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Abstract—A fourth-order accurate finite-difference compact
numerical scheme coupled with a geometric MultiGrid tech-
nique is introduced for an efficient incompressible Navier-
Stokes solver on staggered meshes. Incompressibility condition
is enforced iteratively by solving a Poisson-type equation
performing global pressure correction. Its application is the
most computationally demanding part of the algorithm and
in order to save computation cost a MultiGrid technique is
applied to accelerate the iterative procedure of pressure updates
at each time step. Appropriate boundary closure formulas are
developed in case of the cell-centered approximations which
implement the boundary conditions. Geometric MultiGrid
techniques are not straightforward in this case, because the
coarse grids do not constitute part of the fine grids. Suitable
classical restriction and extension operators are modified for the
efficient application of MultiGrid procedure. The performance
investigation of realistic applications on non-high performance
computing environments resulted that the MultiGrid technique
can accelerate significantly the numerical solution process,
holding at the same time the high accuracy of the numerical
method even for high Reynolds numbers.

Index Terms—Incompressible Navier-Stokes equations, Com-
pact Finite Differences schemes, staggered grids, Geometric
MultiGrid techniques.

I. INTRODUCTION

IN many practical applications, high resolution and fast
solvers for incompressible Navier-Stokes equations are

needed, such as in fine structured engineering on flows
with high Reynolds number, where detailed flowfield in-
formation is required. The incompressibility constraint can
be applied through various procedures, [1], [2]. In [3] it
was proposed an iteratively procedure at each time step,
until velocities computed satisfy the continuity equation to
machine precision. A traditional approach is that of cell-
by-cell pressure corrections applied iteratively until velocity
practically satisfies the continuity equation, [4]. Numerical
experiments showed that by increasing the Reynolds number,
the number of iterations required by the local pressure cor-
rection method per time increase fast, making the associated
computational cost intolerable. An alternative approach is
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to solve the Poisson equation satisfied by the pressure cor-
rections which are obtained from the momentum equations,
and obtain the pressure field distribution in terms of the
velocities. Pressure correction computation using the Poisson
equation is employed in several effective methods proposed
for the numerical solution of the incompressible Navier-
Stokes equations, [5], [6], [7]. An important observation
for the pressure correction computation, using the Poisson
equation is that, for high Reynolds number, the number of
iterations required for incompressibility remains lower, [8],
than that for the cell-by-cell pressure correction procedure.
The application of the Poisson-type pressure correction pro-
cedure produces a large and sparse linear system of algebraic
equations, suggesting the use of iterative solvers to save
computational cost. Execution time for the solution of the
linear system remains a forbidding factor for realistic appli-
cations on non-high performance computing environments.
But significant convergence acceleration can achieved with
the incorporation of geometric MultiGrid techniques into the
iterative solver [9], [10], [11], [12], [13], [14].

We develop an algorithm based on a high order accurate
finite difference method, more specifically on the fourth-
order compact numerical scheme, which subsequently is
applied to a cell-centered grid and the resulting algorithm is
implemented for the pressure correction procedure in two di-
mensions as an extension of the numerical method introduced
in [8]. In the proposed scheme a major innovation amounts
to the treatment of realistic boundary conditions, since we
focus to actual applications in fluid mechanics. Boundary
closure formulas, for Dirichlet boundary conditions valid
on the physical boundary, are derived and presented here
in. In order to accelerate the pressure correction procedure
a MultiGrid technique is applied and appropriate intergrid
transfer operators with special treatments for boundary clo-
sures are constructed for this purpose. This paper is organized
as follows: In Section 2, the overall numerical method
based on a fourth order cell-centered compact difference
scheme, for the pressure correction based on the Poisson-type
equation is described. In Section 3, the MultiGrid technique
is considered for accelerating the update pressure-correction
procedure. Finally, Sections 4 and 5, present the numerical
results and the performance investigation of the algorithm
implementation and the conclusions respectively.

