
 

 
Abstract—In this paper we focus on extending and 

generalizing our model for statistical modeling of network 
performance parameters and traffic engineering, CUBE. This 
extension will now enable statistical modeling of any number 
and type of network performance parameters. In addition to 
this extension we have also implemented a system for 
application in real computer networks and provide results of 
traffic flow optimization capabilities. This system incorporates 
our proposed model with extensions – n-CUBE. We list design 
and implementation details and also results of two preliminary 
experiments that were performed in a network laboratory 
environment.  
 

Index Terms— MPLS, networks, QoS, statistics, traffic-
engineering 
 

I. INTRODUCTION 

HE objective of this paper is to provide an extension to 
the well known area of MPLS traffic engineering by 

extending our novel method [1] of gathering network 
performance parameters and putting them into comparison. 
Network traffic flow optimization is a very modern theme in 
heterogeneous networks, where many different types of 
traffic are traversing the same logical infrastructure. This is 
especially the case in large transit networks (e.g. service 
provider infrastructures) where traffic from multiple sources 
is aggregated. Authors in [3] have shown that aggregating 
traffic into a limited number of MPLS label-switched paths 
(LSPs) improves QoS, increases scalability, improves 
maintenance and reduces complexity. We also focus on 
advantages of aggregating traffic in MPLS networks, 
primarily due to the ability to route this traffic across a 
specifically defined LSP which lies at the core of most 
traffic-engineering methods. Multiprotocol label switching 
is nowadays a de-facto standard for traffic-engineering 
deployments, since the work presented in [12]. This applies 
to large-scale service provider networks in particular, but 
there are also additional benefits in using MPLS like a BGP-
free core, internetworking features and various VPN 
applications. Traffic engineering encompasses methods and 
techniques used to optimize the flow of traffic in order to 
utilize all available resources, maximize the throughput and 
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improve the quality of experience. Quality of Experience 
(QoE) deals with user expectation, satisfaction and overall 
experience. It also known as Perceived Quality of Service 
(PQoS) and is a subjective measure from one's perspective 
of the overall quality of the service received. From a 
technical point of view, the quality of experience should be 
improved by improving quality of services. 

 Quality of services (QoS) is a critical element when it 
comes to designing converged networks. In recent past, 
there have been traffic engineering extensions to routing 
protocols to incorporate traffic load in the link state 
advertisements and path selection decisions [11]. Despite 
the fact that bandwidth over-provisioning is currently still 
the most common way to improve the quality of service for 
some applications, it does not provide any guarantees of 
network performance. We have proven this fact by 
conducting long-term measurements in a service-provider 
network of global coverage and comparing them to similar 
results [4]. 

 Sub-optimal distribution of network traffic has long 
been an issue in large service provider networks. In default 
configuration, path selection is done by the interior routing 
protocol, even for sensitive traffic like VoIP or streaming 
video [6] and implementation of traffic optimization 
techniques is non-trivial [7], [8]. High redundancy, though 
already present in network infrastructure, offers resiliency 
but to really utilize all available resources, advanced flow 
distribution and optimization techniques must be used. 
Network visualization may also help by improving the 
understanding of traffic displacement and observing the 
effect of applying traffic optimization in a real network [5].  
 In order to achieve optimal traffic distribution in a 
network, one must first gather up-to-date values of network 
performance parameters [2]. Those are usually represented 
in the form of a traffic matrix. In our model CUBE, we 
establish a different approach. 

II.  ORIGINAL CONCEPT 

 
In our original work [1] we proposed a model for 

statistical modeling of network performance parameters. 
This model was implemented in the Matlab environment 
and tested on a set of randomly generated graphs. The 
model, in its original specification was able to work with 
two different sets of network performance parameters using 
a bivariate normal distribution. Network performance 
parameters were gathered by performing periodic active 
measurements on each link in the network. For these 
purposes, the IP SLA feature of Cisco IOS [16] was used 
and the gathered statistics were retrieved by SNMP pollers. 
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Fig. 1 - CUBE model with two links 

 

Two sets of parameters were gathered (delay and jitter) 
and then fed into the CUBE model, which has 3-dimensions. 
Delay is plotted on the X axis, jitter on the Y axis and a 
probability distribution function is plotted on the Z axis. 

This model enabled us to make assumptions about the 
distribution of network performance parameter values over 
time. If gathered correctly over a statistically significant 
period of time [13], this model can generalize the behavior 
of network performance parameters on the link. We take 
advantage of this property and segment the model into areas, 
to which weights (for IGP protocols) can be assigned.  

The output of this modeling is therefore a set of weights 
applicable to links in the network and these weights are used 
by our modification of Dijkstra’s and Kruskal’s algorithm 
[14] to determine a coherent overlay network to be used by a 
specific type of traffic. In our original proposal, we only 
focused on VoIP traffic. Two important network 
performance parameters for VoIP traffic are network delay 
and jitter [9], [10]. Other types of traffic (and possible future 
applications) may have different requirements and 
expectations.  

In our original concept we establish a VoIP backbone 
suitable for routing VoIP traffic and connecting IP 
telephony components. In this paper we extend this 
approach and generalize our methods of traffic flow 
optimization.  

