Proceedings of the World Congress on Engineering 2013 Vol II,
WCE 2013, July 3 - 5, 2013, London, U.K.

Using Knowledge Ontologies and Neural

Networks to Control Service-Oriented Robots

Wei-Po Lee

Abstract—In recent years, researchers have been building
home robots able to interact and work with people. However,
due to the complexity and diversity of the environments for
developing robots, it is difficult to share and reuse robot code
created by different providers. In this work we present a
service- based approach that exploits the standard web interface
to develop reusable robotic services. Our approach includes
knowledge ontology and neural network learning strategies for
robot control. In addition, several service functions, including
service discovery, selection, and composition have been
developed for operating the services. The proposed approach
has been implemented and evaluated, and the results show that
it can be used to build robotic services successfully.

[. INTRODUCTION

Developing home service robots to achieve user-specified
tasks has become a significant issue for people’s future
life. However, due to the complexity and diversity of the
environments for developing robot, it is often difficult to
integrate and share the robot application software (such as
services) constructed by different providers. This has
therefore impeded the development of service robots [1].

To overcome the above difficulties, researchers have been
building robot design frameworks to manage the complexity
and facilitate the reusability of robot code. From the point of
view of the end-users, they expect to obtain and use robot
application software conveniently, rather than to care about
the design details. Then, from the point of view of the robot
designers, they prefer an easy-to-share environment in order
to integrate application services constructed by different
providers. Taking into account the needs of both sides,
service-oriented architecture (SOA, [2]) provides a promising
option for developing robotic services. One of the major
advantages of SOA is that the shared resources are available
on demand. It means that these resources can be regarded as
independent services and accessed without knowledge of their
underlying platform implementation [1][2]. Ideally, with a
SOA-based robotic framework, end-users can control their
robot in the similar way of using web services, and robot
designers can share services with each other and reuse
available code to design more comprehensive services.

However, unlike the traditional web services, applying
SOA to robot applications involves the complicated control of
robot actions, and thus the design of robotic services becomes
challenging. To develop robot code to solve application tasks,
a common way is to adopt a divide-and-conquer strategy. The
process of dividing and solving robotic task is similar to that
of task decomposition and service composition in the web

Wei-Po Lee and Tsung-Hsien Yang are both with National Sun Yat-sen
University, Kaohsiung, Taiwan (contact e-mail: wplee@
mail.nsysu.edu.tw).

ISBN: 978-988-19252-8-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

Tsung-Hsien Yang

service domain, in which most problems can be solved by
workflow-based or Al planning methods [3][4]. Hierarchical
Task Network (HTN) planners are typical examples [5]. Such
kind of “hand- tailorable” planners indicate the current trend
of combining automatic planners with human efforts to
generate composite services. With the aid of an ontology
defined to describe robot tasks and to guide the task
decomposition, the methods used in web composition can
also be applied to developing of composite robotic services to
solve complicated tasks.

In this work, we present a robotic service framework that
aims to fulfill the needs of end-users and robot designers. Our
work employs a service-oriented architecture in which a robot
controller is created and regarded as a service, and the
complicated robot tasks are achieved through the composition
of available services. It includes a neural network-based
learning mechanism to create new robotic services, and
integrates the web services description language OWL-S
(Ontology Web Language-Services [6]) and HTN planners to
perform ontology-based service composition. To verify the
system and demonstrate how it works, we have conducted
different sets of experiments in which the robot can
successfully achieve user-specified control tasks in a home
environment.

II. RELATED WORKS

In the study of service-oriented computing and modeling,
web service technologies have been widely applied to
different types of applications. With many successful
experiences, researchers are now pressing on to extend these
techniques to the development of robot systems. The most
related works are the ones regarding robots as services and
exploiting the web service architecture to create robots. For
example, Yachir ef al employed service composition
techniques to plan robotic services to help an elderly person
[7]. Kim ef al. focused on how to control a robot through the
integration of web service and robot application technologies
[8]. Similarly, Ha ef al. proposed a service-oriented
architecture for the integration of ubiquitous robot devices,
including sensors and motors [9]. There are also other works
integrating robotic and web technologies. For example, in a
recent research conducted by Blake et al., robots can be
equipped with web-oriented software interfaces that help
them to access universally standard web resources [10].