II. THE INCOMPRESSIBLE NAVIER-STOKES SOLVER

In this section a presentation of the proposed numerical
method is given, with emphasis in description of the numer-
ical treatment of realistic type boundary conditions for the
application of the incompressibility condition.
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The incompressible Navier-Stokes equations in Cartesian
(x, y) coordinates can be expressed as:

∂u

∂x
+
∂v

∂y
= 0, (1)

∂u

∂t
+
∂F

∂x
+
∂G

∂y
= −∇p+

1

Re

(∂Fv

∂x
+
∂Gv

∂y

)
,(2)

where u = [u, v, ]T and p are the velocity vector and pres-
sure, respectively, and Re = UL/ν is the Reynolds number
based on a characteristic velocity U and a characteristic
length L. Furthermore, F and G are the inviscid flux vectors,
while Fv and Gv are the viscous fluxes given by

F = [u2, uv]T , G = [vu, v2]T ,

Fv =
[∂u
∂x
,
∂v

∂x

]T
, Gv =

[∂u
∂y
,
∂v

∂y

]T
.

Using appropriate finite compact centered schemes on stag-
gered grids, a fourth-order accuracy in space was obtained
in [8]. The overall fourth order accurate numerical method,
is not able to model properly incompressible flows at high
Reynolds numbers, due to the increase of the computational
cost for incompressibility condition. This limitation can be
overcame by using MultiGrid techniques in order to accel-
erate the numerical solution of the Poisson-type equation
discretized by high order finite difference methods. Specif-
ically, a fourth order compact scheme is used to discretize
the Poisson-type equation. The use of compact descritizations
additionally serves the treatment of boundary conditions with
one layer of fictitious cells in outward along the boundary.
Unlike compact methods, classical finite differences require
wider fictitious layer making the use in curvilinear domains
inappropriate. The explicit Runge-Kutta [15], time-marching
scheme fourth-order accuracy is employed for the time
semidiscretization. This amounts to the time stepping through
the following intermediate steps:

Un,1 = Un, Pn,1 = Pn (3)

Un,2 = Un +
∆t

2
Rn,1, (4)

Un,3 = Un +
∆t

2
Rn,2, (5)

Un,4 = Un + ∆tRn,3, (6)

Un+1 = Un +
∆t

6
(Rn,1 + 2Rn,2 + 2Rn,3 + Rn,4)(7)

with tn = n∆t, tn,1 = tn, tn,2 = tn,3 = tn + ∆t/2, tn,4 =
tn + ∆t, and Rn,` = R(Un,`, Pn,`; tn,`), for ` = 2, 3, 4,
where R(U,P;t) is the right-hand side of (2).

The quantities Pn,`, ` = 2, 3, 4 and Pn+1, appearing in
(3)-(7), are determined by enforcing the incompressibility
on the velocity vectors Un,`, ` = 2, 3, 4 and Un+1. In-
compressibility is enforced on the velocity vectors Un,`,
` = 2, 3, 4, and Un+1 by the pressure update procedures
described below.

The velocities vectors Un+1(as well as the intermediate
stages Un,`, ` = 2, 3, 4) do not (necessarily) satisfy the
incompressibility condition (1). The computed velocity field
at each time step (and the intermediate stages) should be
corrected to satisfy (1) usually iteratively through suitable

-
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Fig. 1. The pressure correction computational grid.

pressure updates. Pressure updates at each time step may be
corrected for all cells simultaneously obtained by computing
pressures corrections for all cells locally computed in a cell
by cell advancing procedure. This however results in a low
order, lowly convergence procedure with poor effectiveness
especially at higher Reynolds numbers where flow patterns
are significantly complex. As a consequence, the Poisson-
type equation must be solved several times making the
application of a MultiGrid technique necessary. The spatial
derivatives appearing in the continuity equation during the
pressure update procedures, are computed using fourth-order
accurate compact formulas.

As an alternative, [8], the following Poisson-type equa-
tion for the pressure correction ∆p defined globally on
Ω ≡ [0, Lx] × [0, Ly], and valid at the cell centers Mij ,
i = 1, ..., Nx, j = 1, ...Ny:(

∂2(∆p)

∂x2

)
ij

+

(
∂2(∆p)

∂y2

)
ij

= fij (8)

with fij = f(Mij) = 1
a`,`−1∆t (∇ · u

n,`
old).

