is outside the scope of (11), which
is defined for n > m. This suggests p1n(m) = ψm,n, as these
are the only terms of (11) with equal numbers of exits and
returns. But then it must be that the remaining terms of (11)
give the remaining probability, p0n(m), so we have

p1n(m) = ψm,n

p0n(m) = (φm,n − ψm,n)

Apply the second part of (13) to these definitions, then

p1n+1(m) = p01p
0
n(m− 1) + p11p

1
n(m− 1) (18)

Working through (18) using the definitions

p0n(m− 1) = pm−111 p10p
n−m
00 +

n−m∑
j=1

m−1∑
k=1

(
m− 1

k

)(
j − 1

k − 1

)
δm,n,kp10

p1n(m− 1) =
m−1∑
k=1

(
m− 1

k

)(
n−m
k − 1

)
δn,m,kp00

where δm,n,k = p
m−(k+1)
11 (p10p01)kp

n−(m+k)
00 , gives

p1n+1(m) = pm−111 (p10p01)pn−m00 (19)

+
n−m∑
j=1

m−1∑
k=1

(
m− 1

k

)(
j − 1

k − 1

)
δn,m,kp10p01

+
m−1∑
k=1

(
m− 1

k

)(
n−m
k − 1

)
δn,m,kp11p00

Working out the double summation gives
∑
j

∑
k(·) =

(m− 1)(n−m)pm−211 (p10p01)2p
n−(m+1)
00

+
(
m−1
2

)∑n−m−1
j=1 jpm−311 (p10p01)3p

n−(m+2)
00

+
(
m−1
3

)∑n−m−1
j=2

(
j
2

)
pm−411 (p10p01)4p

n−(m+3)
00 + . . .

+
(
m−1
m−1

)∑n−m−1
j=m−2

(
j

m−2
)
(p10p01)mpn−2m+1

00

Plugging this expression into (19) and expanding the single
summation in a similar fashion shows

p1n+1(m) = κ1(1 + (m− 1))

+ κ2

(
(m− 1)(n−m) +

(
m− 1

2

)
(n−m)

)
+ κ3

((m− 1

2

)(
n−m

2

)
+

(
m− 1

3

)(
n−m

2

))
+ . . .

+ κm−1

((m− 1

m− 2

) n−m−1∑
j=m−3

(
j

m− 3

)
+

(
n−m
m− 2

))
+ κm

( n−m−1∑
j=m−2

(
j

m− 2

))
where the constants κk = pm−k11 (p10p01)kp

n−(m+(k−1))
00 .

Using the standard relation(
n

k

)
=

(
n− 1

k − 1

)
+

(
n− 1

k

)
and its corollary

n∑
j=k

(
j

k

)
=

(
n+ 1

k + 1

)
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gives

p1n+1(m) = mpm−111 (p10p01)pn−m00 +

+ (n−m)

(
m

2

)
pm−211 (p10p01)2p

n−(m+1)
00

+

(
n−m

2

)(
m

3

)
pm−311 (p10p01)3p

n−(m+2)
00

+ . . .

+

(
n−m
m− 1

)
(p10p01)mpn−2m+1

00

=
m∑
k=1

(
m

k

)(
n−m
k − 1

)
κk

= ψm,n+1

The final equality re-labels the line above in terms of n+1.
This demonstrates that ψm,n = p1n(m) in general. It then
follows directly that

pn+1(m) = p00(φm,n − ψm,n) + p10ψm,n

+ p01(φm−1,n − ψm−1,n) + p11ψm−1,n

using (10) and (11) this gives

pn+1(m) = p00p
m
11p10p

n−(m+1)
00

+ p00

n−m−1∑
j=1

m∑
k=1

(
m

k

)(
j − 1

k − 1

)
βm,n,k

+ p10

m∑
k=1

(
m

k

)(
n− (m+ 1)

k − 1

)
p11δm,n,k

= pm11p10p
n−m
00 +

n−1∑
j=1

m∑
k=1

(
m

k

)(
j − 1

k − 1

)
βm,n+1,k

+ψm,n+1

= φm,n+1

which completes the proof.