Different from these studies, our work dedicates to
construct the explicit task ontology for daily home tasks, and
focuses on the planning-based service configuration to obtain
robotic services. In particular, we develop a practical method
to create new services and this issue has not been addressed in
the work described above. Our method is a kind of
demonstration-based programming, which is to teach a robot

WCE 2013

Proceedings of the World Congress on Engineering 2013 Vol II,
WCE 2013, July 3 - 5, 2013, London, U.K.

how to achieve a task through human demonstration. Our
work represents a task as the behavior trajectories at the data
level, and it includes a neural network learning procedure to
derive controllers.

III. A SERVICE-ORIENTED APPROACH FOR ROBOT CONTROL

A. System Framework

Service-oriented computing (SOC) has become a trend of
contemporary programming. It regards services as
self-described reusable building blocks that can be used to
support the development of software applications. Following
the SOC design principles, we present a service-oriented
framework that is implemented by the standard-based,
platform-independent techniques (such as SOAP, REST).
This framework can exploit the corresponding advantages of
SOC to provide rapidly prototyping robotic services.

Fig. 1 illustrates the conceptual framework with operating
flow of the proposed robotic service system. As can be seen,
our system includes three major modules and a task ontology
working tightly with these modules. The first module is a
machine learning mechanism, with which a user can
conveniently derive robot control code to create his services.
The second module is responsible for service discovery and
selection. It analyzes the command (or query) specified by the
user and searches the service repository accordingly. The task
ontology shown in the figure is built for command
interpretation and service mapping. It describes the semantics
of a task in terms of task structure and task-solving process.
Then this module employs a pre-defined selection strategy to
choose the most suitable service from the candidates. The
third module is developed for service composition. It
decomposes the target task into several subtasks in a recursive
manner according to the specification of the task ontology,
and finds relevant services for each subtask. This module then
integrates these services through a composition procedure to
achieve the target task. The user can observe the robot
behavior through a pre-designed interface. Based on the
user’s evaluations, this module can repeatedly perform
configuration procedure to find new services to satisfy the
user’s needs. The details are described in the subsections

below.
®.
m‘ <::> New Service Creation Robot
o request new
- (query) search service
(reference) Service pool
Service Discovery &
Selection .
service
Service Composition iu e
Services Provider

Fig. 1. System overview.

B. Using Knowledge Ontology to Identify Robot Task

Ontology plays an important role in knowledge
representation. For an action planning problem (e.g., a robot
task), ontology can be defined in order to provide the
sequence of problem-solving steps through organizing
domain knowledge. The planner (i.e., problem solver) can
then exploit domain knowledge and the related techniques
defined within the ontology to achieve the application task. In
this work, we construct two ontologies, task ontology and

ISBN: 978-988-19252-8-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

position ontology, to specify the structure of the problem-
solving process and to describe the environmental knowledge
for the robot, respectively. To accomplish the target task, a
service robot should understand both ontologies.

The first ontology, position ontology, defines the
locations of different objects in a home environment and the
containment relationships between the objects. For example,
this ontology can indicate that the bowls, plates, and cups are
put on a cupboard, and a TV is placed in the living room. And
the second ontology, task ontology, describes how to resolve
a user’s request by a sequence of steps. It interprets the task
complexity in a hierarchical way. Fig. 2 shows a part of the
task ontology defined in the proposed system. The task
ontology has included the possible robot actions/tasks (i.e.,
what the robot can perform) in the environment so that the
robot can follow it accordingly to achieve the target task.

The procedure for using task ontology is that, after
receiving a control command, the system will parse the
command to extract the verb part as the action description,
and then use the description to match the task terms recorded
in the task ontology. Currently, we take a simplified natural
language toolkit (i.e., NLTK, [11]) for command parsing. For
example, the system will analyze a command “give me a cup”
to get the verb “give” at first, and then use the word “give” to
match the terms included in the task ontology.