The boundary conditions for the pressure correction ∆p
and pressure are associated. For Dirichlet boundary condi-
tions, p is constant, therefore ∆p = 0. For Neumann bound-
ary conditions, ∂p/∂n = 0, that implies ∂(∆p)/∂n = 0,
with n the outward normal on the boundary. The solution
∆p(x, y) and the right-hand side function f(x, y) are as-
sumed to be sufficiently smooth and have the required con-
tinuous partial derivatives. The fourth order finite difference
compact numerical method is seeking for an approximation
of pressure corrections solution at the center node of each
computational cell of Ω, since our computational grid is a
staggered one. There are n = NxNy centered mesh points
(xi−1/2, yi−1/2), i = 0, 1, . . . , Nx + 1, j = 0, 1, . . . , Ny + 1
inside Ω, and they can be assumed as grid points of a new
shifted computational grid (xi, yi), i = 0, 1, . . . , Nx + 1,
j = 0, 1, . . . , Ny + 1, where mesh points with i = 0, Nx + 1
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and j = 0, Ny + 1 are the fictitious mesh points, Fig. 2.
The fourth order compact approximation scheme, which is
mathematically equivalent to [16], can be expressed as

d(∆pi+1,j+1 + ∆pi+1,j−1 + ∆pi−1,j+1 + ∆pi−1,j−1)

+ c(∆pi+1,j + ∆pi−1,j) + b(∆pi,j+1 + ∆pi,j−1)

− a∆pi,j

=
∆x2

2
(8fi,j + fi+1,j + fi−1,j + fi,j+1 + fi,j−1),

(9)

with a = 10(1 + γ2), b = 5− γ2, c = 5γ2 − 1,
d = (1 + γ2)/2 and γ = ∆x/∆y the mesh ratio.
Since the new shifted computational grid coincides with
the center nodes of the staggered grid, the incorporation
of the actual boundary conditions is not straightforward.
To this end, the following treatment procedure of boundary
conditions is introduced by the authors. Following [17], the
interpolation formula

φi+ 1
2

+ αφi+ 3
2

= aφi + bφi+1 + cφi+2 + dφi+3, (10)

with α = free, a = 5
16 −

a
16 , b = 15

16 + 9a
16 , c = − 5

16 + 9a
16

and d = 1
16 −

a
16 , is used. This procedure relates values on

the original structure grid (i+ 1, i+ 2, i+ 3) with values on
the new shifted grid (i + 1/2, i + 3/2), and is used for the
implementation of Dirichlet boundary conditions.
Accordingly, [17],

φ′i+ 1
2

+αφ′i+ 3
2

= aφi+bφi+1+cφi+2+dφi+3+eφi+4, (11)

with α = free, a = − 22
24 + a

24 , b = 17
24 −

9a
8 , c = 3

8 +
9a
8 , d = − 5

24 −
a
24 and e = 1

24 , is used for the case of
Neumann boundary conditions. The above formulas (10) and
(11) simplify to

φi =
16

5
φi+ 1

2
− 3φi+1 + φi+2 −

1

5
φi+3 (12)

φi = −12

11
φ′i+ 1

2
+

17

22
φi+1 +

9

22
φi+2 −

5

22
φi+3 +

1

22
φi+4

(13)
for α = 0.

The zebra coloring scheme for numbering unknowns and
equations is adopted for the linear system in (9) , which
guarantees a desirable potential high degree of parallelism
and scalability [18], [19], [20]. This type of coloring scheme
produces the coefficient matrix A ∈ Rn×n of the fourth order
cell-centered compact difference scheme in the following
block form

A =



A1 A2 O . . . O O O A3 A4 O . . . O O O
O A5 O . . . O O O A6 A6 O . . . O O O
O O A5 . . . O O O O A6 A6 . . . O O O

...
...

...
. . .

...
...

...
...

...
...

. . .
...

...
...

O O O . . . A5 O O O O O . . . A6 O O
O O O . . . O A5 O O O O . . . A6 A6 O
O O O . . . O O A5 O O O . . . O A6 A6

A6 A6 O . . . O O O A5 O O . . . O O O
O A6 A6 . . . O O O O A5 O . . . O O O
O O A6 . . . O O O O O A5 . . . O O O

...
...

