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Abstract— The present paper describes exploratory

work in which a Sparse Distributed Memory (SDM)

was applied as a text classifier. The SDM is a type of

associative memory based on the properties of high-

dimensional spaces, where data are stored based on

pattern similarity. The results obtained with the

SDM are surprisingly good, for they can be achieved

with little or none pre-processing. They are far supe-

rior to the performance of a “dumb classifier,” though

still inferior to the results obtained with other mod-

ern methods.
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1 Introduction

Text classification and text similarity calculation are ar-
eas of increasing interest. They are important for modern
search engines, information retrieval, targeted advertising
and other applications that require retrieving the most
appropriate, best matching texts, for specific purposes.
As more and more data are stored in digital databases,
quick and accurate retrieval methods are necessary for a
better user experience.

In many applications, retrieval does not need to be exact,
and there may not even be an exact match. An example
is choosing the right ads to exhibit in a website based
on the website’s contents: the ad server needs to output
relevant ads as quickly as possible and in general all on-
topic ads could be acceptable from the semantic point of
view.

On the other hand, it has long been known that non-
random texts exhibit long-range correlations between
lower level symbol representations and higher level se-
mantic meaning [1]. Thus, in theory it may be possible
to achieve some results by processing lower level symbols
directly without getting to the upper structure levels.
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The Sparse Distributed Memory (SDM) is a type of asso-
ciative memory proposed by Pentti Kanerva in the 1980s
[2]. It is based on the properties of high-dimensional
spaces, where data are stored based on pattern similar-
ity. Similar vectors are stored close to one another, while
dissimilar vectors are stored farther apart in the memory.
As for data retrieval, a very small clue is often enough to
retrieve the correct datum. In theory, knowing only 20%
of the bits of a binary vector may be enough to retrieve
it from the memory. To a great extent, the SDM exhibits
characteristics very similar to the way the human brain
works. The SDM has been successfully used in tasks such
as predicting the weather [3] and guiding robots [4].

In the present implementation, the SDM was used for text
classification, taking TF-IDF (Term Frequency-Inverse
Document Frequency) vectors as input and raw text di-
rectly without any text processing. The results obtained
with the SDM are inferior to the results obtained with
other modern methods, but superior to the performance
of a “dumb classifier.” Interestingly, it was possible to ob-
tain those results directly with raw input, skipping any
text processing. Additionally, it has been shown that the
way the information is encoded may influence the per-
formance of the SDM [5]. Thus, it may be possible to
achieve better results in the future by just changing the
text encoding or by making other small adjustments to
the input texts.

In this paper, Section 2 briefly explains the process of
text classification and the origins of long-range semantic
correlations. Section 3 briefly describes the SDM. Section
4 describes the datasets used. Section 5 describes the ex-
periments performed. Section 6 shows and discusses the
results obtained, and Section 7 draws some conclusions
and opens perspectives of future work.

2 Text classification

Often, texts are processed as bags of words and methods
such as k-nearest neighbour and support vector machines
are applied. In bag of words methods, texts are processed
in order to remove words which are considered irrelevant,
such as the, a, etc. The remainder words are then re-
duced to their invariant forms (stemmed), so that differ-
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Figure 1: Hierarchy of levels and links between different
representation levels of a text. Correlations are preserved
between different level structures.

ent forms of the same word are counted as the same—e.g.,
reserved and reserve may be mapped to reserv. The re-
mainder words are then counted and the text is finally
represented by a vector of word frequencies. Text classi-
fication is then processed by means of applying different
operations to the frequency vectors. But those methods
invariably require pre-processing the texts. It is necessary
to process the texts several times in order to extract the
information necessary to create the sorted vectors from
the bags of words. Pre-processing poses additional chal-
lenges for real time operation, specially if the method is
applied to all words. Focusing operation on just keywords
greatly reduces dimensionality of the vectors and process-
ing time, at the cost of loosing the information conveyed
by the overlooked words.

On the other hand, it is known that semantically mean-
ingful texts (i.e., texts that carry some information, not
“artificial” texts generated by randomly juxtaposing sym-
bols) exhibit long-range correlations between lower level
representations and higher semantic meaning. The corre-
lations have been observed for the first time many years
ago, and the topic has been subject to some research. Re-
cently Altmann et al. [1] published an interesting analy-
sis of those long-range correlations. In a text, a topic is
linked to several words, which are then linked to letters,
which are then linked to lower symbols, as represented
in Figure 1. Altmann claims that correlations between
high-level semantic structures and lower level structures
unfold in the form of a bursty signal, thus explaining the
ubiquitous appearance of long-range correlations in texts.

3 Sparse Distributed Memory

The Sparse Distributed Memory is an associative mem-
ory model suitable to work with high-dimensional binary
vectors. Thus, all information that can accurately be de-
scribed by arbitrary sequences of bits may be stored into

Figure 2: Diagram of a SDM, according to the original
model, showing an array of bit counters to store data and
an array of addresses. Memory locations within a certain
radius of the reference address are selected to read or
write.

such a memory.