Task ontology

Get
Give [person object] Find
Put

Find

Get [object] Grasp

Move

Move

Check [position]

Put [position] Rel
clease

Fig. 2. Part of the task ontology.

To enhance the problem-solving capability of the task
ontology, we use the powerful ontology description language
OWL-S to implement the ontology. It has three major parts
with essential types of knowledge: service profile, service
model, and service grounding. In general, service profile
provides the information to express “what the service does”,
including a description of what to be accomplished, and the
limitations and requirements of the service. Service model
describes “how to use the service”, which is similar to the
problem solving process for annotating a robotic service. It
includes information about inputs, outputs, preconditions and
effects, in order to perform analysis, composition, activities,
and monitoring. And service grounding presents “how to
access a service”. It is to specify a message format, a
communication protocol, and other implementation details.
Fig. 3 shows an OWL-S example that describes the service
model defined for the robot behavior “Give”, which is
composed by one atomic process “Find” and two composite
processes “Get” and “Put”. The relevant details of this
application will be given in the experiment section.

WCE 2013

Proceedings of the World Congress on Engineering 2013 Vol II,
WCE 2013, July 3 - 5, 2013, London, U.K.

<process:CompositeProcess rdf:ID="Give">
<process:hasInput rdf:resource="#Person"/>
<process:hasInput rdf:resource="#Object"/>
<process:hasPreconditoion rdf:resource="#ExistPerson"/>
<process:hasPreconditoion rdf:resource="#ExistObject"/>
<process:hasEffect rdf:resource="#PersonHasObject"/>
<process:composedOF>
<process:Sequence>
<process:components rdf:parseType="Collection">
<process:CompositeProcess rdf:about="#Get"/>
<process:AtomicProcess rdf:about="#Find"/>
<process:CompositeProcess rdf:about="#Put"/>
</process:components>
</process:Sequence>
</process:composedOf>
</process:CompositeProcess>

Fig. 3. The OWL-S example of a robotic service model.

C. Creating a Monolithic Robot Service

The core of creating a new service is to develop the service
function, which can then be combined with other relevant
service descriptions and specifications to constitute a service.
The service function means the control code for driving the
robot to act in the environment to achieve a task. The control
code can be written manually by a programmer or
alternatively be learnt without explicit programming. The
latter is a more intuitive and natural way for ordinary users
and it can thus save their efforts in programming a robot.

To construct robot controllers automatically, we develop
an approach of programming-by-demonstration, in which
perception and motion information of the behavior sequences
demonstrated by the user are first recorded, and then a

machine learning mechanism is used to derive controllers. Fig.

4 illustrates the procedure. The robot is driven manually to
achieve the target task. During the period of human-driven
demonstration, at each time step the relevant information is
recorded to form a behavior data set for later training. In other
words, it is to derive the time-series profiles of perception and
motion information from the qualitative behavior shown by
the robot. After the behavior data is obtained, in the second
stage the robot plays the role of a learner that is trained to
achieve the target task.

In this work, a recurrent neural network (RNN) model is
adopted as a behavior controller for the learner. Here, we take
a fully connected RNN architecture as the robot controller,
and implement a learning mechanism to train the controller.
When the model is used to control a robot, each network node
corresponds to an actuator of the robot in principle. Also, two
extra nodes are added to serve as buffers, and their roles are
not specified in advance. The redundancy makes the
controllers easier to be learnt from data.

Environment
| Recording
demonstrator |- robot behavior
¥ Automatic
contral . - Correction
time-series data
code A T

RNN-Learning Mechanism

Fig. 4. The procedure of programming-by-demonstration.