...
. . .

...
...

...
...

...
...

. . .
...

...
...

O O O . . . A6 A6 O O O O . . . A5 O O
O O O . . . O A6 A6 O O O . . . O A5 O
O O O . . . O A4 A3 O O O . . . O A2 A1


,

(14)

-
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Fig. 2. Fine and Coarse grid discretization and residual nodes.

with the order of submatrices Ai for i = 1, . . . , 4 been Nx.
Robin or mixed boundary conditions can be treated similarly,
eliminating the fictitious nodes combining the approximation
formulas (12) and (13).

III. MULTIGRID SOLVER FOR PRESSURE CORRECTION

MultiGrid methods usually achieve high rates of conver-
gence and are considered among the fastest methods for solv-
ing large sparse linear systems arising from the discretization
of multi-dimensional boundary value problems. The multi-
grid method solves the error correction sub-problem (coarse
grid correction) on a coarse grid and interpolates the error
correction solution back to fine grid. All major computational
operations are performed on coarse grids where the size
of the problem is small in order to save computational
time. A multigrid method consists of a smoother, which
is a relaxation scheme for the error, and two grid-transfer
operators, the restriction for mapping residual vectors from
the fine to the coarse grid, and the prolongation (interpo-
lation) for returning the corrected error vectors back to the
fine grid [9], [11], [12], [13], [14]. The classical intergrid
operations cannot be applied to the pressure correction grid
without suitable modifications, because in every grid level
the mesh does not constitute part of one in the previous
level after the grid transferring procedure. For this reason, the
corresponding residuals for these nodes are unknown, and all
node values in the case of the cell-centered grid have to be
approximated (Fig. 2). Performance investigation of several
grid operators resulted that a bilinear interpolation operator
and the corresponding restriction operator for cell-centered
discretizations are an efficient choice for the present work.
Suppose that vH is the error vector corresponding to step-
size H = 2h of the coarse grid ΩH , the respective extended
vector vh corresponding to step-size h for the fine grid Ωh

is defined by the following relations
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vh2i,2j = 1
16 (9vHi,j + 3vHi+1,j + 3vHi,j+1 + vHi+1,j+1)

vh2i+1,2j = 1
16 (3vHi,j + 9vHi+1,j + vHi,j+1 + 3vHi+1,j+1)

vh2i,2j+1 = 1
16 (3vHi,j + vHi+1,j + 9vHi,j+1 + 3vHi+1,j+1)

vh2i+1,2j+1 = 1
16 (vHi,j + 3vHi+1,j + 3vHi,j+1 + 9vHi+1,j+1)

(15)
for i = 1, ..., Nx

2 − 1 and j = 1, ...,
Ny

2 − 1 and is called
bilinear interpolation (IHh ) operator. For all components of
vh corresponding to points close to the boundary, fictitious
coarse points values are involved lying outside the boundary
area. These values can be eliminated using the boundary con-
ditions. For the case of Dirichlet with zero valued function
and Neumann boundary condition cases the components of
fine vector close to the y = 0 boundary are giver by

vh2i+1,1 = 1
8 (vHi,1 + 3vHi+1,1) , vh2i,1 = 1

8 (3vHi,1 + vHi+1,1)
(16)

and

vh2i+1,1 = 1
4 (vHi,1 + 3vHi+1,1) , vh2i,1 = 1

4 (3vHi,1 + vHi+1,1)
(17)

respectively, for 1 ≤ i ≤ Nx

2 − 1. Other points close to the
boundary are similarly treated.

Choosing as a restriction operator IHh the one that satisfies
the relation

IhH =
1

4
IHh ,

then in stencil notation it is defined as

IhH =
1

64


1 3 3 1
3 9 9 3
3 9 9 3
1 3 3 1

 . (18)

In the MultiGrid algorithm the V-cycle scheme is chosen
which can decrypted with the following compact recursive
algorithm

V-cycle algorithm
∆pm+1

k = mgvcycle(k,∆pmk , Ak, fk, v1, v2)

Presmoothing:
∆pmk = smoothv1(∆pmk , Ak, fk)

Restriction:
fm
k−1 = Ikk−1(fk −Ak∆pkm)