Kanerva shows that the SDM naturally exhibits the prop-
erties of large boolean spaces. Those properties can be
derived mathematically and are, to a great extent, similar
to that of the human cerebellum. The SDM implements
behaviours such as high tolerance to noise, operation with
incomplete data, parallel processing and knowing that one
knows.

3.1 Implementation of a SDM

The underlying idea behind the SDM is the mapping of a
huge binary memory onto a smaller set of physical loca-
tions, so-called Hard Locations (HL). As a general guide-
line, those hard locations should be uniformly distributed
in the virtual space, to mimic the existence of the larger
virtual space as accurately as possible. Every datum is
stored by distribution to a set of hard locations, and re-
trieved by sampling those locations.

Figure 2 shows a model of a SDM. “Address” is the ref-
erence address where the datum is to be stored or read
from. It will activate all the hard locations in a given ac-
cess radius, which is predefined. Kanerva proposes that
the Hamming distance, that is the number of bits in
which two binary vectors are different, be used as the
measure of distance between the addresses. All the lo-
cations that differ less than a predefined number of bits
from the input address are selected (activated) for the
read or write operation.

3.1.1 Writing and Reading

Data are stored in arrays of counters, one counter for
every bit of every location. Writing is done by incre-
menting or decrementing the bit counters at the selected
addresses. To store 0 at a given position, the correspond-
ing counter is decremented. To store 1, it is incremented.
The counters may, therefore, store either a positive or a
negative value, which should, in theory, most of the times
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fall into the interval [-40,40].

Reading is done by sampling the values of all the coun-
ters of all the active locations. A natural candidate to
extract the correct value is the average. Summing all
the counters columnwise and dividing by the number of
active locations gives the average value of the counters.
The average value can then be compared to a predefined
threshold value. A threshold of 0 is appropriate for nor-
mal data—if the average value is below the threshold the
bit to be read is zero, otherwise it is one. Figure 2 illus-
trates the method.

But the average value is only one possible sampling
method. Another possible method is to pool the infor-
mation by taking a vote—the value that is the most pop-
ular among the contributing counters is preferred. Yet
another alternative is to weigh the contribution of each
counter based on the distance between each hard location
and the reference address.

3.1.2 Starting the Memory

Initially, all the bit counters must be set to zero, for the
memory stores no data. The bits of the hard locations’
addresses should be set randomly, so that those addresses
would be uniformly distributed in the addressing space.
However, many authors prefer to start with an empty
memory, with neither data counters nor addresses, and
then add more addresses where and when they are needed
[6], in order to avoid processing unneeded locations and
reduce startup time.

3.1.3 Characteristics of the SDM

Due to the nature of the model, there is no guarantee that
the data retrieved is exactly the same that was written.
However, it is provable that under normal circumstances
the hard locations must be correctly distributed over the
binary space and, if the memory has not reached satura-
tion, the correct data will be retrieved with high prob-
ability most of the times. The conclusion arises from
the properties of high-dimensional boolean spaces. The
mathematical details, due to their length, are out of the
scope of this paper. They are elegantly described by Kan-
erva in [2]. A summary can also be found in [7].

Other important characteristics of the SDM are: i) It
is immune to noise up to a high threshold. Using cod-
ing schemes such as n-of-m codes, the immunity is even
increased [8, 5], at the cost of reducing the addressable
space. ii) SDMs are robust to failure of individual loca-
tions, just like neural networks. iii) SDMs degrade grace-
fully, when some locations fail or the memory approaches
its maximum capacity. iv) One-shot learning is possible.
If the memory is not close to saturation, it will learn in a

single pass. v) SDMs can be “open” and subject to anal-
ysis of individual locations. That is important namely
for debugging purposes, or to track the learning process.
vi) It is possible to change memory’s structure without
retraining all the memory [6]. For example, it is possible
to add locations where they are needed as well as remove
unused locations. That is an important characteristic to
build modular or adaptive systems.

The main drawbacks of using Sparse Distributed Memo-
ries are: i) Once a datum is written, it cannot be erased,
only forgotten as time goes by. Under certain circum-
stances that may be an undesirable feature. If unneces-
sary memories cannot be deleted, they may interfere with
more recent and important data. ii) If the SDM is simu-
lated in a common computer, storage capacity may be as
low as 0.1 bits per bit of traditional computer memory,
although many authors reported techniques to improve
storage performance [9]. iii) If implemented in software,
a lot of computer processing is required to run the mem-
ory alone.