ISBN: 978-988-19252-8-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

To find the settings of a neural network (i.e., thresholds,
time constants, weights), we adopt the back-propagation
through time learning algorithm (BPTT, [12]) to update the
relevant parameters of recurrent networks in discrete time
steps. The goal here is to minimize the accumulated
discrepancy between the time-series data recorded in the
demonstration procedure (i.e., desired values) and the values
produced by the control model (i.e., actual values). The above
error function can be defined directly as the mean squared
error over the time period:

ZZ{X (t)- a; (r)}

=l t=1

In the above equation, % () is the desired output of node i at
time #,% (1) is the value generated from node i of the learnt
model, N is the number of nodes in the network, and T is the
number of time points for data collection. Also, the heuristic
method delta-bar-delta is used to modifying the learning rate
in the training procedure.

Though the above learning procedure is an automatic and
efficient method to obtain robot controllers, to ensure the
success of this approach, the problem of class imbalance has
to be encountered [13]. This is a crucial problem in machine
learning community as the data collected is often distributed
unequally in the real world applications. Corresponding to a
classification task, here the pair of input (perception
information) and output (motion information) of the
controller at a certain time step is used to represent a data
point, and each performing-skill for achieving a goal behavior
is regarded as a specific class that considers similar data
points (i.e., training instructions). In a demonstration- based
method, the data points collected in the demonstration
procedure are often distributed unequally in different classes,
and the target controller thus cannot be learnt perfectly.

One popular way to resolve this problem is to collect new
data through having the demonstrator iteratively present the
parts the robot is yet to learn. The newly obtained behavior
sequences are then added to the training set to change the
corresponding data distribution. After that, the re-learning
procedure is started again to build a new controller. To reduce
the user’s workload in iterative demonstrations, we take the
viewpoint of data analysis to develop a mechanism that can
automatically correct behavior data in the test trials to create a
new training data set. In our approach, the data points in the
test trials are categorized into two types, based on whether a
critical error occurs at the points. Different correction rules
are defined and applied to the two types of data points
accordingly. We will take an example in the experiment
section to illustrate how the proposed approach works.

D. Service Operations

In this work, four types of functions, including service
discovery, selection, composition, and reconfiguration, are
developed to enable the available robotic services to achieve
user-specified command. The first type of functions is service
discovery. It is the process of searching available services to
find the ones that can fulfill the user’s requests. As mentioned,
using OWL-S to describe services can standardize the service
description in semantics. In this way, an automatic method
can be developed to find appropriate services, according to
the semantic descriptions associated with the services. In our
system, the OWL-S service profile defines the IOPE elements

WCE 2013

Proceedings of the World Congress on Engineering 2013 Vol II,
WCE 2013, July 3 - 5, 2013, London, U.K.

(i.e., Input, Output, Precondition, and Effect), which are used
to match the user’s service requests afterward. The procedure
is that if the control command can match the task terms
defined in the ontology, the system will collect the relevant
information (i.e., IOPE) corresponding to this task term to
examine whether the information matches that of the services
advertised in the service repository. A successful match
means that the system can find services to fulfill the user’s
request. For instance, in the task ontology shown in Fig. 2, the
task “Get” has the input “target object name”, the
precondition “target object exists”, and the effect “target
object is on hand”. Once the task “Get” matches the user
command, the task descriptions are used to find the
corresponding services.

The second type of functions, service selection, is choosing
the most suitable services for the target task from the
candidates provided by the service discovery process. To
select the best service, many researchers have defined various
attributes (such as accessibility, cost, response time,
reputation, etc. [14]) and proposed different quality-of service
(QoS) based selection methods. Among these attributes,
service reputation represents the direct evaluation results
from the service requesters or the neutral party. It is an
objective and easy-to-measure attribute. Therefore, in our
current implementation, we choose to use this attribute for
service selection, and design a rating strategy to measure
service reputation. It is to combine all ratings (from the lowest
1 to the highest 5) given by user to rank the candidate services
obtained from the service discovery process. The system will
then select services according to the ranking order, in
response to the user’s request.