Recursion:
if k = 1 use a fast iterative solver for Ak−1∆pmk−1 = fm

k−1

if k > 1 ∆pmk−1 = mgvcycle(k − 1, 0, Ak−1, f
m
k−1, v1, v2)

Interpolation:
∆pmk = ∆pmk + Ik−1

k ∆pmk−1

Postsmoothing:
∆pm+1

k = smoothv2(∆pmk , Ak, fk)

The above algorithm calculates the new approximation
∆pm+1

k at iteration step m+ 1 of the linear system solution
∆pk from the previous one ∆pmk . The subscript k indicates
the grid level with k = 1 corresponding to finest grid.
In the description of the V-cycle algorithm, performing v

smoothing steps with an iterative solver e.g Gauss-Seidel
[21], [11], [14], [12], applied to any discrete problem of the
form Ak∆pk = fk with initial approximation ∆pk is denoted
by the smoothv procedure. Usually the number of pre- and
postsmoothing iterations in the descent and ascent phase of
V-cycle are both equal to 2. For the multigrid levels of V-
cycle, the matrices Ak at the coarse levels are determined by
discretizing the Poisson-type equation on the corresponding
coarse grid. The smoother Gauss-Seidel iterative solver is
based on the following slitting of the coefficient matrix
A = DA − LA − UA where

DA :=



A1 A2 O . . . O O O O O O . . . O O O
O A5 O . . . O O O O O O . . . O O O
O O A5 . . . O O O O O O . . . O O O

...
...

...
. . .

...
...

...
...

...
...

. . .
...

...
...

O O O . . . A5 O O O O O . . . O O O
O O O . . . O A5 O O O O . . . O O O
O O O . . . O O A5 O O O . . . O O O
O O O . . . O O O A5 O O . . . O O O
O O O . . . O O O O A5 O . . . O O O
O O O . . . O O O O O A5 . . . O O O

...
...

...
. . .

...
...

...
...

...
...

. . .
...

...
...

O O O . . . O O O O O O . . . A5 O O
O O O . . . O O O O O O . . . O A5 O
O O O . . . O O O O O O . . . O A2 A1


,

−LA :=



O O O . . . O O O O O O . . . O O O
O O O . . . O O O O O O . . . O O O
O O O . . . O O O O O O . . . O O O

...
...

...
. . .

...
...

...
...

...
...

. . .
...

...
...

O O O . . . O O O O O O . . . O O O
O O O . . . O O O O O O . . . O O O
O O O . . . O O O O O O . . . O O O
A6 A6 O . . . O O O O O O . . . O O O
O A6 A6 . . . O O O O O O . . . O O O
O O A6 . . . O O O O O O . . . O O O

...
...

...
. . .

...
...

...
...

...
...

. . .
...

...
...

O O O . . . A6 A6 O O O O . . . O O O
O O O . . . O A6 A6 O O O . . . O O O
O O O . . . O A4 A3 O O O . . . O O O


and

−UA :=



O O O . . . O O O A3 A4 O . . . O O O
O O O . . . O O O A6 A6 O . . . O O O
O O O . . . O O O O A6 A6 . . . O O O

...
...

...
. . .

...
...

...
...

...
...

. . .
...

...
...

O O O . . . O O O O O O . . . A6 O O
O O O . . . O O O O O O . . . A6 A6 O
O O O . . . O O O O O O . . . O A6 A6

O O O . . . O O O O O O . . . O O O
O O O . . . O O O O O O . . . O O O
O O O . . . O O O O O O . . . O O O

...
...

...
. . .

...
...

...
...

...
...

. . .
...

...
...

O O O . . . O O O O O O . . . O O O
O O O . . . O O O O O O . . . O O O
O O O . . . O O O O O O . . . O O O


.

IV. NUMERICAL EXPERIMENTS

This section presents numerical results obtained from
the realization of the fourth order accurate numerical
algorithm. The convergence and accuracy of the method is
investigated for steady and unsteady flow problems. The
total number of Poisson-type equation required to be solved,
as well average cpu cost per Poisson-type equation are
recorded. All numerical tests were performed on a SunFire
X2200M2 machine with 4GB memory and two dual core
Opteron@3.0GHz processors with one core been enabled.
The implementation was developed in double precision
Fortran code and all basic linear algebra operations were
performed using the Lapack [20] scientific library.
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Fig. 3. Spatial accuracy against the analytical solution for the Taylor
Vortex problem with Re=100, 1000 and 10000.