IV. LIMITS

We have studied the number of successes in n trials where
the probability of success follows a two-state ergodic Markov
chain. The initial condition, Pr(X1 = 1) = p11, ensured the
process was entirely regenerative. Theorem 17.2.2 of [3]
therefore applies to sums of functions defined on the sample
path of the Markov chain. The occupation time η1 is just
such a sum. If we put ḡt = Xt − E(Xt) and Z ∼ N(0, 1),
then

(nγ2g)−1/2
n∑
k=1

ḡk →d Z (20)

where E(.) denotes mathematical expectation. Further

lim sup
n→∞

(2γ2gn log log(n))−1/2
n∑
k=1

ḡk = 1

lim inf
n→∞

(2γ2gn log log(n))−1/2
n∑
k=1

ḡk = −1

∑n
k=1 ḡk is just η1 − Eη1, so (20) is the CLT for the

occupation time; the following limits describe the Law of the
Iterated Logarithm for the occupation time. To be operational
we need expression for the constants E(Xt) and γ2g . The
unconditional expectation, or ergodic measure, of Xt is the
second element of the eigenvector associated with unity for
the transition matrix P . This has the well known solution
y = p01/(p10 + p01). The asymptotic variance of the sum,
γ2g , is given in equation (17.13) of [3]

γ2g = π(α)Eα[(

τα∑
k=1

ḡ(Xk))2]

where π(α) is the ergodic measure of the atom, here
π(α) = y again. Eα refers to expectations conditional on
X0 = 1, consistent with our setting. τα is the first return
time to the atom, here the atom is the set of interest, i.e. the
state where Xt = 1.

In our case ḡ(Xk) are defined for all k ≤ τα by τα itself:
for k < τα, ḡ(Xk) = (−y), while ḡ(Xτα) = (1 − y).
Therefore put (

∑τα
k=1 ḡ(Xk))2 = f(τα), where f(k) =

(k − 1)2y2 + 2(k − 1)(y2 − y) + (1− y)2, and we have

γ2g = y ·Eαf(τα)

= y ·
∞∑
k=1

f(k) Pr(τα = k)

= y ·

[
f(1)p11 +

∞∑
k=2

f(k)p10p
k−2
00 p01

]

As expected, due to the diminishing influence of the initial
condition, this summation evaluates to the more elegant
expression of β in Corollary 6(i) of [1], in which X0 = 1 is
not imposed.

V. CONCLUSION

The Markov binomial distribution has been related to
occupation time distributions in regenerative Markov chains.
For the specific initial condition Pr(X1 = 1) = p11, a
closed form solution for the Markov binomial distribution has
been demonstrated, (11). The solution solves the difference
equations derived by [1]. It is hoped that this will allow
applied researchers to study statistics which are function-
als of estimated Markov binomial coefficients, opening up
the rigorous analysis of hypotheses about the sample path
of a two-state Markov chain. The paper suggests several
directions for further work. The first is perhaps to find
an expression for the coefficients under a general initial
condition. The study of bootstrap schemes for estimated oc-
cupation time distributions would be interesting, as would the
application of the regenerative approach, (5), to occupation
time distributions of chains on general state spaces.

APPENDIX A

Proceeding as for ψ2,n and ψ3,n, it can be shown
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ψ4,n = 4p311(p10p01)pn−500

+6(n− 5)p211(p10p01)2pn−600

+4
n−6∑
j=1

j · p11(p10p01)3pn−700

+
n−7∑
k=1

k∑
j=1

j · (p10p01)4pn−800

ψ5,n = 5p411(p10p01)pn−600

+10(n− 6)p311(p10p01)2pn−700

+10
n−7∑
j=1

p211(p10p01)3pn−800

+5
n−8∑
j1=1

j1∑
j=1

j · p11(p10p01)4pn−900

+
n−9∑
j2=1

j2∑
j1=1

j1∑
j=1

j · (p10p01)5pn−1000
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