3.2 Present implementation

In the present approach, the original SDM was imple-
mented, with 8-bit counters (7 bits + sign). However,
the hard locations were not placed randomly in the bi-
nary space as Kanerva proposes. The memory locations
are managed using the Randomised Reallocation (RR)
algorithm proposed by Ratitch et al. [6]. Using the RR,
the system starts with an empty memory and allocates
new locations when there is a new datum which cannot
be stored into enough existing locations. The new loca-
tions are placed randomly in the neighbourhood of the
new datum address.

4 Datasets

The datasets used in the experiments were pre-processed
subsets of Reuters 21578 dataset, available from Cardoso-
Cachopo’s website1 [10]. Those datasets were chosen be-
cause of their popularity and the fact that they were avail-
able in pre-processed form from Cardoso-Cachopo’s web-
site. The subset named R52 is a selection of documents
which are classified into just one of the topics (single-
labelled). R52 contains 9100 documents distributed over
52 different topics. The subset named R8 is a selection
of documents which are also single-labelled, but contains
documents of just 8 of the 10 most frequent topics. Ta-
bles 1 and 2 show the number of documents per topic.
As the tables show, data is very skewed, with the most
popular class accounting for about half of the documents.

Cardoso-Cachopo makes available the datasets with dif-
ferent pre-processing applied. The subsets that are rele-
vant for the present experiments are:

1Datasets available at http://web.ist.utl.pt/acardoso/ (last
checked 2013-02-10).
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Table 1: Documents per class for dataset R8.
Class Train set Test set Total

acq 1596 696 2292
crude 253 121 374
earn 2840 1083 3923
grain 41 10 51

interest 190 81 271
money-fx 206 87 293

ship 108 36 144
trade 251 75 326
Total 5485 2189 7674

• All-terms—Obtained from the original datasets
by applying the following transformations: Substi-
tute TAB, NEWLINE and RETURN characters by
SPACE; Keep only letters (that is, turn punctua-
tion, numbers, etc. into SPACES); Turn all letters to
lower-case; Substitute multiple SPACES by a single
SPACE; The title/subject of each document is sim-
ply added in the beginning of the document’s text.

• Stemmed texts—Obtained from the previous file,
by removing all words that are less than 3 charac-
ters long; removing the 524 SMART system’s stop-
words2 and applying Porter’s Stemmer to the re-
maining words3.

5 Experiments

To assess the performance of the SDM as a classifier, two
types of vectors were used to represent the texts: TF-
IDF vectors and direct storage of the texts using ASCII
characters.

The experiments were performed in two steps: learning
and testing. In the learning stage, representations of all
the documents in the training sets were stored into the
SDM. In the testing stage, the SDM was then queried
with documents of the test set. The category of the doc-
ument retrieved was then used as the SDM’s best match
for the category of the test document.

The first experiment was done using Term Frequency-
Inverse Document Frequency (TF-IDF) vectors as rep-
resentations of the texts. TF-IDF is a popular statistic
used to represent documents in text categorisation. In
general, the use of TF-IDF vectors produces good re-
sults for text categorisation with popular methods such
as Support Vector Machines, K-Nearest Neighbours and
similar. In the present work, TF-IDF vectors were cal-
culated for each single document in the train set. Those

2ftp://ftp.cs.cornell.edu/pub/smart/english.stop (last checked
2013-02-13.

3http://tartarus.org/∼martin/PorterStemmer/ (last checked
2013-02-13).

Table 2: Documents per class for dataset R52.
Class Train set Test set Total

acq 1596 696 2292
alum 31 19 50
bop 22 9 31

carcass 6 5 11
cocoa 46 15 61
coffee 90 22 112
copper 31 13 44
cotton 15 9 24
cpi 54 17 71
cpu 3 1 4
crude 253 121 374
dlr 3 3 6
earn 2840 1083 3923
fuel 4 7 11
gas 10 8 18
gnp 58 15 73
gold 70 20 90
grain 41 10 51
heat 6 4 10

housing 15 2 17
income 7 4 11

instal-debt 5 1 6
interest 190 81 271

ipi 33 11 44
iron-steel 26 12 38

jet 2 1 3
jobs 37 12 49
lead 4 4 8
lei 11 3 14

livestock 13 5 18
lumber 7 4 11

meal-feed 6 1 7
money-fx 206 87 293

money-supply 123 28 151
nat-gas 24 12 36
nickel 3 1 4
orange 13 9 22

pet-chem 13 6 19
platinum 1 2 3
potato 2 3 5
reserves 37 12 49
retail 19 1 20
rubber 31 9 40
ship 108 36 144

strategic-metal 9 6 15
sugar 97 25 122
tea 2 3 5
tin 17 10 27

trade 251 75 326
veg-oil 19 11 30
wpi 14 9 23
zinc 8 5 13
Total 6532 2568 9100
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vectors were then normalised and mapped in the inter-
val [0, 127], so that all numbers could be represented as
unsigned 7-bit integers. That conversion meant to loose
a lot of precision, but considering the length of the vec-
tors it was accepted as a good compromise between SDM
simulation time and precision.