The third type of functions is service composition, which is
to automatically compose services already existing in the
repository to achieve more complex tasks. In the proposed
framework, we adopt the Al planning techniques for service
composition. Among others, HTN planning is a well-designed
methodology most suitable for the service composition. In the
HTN planning domain, the tasks can be categorized into two
types: the primitive and the compound. A primitive task can
be performed directly by the predefined planning operators,
while a compound task needs to be decomposed by a planning
method before being performed. The latter performs task
decomposition according to the task ontology described in
section I11.B to break the original task hierarchically, and then
the planner solves the subtasks in the reverse order and
produces a sequence of actions for the original task.

The concept of task decomposition in HTN is in fact very
similar to the composite process decomposition in the OWL-S
service model: it reduces the complexity of reasoning by
eliminating uncertainty during the planning process. One
well-implemented HTN planner is the Simple Hierarchical
Ordered Planner 2 (SHOP2, [15]). The authors have proved
the semantic correspondences between the SHOP2 planning
and the situation calculus of the OWL-S process model [5].
This means that the HTN planner can be an efficient tool to
work with the hierarchically structured OWL-S process
model. Following their studies, here we choose to employ
SHOP2 to conduct our robotic service composition and take
the task ontology defined above to guide the decomposition.

As OWL-S and SHOP2 have their own internal
representations, to use SHOP2 for service composition,
translations between OWL-S and SHOP2 need to be defined.
Sirin et al. have defined some translations, from the OWL-S

ISBN: 978-988-19252-8-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

process models to the SHOP2 domains and from the OWL-S
composition tasks to the SHOP2 planning problems [5]. With
such transitions, a service originally created by the OWL-S
descriptions can have its SHOP2 format and be used by the
planner for service composition.

To realize the service reconfiguration, we use the software
OpenRAVE ([16]) to construct simulated robots and the
environments the robots are situated in. In our present work,
when the system executes a composite service in OpenRAVE,
the planned action steps are also presented in the robotic
service interface. So the user can compare the planned steps
with the robot actions to examine whether the robot has
achieved the task successfully. If the user finds that the
actions do not match his request in simulation, he can ask the
system to conduct the service composition again. The user can
also create new services to fix an incomplete plan through the
learning mechanism described previously.

IV. EXPERIMENTS AND RESULTS

To evaluate the proposed methodology for robot control,
two series of experiments have been conducted. The first
series is to investigate whether the controllers can be learnt
from our demonstration procedure. The second series is to
examine how our service composition module can be used to
achieve a more complicated task at a higher level.

A. Creating New Services through Robot Learning

In the first series of experiments, a robot arm with a camera
mounted on the arm has been used to achieve a sequential task
of opening a box and picking-up a cup inside the box. To save
the evaluation time, the experiments were performed in
simulation. In our experiments, a fine time-slice technique
was used in simulation and each time step lasted for 100 ms.
Initially, a box was put on the table. The robot needed to open
the box and decided what to do next according to what it
observed. If the robot found a cup in the box, it was required
to pick up the cup, put the cup on the table, and then close the
box. If the box was empty, the robot simply closed the box.
After the box was closed, the robot had to decide to take
which of the following two actions: whether to open the box
(in order to check the box and pick up the cup if there was any)
or to move back to its initial position (the task had been
completed). As can be observed, the robot was not able to
make the correct decision relying only on the perception
information, but not the previous task state alone. It must
integrate both types (i.e., the perception and the internal state)
of information in order to achieve the task correctly.

The control mechanism for the above sequential task can in
fact be considered as a finite state machine that includes four
internal states to represent respectively the task status below:
(1) the box is on the table and the robot is in its initial position;
(2) the box is on the table and robot has moved to the position
ready for operation; (3) the box has been opened by the robot;
and (4) the box has been closed by the robot. For this task, the
perception input to the finite state machine is one of the three
situations (the box is close, the box is open and the cup is in
the box, and the box is open and it is empty) derived from the
visual results that have been processed by the camera on the
robot arm. Therefore, the control task is to deal with the state
transitions based on both the current state and sensor
information, and then to generate an appropriate action. Here,
the possible actions for the robot are to move to the position

WCE 2013

Proceedings of the World Congress on Engineering 2013 Vol II,
WCE 2013, July 3 - 5, 2013, London, U.K.

ready for operation, to open the box, to pick up the box, to
close the box, and to move to the initial position.