Problem 1: Taylor vortex.

In order to confirm the spatial accuracy of the algo-
rithm implementation for every choice of Reynolds number,
we solved the Taylor vortex problem [22] on the domain
[−1, 1] × [−1, 1] with Dirichlet boundary conditions. The
initial condition is based on the exact solution:

u = (− cos(πx) sin(πy)i + sin(πx) cos(πy)j) exp

(
−2π2t

Re

)
p = −1

4
(cos(2πx) + cos(2πy)) exp

(
−2π2t

Re

)
(19)

where Re=1/v been the Reynolds number and considered
as Re ∈ {10, 102, 103}. The time step size ∆t = 10−5

was chosen to satisfy the CFL condition and to ensure that
the dominant error was the spatial error. The results are
summarized in Fig. 3. The convergence rate of L2 norm
for velocity and pressure error evaluated at the final time
measurement T=5, is 4 for all choices of Re.

Problem 2: Driven cavity flow.

We also considered the steady-state driven cavity flow
problem with well-defined boundary conditions on the
unit square. Numerical solutions were obtained at different
Reynolds numbers and compared with the computations of

Ref. [23]. Fig. 4 presents the agreement with the solution
approximation of Ghia et al for Re = 1000 and Re = 3200.
On a 256 × 256 grid or finer for Re = 1000 the solution
can be approximated sufficiently. Nonetheless, increasing the
Reynolds numbers to 3200 a finer grid must be applied as
shown on the two bottom plots. Tables 1 and 2 present the
total number of Poisson-type equations required to be solved
in all stages of Runge-Kutta time marching procedure, until
time reaches the end in order to enforce incompressibility
condition iteratively. Additionally, the average cpu time in
seconds for approximating the solution of every Poisson-
type equation is shown. These time measurements are also
presented for the corresponding method proposed in [8] .
As shown, our New method’s algorithm has reduced sig-
nificantly the number of Poisson-type equations required
to be solved in all cases. An important outcome of this
performance investigation is that every Poisson-equation is
solved faster as the Reynolds number increases for the
new algorithm. This is due to the application of the fourth
order compact scheme with the multigrid technique, because
high Reynolds numbers produce more oscillatory solutions
corresponding to more oscillatory errors. It is well-known
that a multigrid technique quickly eliminates the oscillatory
error components.

Table 1
Total number of Poisson-type equations for Re = 1000 and T=35.

grid size Method in [8] New Method
No. Poisson Time/Poisson No. Poisson Time/Poisson

64 224710 0.015 121705 0.006
128 613226 0.147 131124 0.025
256 1756002 1.513 219869 0.105

Table 2
Total number of Poisson-type equations for Re = 3200 and T=75.

grid size Method in [8] New Method
No. Poisson Time/Poisson No. Poisson Time/Poisson

64 300150 0.015 155817 0.006
128 709023 0.149 265375 0.015
256 1600310 1.515 430163 0.062
512 - - 996746 0.318

V. CONCLUSION

An important performance improvement has been achieved
for the high accurate incompressible Navier-Stokes solver
proposed in [8]. The application of a fourth order finite
difference compact discretization method coupled with a
multigrid technique on the spatial staggered grid made
readily available the pressure values approximations on the
required grid nodes by the incompressibility condition. This
leads avoiding a high order two dimensional interpolation for
every time step. Moreover, a significantly reduction of the
number of Poisson-type equations has been observed, which
has accordingly reduced the execution time of the algorithm.
At the same time the high accuracy of the solver is sustained.
The proposed method is currently being extended to the
more complicated, general elliptic type equation satisfied by
pressure correction at each time step, for the Navier-Stokes
equations expressed in curvilinear coordinates. The method
employed can also be extended in the three dimensional case
in a straightforward manner on parallel architectures.
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Fig. 4. Comparison of the horizontal and vertical velocity compo-
nents computed with the reference solution by Ghia et al.
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