In a second experiment, the vectors stored into the SDM
were chunks of up to 8 Kb of the texts, coded in plain
ASCII. When the length of the text was superior to 8 Kb,
the text was truncated. When the length was inferior to
8 Kb, the remainder bytes were set at random.

In both experiments, the encoded text was used as
address for the SDM. The data stored was the text
with the category juxtaposed—i.e., data vector was
<address, category>, where the category was always
stored in plain ASCII text.

During the learning stage, the vectors were stored into
the SDM with a radius of zero. Copies of all vectors were
stored, since all vectors were different from each other in
both datasets.

In the testing stage, the memory was queried with texts
of the test set, encoded using the same method used dur-
ing the learning stage. When plain texts were used, if
the length of the test document was inferior to 8 Kb,
only part of the vector was used to compute the similar-
ity measure in the SDM. For example, if the length of the
text was just 1 Kb, similarity was computed using only
the first 1024 coordinates of the addresses of the hard
locations. That should not affect the expected character-
istics of the SDM, unless the text was too small.

6 Results

Table 3 summarises the results. The first column identi-
fies the type of classifier. The second column shows the
type of input used. The third column shows the results
obtained for dataset R8 and the last one shows the re-
sults obtained for dataset R52. Experiments with other
datasets and memory types were performed, but the per-
formance of the SDM was very similar. Thus, for clarity,
the authors chose to summarise the results into just Table
3.

The “Dumb classifier” is shown just as a reference. It
is a hypothetical classifier that always returns the most
popular class. Thus, its performance is equal to the per-
centage of documents of the most popular class. In the
datasets used, data is very skewed. Thus, the dumb clas-
sifier actually seems to have a good performance. In more
homogeneous datasets the result is different. For exam-
ple, in the “20 newsgroups dataset,” which consists of
approximately 1000 messages of 20 different newsgroups
(total close to 20000 messages), the dumb classifier has
a performance of 5.3%, while the SDM achieves 20.94%

using “all-terms” and 22.17% using the stemmed texts.

As for the SDM, two different methods were used for the
prediction phase. First, the memory was configured in a
way that for each prediction it always returned the near-
est neighbour found in the neighbourhood of the input
address. Second, the memory was configured in a way
that it enlarged the access radius to encircle at least 10
data points, and then it returned the most popular class
among the classes of data points found. Different num-
bers of data points were tested, between 2 and 10, and
the differences were only negligible. In general, 10 seemed
a good compromise. Using smaller numbers, the results
tend to the results obtained in the first experiment. En-
larging the circle the results will tend to the performance
of the dumb classifier.

As Table 3 shows, the results obtained are humble if com-
pared to other modern classifiers. For example, [11] re-
ports an accuracy of up to 96.98% in dataset R8 and up
to 93.77% in R52 using SVMs. However, the best results
obtained with the SDM can be achieved naturally, with
almost no text processing. The stemmed datasets appar-
ently have a marginal improvement in the results. But
even if the results are the same, stemming and remov-
ing stop-words contributes to reducing dimensionality of
the input vectors. High-dimensionality is not a problem
for the SDM, but if the SDM is implemented in common
serial processors more dimensions mean more processing
time. Thus, removing data that carries no useful seman-
tic information speeds up the process without compro-
mising accuracy.

In summary, the results show that the SDM is able to
grasp high-level semantic information from raw data in-
put. There may be ways to improve the accuracy of the
process, for example trying different methods of encoding
the data. In some applications where real time process-
ing is necessary, the SDM can still be a good option, even
if the results are only humble compared to other modern
methods. The results also open good perspectives for use
of the SDM in other applications where text-matching is
necessary, besides single-label text classification.

7 Conclusions

Text matching is a topic of increasing relevance, as it is
important for information retrieval, text categorisation
and other applications. It is known that language ex-
hibits long-range correlations, from the lowest-level rep-
resentations to the highest semantic meanings. The SDM
is an associative memory model that works based on the
properties of high-dimensional boolean spaces, exploring
in part similarities between long binary vectors. The ex-
perimental results described in the present paper show
that the original model of the SDM alone, without any
text processing, is able to work as a surprisingly good
text classifier, even taking plain ASCII text as input. In
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Table 3: Performance of the classification methods compared.
Method Input R8 R52

Dumb classifier - 49.47 42.17
TF-IDF vectors 55.92 51.01

SDM with shortest radius Stemmed texts 60.71 50.43
All terms 60.21 50.00

TF-IDF vectors 52.26 51.01
SDM choosing the most popular Stemmed texts 64.55 55.53

All terms 64.64 55.18

future work different methods of encoding the informa-
tion or tuning the SDM may be tried, seeking to improve
the performance of the SDM as a classifier.
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