To obtain a controller that can produce the expected
sequential behavior, the proposed approach has been used to
learn a six nodes network. Fig. 5 illustrates the behavior
generated by the controller. As we can see, a sequential
controller can again be learnt to achieve the task successfully.

(€] 10 (12)

Fig. 5. The behavior sequence produced by the controller
successfully learnt.

an

B. Achieving Service Composition

In the second series of experiments, we use the service
system to derive a composite service to achieve an application
task in simulation, in which the user asked the robot to give
him a cup in a domestic environment. According to our design,
the user needs to select the robot type and the task
environment from the pre-defined interface, before sending a
control command to request robotic services. The robot type
is used to derive some hard constraints (e.g., hardware
restrictions) that need to be satisfied in the service discovery
process; while the task environment provides the initial world
states (that are the preconditions of the desired service) and
indicates the initial positions of the objects in the environment.
In addition to the pre-defined choices, users are allowed to
take the XML descriptions to create their own simulated
robots and environments.

To understand the user’s request, the robot needs to
connect to the ontology server for parsing the command “give
me a cup”’. In this application, the system used a
natural-language parser to check the syntax of the command
and generate a syntax tree. It then sent the verb part to the task
ontology and the noun part to the position ontology to search
for suitable services. As in the part shown Fig. 2, we can see
that to achieve the “Give” task, the system needs two input
parameters, namely “Person” and “Object”, and it takes the
segments “me” and “cup” extracted from the command to
correspond to the two parameters, respectively.

The OWL-S example shown in Fig. 3 describes the service
model defined for the robot behavior “Give”, which is
composed by one atomic process “Find” and two composite
processes “Get” and “Put”. That is, the task “Give an object to
a person” can be decomposed into three subtasks: “Get the
object”, “Find the person”, and “Put the object to the person
(meaning location here)”. In addition, the process for “Give”

ISBN: 978-988-19252-8-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

has two inputs “Person” and “Object” (to tell the robot which
object to take, and to whom) and two preconditions
“ExistPerson” and “ExistObject” (to indicate if any person or
object exists in the world state).

With the decomposition result, the system can translate the
“Give” service described by OWL-S into a HTN method, and
invoke the sub-services included in the “Give” process to
complete the overall task. Fig. 6 shows the HTN method
corresponding to the “Give” service, which includes the
subtasks “Get”, “Find”, and “Put”. The action steps of “Give
me a cup” can be carried out by the relevant atomic services
(i.e., HTN operators), in the order of the following
verb-object pairs: (find cup), (move table), (grasp cup), (find
user), (move user), and (release cup).

Fig. 7 illustrates how the robot achieved the task in the two
test scenarios in simulation. The first four steps in the figure
(i.e., steps (1)-(4)) show that the robot used the position
ontology to infer where the cup was located. For the first
scenario, once the robot knew that the cup was in the kitchen,
it went there and recognized that the cup was put on the table.
Then the robot moved to the region around the cup so that it
could grasp the cup. Steps (5)-(7) describe such a situation:
the robot moved to a position close to the cup, and performed
the “Get” service. Next, steps (8)-(12) show that after the
robot picked up the cup, it invoked the other two services
“Find” and “Put” to find the user and give him the cup.

task: | (give ?per 20bj)

(exist ?0bj)

reconditions: .
p (exist ?per)

e
subtasks:| (gt 70bj) ‘ ’ (find ?per) ’ (put ?place)
[[
(exist 20bj) (hold ?0bj)
—>
’ (find ?0bj) H (move ?place)| | (grasp 2obj) ‘ ’ (move ?per) (release ?0bj) ‘

Fig. 6. The HTN method for the target service.

) @ 3) 4)
Q) (©) (N ®)

| ©) (10)) (12)

Fig. 7. The simulation results for the application task.

V. CONCLUSION

In this work, we presented a service-oriented approach that
includes knowledge ontology and neural network learning

WCE 2013

Proceedings of the World Congress on Engineering 2013 Vol II,
WCE 2013, July 3 - 5, 2013, London, U.K.

strategies for robot control. The task ontology has been
constructed and used for command interpretation and service
mapping, and the neural network has been used to create new
services through a programming-by-demonstration procedure.
In addition, several service functions, including service
discovery, selection, and composition have been developed
for operating the services. Under the guidance of task
ontology, our work employs a planning-based service
composition process to generate composite robotic services to
solve complicated tasks in the home environment.
Experiments have been conducted to verify the proposed
methodology, and the results show that new services can be
built through human-machine interaction and composite
services can be derived for the application task successfully.

REFERENCES

[1] Amoretti, M., Reggiani, M., 2010. Architectural paradigms for
robotics applications. Advanced Engineering Informatics, 24(1), 4-13.

[2] Erl, T., 2005. Service-Oriented Architecture (SOA): Concepts,
Technology, and Design. Prentice Hall.

[3] Rao,J., Su, X., 2005. A survey of automated web service composition
methods. In: Proceedings of the First International Workshop on
Semantic Web Services and Web Process Composition, pp.43-54.

[4] Sun, S.X., Zhao,J.,2012. A decomposition-based approach for service
composition with global QoS guarantees. Information Sciences, 199,
138-153.

[5] Sirin, E., Parsia, B., Wu, D., Hendler, J., Nau, D., 2004. HTN planning
for web service composition using SHOP2. Web Semantics: Science,
Services and Agents on the World Wide Web, 1(4), 377-396.

[6] Martin, D., Hobbs, J., Mcllraith, S., Narayanan, S., Paolucci, M.,
Parsia, B., Payne, T., Sirin, E., Srinivasan, N., Sycara, K., 2004.
OWL-S: semantic markup for web services. W3C Member Submission,
22,2007-04.

[71 Yachir, A., Tari, K., Chibani, A., Amirat, Y., 2008. Towards an
automatic approach for ubiquitous robotic services composition. In :
Proceedings of IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp.3717-3724.

[8] Kim, B.K., Miyazaki. M., Ohba, K., Hirai, S., Tanie, K., 2005. Web
services based robot control platform for ubiquitous functions. In:
Proceedings of IEEE International Conference on Robotic and
Automation, pp. 691-696.

[91 Ha, Y.G., Sohn, J.C., Cho, Y.J., Yoon, H., 2007. A robotic service
framework supporting automated integration of ubiquitous sensors and
devices. Information Sciences, 177(3), 657-679.

[10] Blake, M.B., Remy, S.L., Wei, Y., Howard, A.M., 2011. Robots on the
web. IEEE Robotics and Automation Magazine, 18(2), 33-43.

[11] Loper, E., Bird, S., 2002. NLTK: the natural language toolkit. In:
Proceedings of the ACL-02 Workshop on Effective Tools and
Methodologies for Teaching Natural Language Processing and
Computational Linguistics, pp.63-70.

[12] Werbos, P. J., 1990. Backpropagation through time: what it does and
how to do it. Proceedings of the IEEE, 78, 1550-1560.

[13] Liu, X.Y., Wu, J., Zhou, Z.-H., 2009. Exploratory under-sampling for
class-imbalance learning. [EEE Trans. on Systems, Man and
Cybernetics, Part B, 39, 539-550.

[14] Yu, T., Zhang, Y., Lin, K.J., 2007. Efficient algorithms for web
services selection with end-to-end QoS constraints. ACM Trans. on the
Web, 1(1), article number 6.

[15] Nau, D., lighami, O., Kuter, U., Murdock, J.W., Wu, D., Yaman, F.,
2003. SHOP2: an HTN planning system. Journal of Artificial
Intelligence Research, 20, 379-404.

[16] Diankov, R., Kuffner, J., 2008. OpenRAVE: a planning architecture
for autonomous robotics. Technical Report CMU-RI-TR-08-34,
Robotics Institute, Carnegie Mellon University.

ISBN: 978-988-19252-8-2 WCE 2013
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