 

III.  N-CUBE EXTENSION 

The CUBE model is extended with support of any type of 
network performance parameters. The type of parameter is 
completely abstracted and the decision of which network 
performance parameters to model is left on the user. 
Originally we modeled time parameters – delay and jitter 
because from our point of view these parameters were 
crucial for VoIP traffic. However, different types of traffic 
may have different requirements so the focus can be shifted 
to other variables if desired. For instance data (file) 
transmissions are adversely affected by packet loss and 
throughput. If those parameters can be gathered in a 
network, they can be fed into the n-CUBE model (regardless 
of type). In theory, any network parameter can be modeled 
(e.g. MOS, etc.). 

 
 
 

 
 Fig. 2 – MPLS class-based tunnel (LSP) selection 

 
The CUBE model is also extended with support of any 

number of parameters modeled at any time. Originally we 
modeled two parameters by using a bivariate normal 
distribution. In n-CUBE however, the number of parameters 
can be n so the n-CUBE thus becomes an n-dimensional 
hypercube. Every dimension except one is used to plot one 
parameter and the final dimension is used for the 
multivariate normal distribution – probability density 
function.  

The general idea however, doesn’t change. The n-
dimensional hypercube is segmented into user-configurable 
areas and links are assigned weights just as in the original 
CUBE model. The most important extension however, is the 
ability to find a shortest path for a particular type of network 
traffic. This path can be represented by an LSP in MPLS 
networks and set up using an explicitly defined MPLS 
traffic-engineering tunnel. For this feature we use the, now 
well-known, class-based tunnel selection [15]. Class-based 
tunnel selection allows us to specify up to 8 different LSPs 
(the limitation is due to the number of bits in the MPLS EXP 
field) for forwarding traffic inside our transit network, see 
Fig. 2.  

The final extension present in the n-CUBE model is the 
model memory, represented by the parameter Y. The n-
CUBE model is designed for a continuous data feed and its 
optimization function as defined in [1] is triggered on a set 
parameters determined by the memory parameter. The 
memory parameter has an impact on the resulting 
probability density function of the multivariate normal 
distribution, as depicted in Fig. 3 and Fig. 4. 

 
 Fig. 3 – One link modeled in n-CUBE with the memory parameter Y=3 

...
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 Fig. 4 – One link modeled in n-CUBE with the memory parameter Y=10 

 
While in the original model – CUBE, we only tested our 

solution on a set of randomly generated graphs to determine 
performance and validate its correct function; in n-CUBE 
we have implemented a working solution for use in a real 
network environment. In the following section we describe 
the implementation details of our system. 

 

IV. IMPLEMENTATION 

 
In this section we describe the implementation of our 

proposed n-CUBE model. For implementation purposes we 
have decided to break up functional elements into blocks.  
The blocks will function as separate entities with possible 
multiple instances per block. Blocks are defined as depicted 
in Fig. 5 and described below: 
1) Application in the NMC – this application leverages a 

common existing infrastructure of the network 
management center which has access to all managed 
routers from a set of centralized jump servers. The 
application will feature three autonomous processes 
working asynchronously and achieving: 
a) Polling – fetching runtime variables from routers 

via SNMPv3 (mostly IP SLA statistics) 
b) Update – pushing updated configurations to routers 

via SSH (modification of link weights as a result of 
n-CUBE model weight assignment) 

c) Data interface – storing the fetched runtime 
variables into a common repository, which is 
accessible to all (e.g.: file, SQL database, etc.) 

 
2) Common repository – this should be a universally, but 

securely accessible resource which enables fast data 
storage and retrieval. Consistency of data and shared 
access is guaranteed by underlying methods (operating 
system or data base). 

 
3) n-CUBE modeling – this application will retrieve 

runtime data stored in the common repository and 
model link weights based on multivariate normal 
distribution of desired network performance parameters. 
This will be achieved by a Matlab application. 

  

 
 

Fig. 5 – Functional elements of our implementation 

 
TABLE I 

DESCRIPTION OF IMPLEMENTATION PARAMETERS 

Parameter Description 

t1 defines a period of time after which data 
retrieval from the network takes place, in 
seconds  

t2 Defines a period of time after which and 
action is triggered, in seconds (zero is 
instantaneous) 

t3 Defines a period of time after which new 
data is fed into the n-CUBE for modeling , in 
seconds 

t4 Defines a period of time after which new 
metrics are fed back into the network, in 
seconds 

 
For verification purposes, the entire solution will be 

deployed in a network laboratory environment, depicted in 
Fig. 7. Our design supports clustering and segmentation and 
thus enables scalability for long-term use. A more detailed 
design diagram can be seen in Fig. 6 where functional 
blocks are interconnected with managed routing areas 
(under common control). 

Polling and Update processes are periodically managing 
their designated area (all routers within an area) at specified 
intervals. The interval value is configurable and it is advised 
to synchronize this interval to the IP SLA object frequency.  

The Polling process periodically sends SNMP GET 
messages to managed routers inside a common area to 
retrieve latest measurement details (IP SLA statistics) and 
stores each new value inside the data interface.  

The Update process maintains a last-known copy of the 
data interface (file or SQL database table) and only applies 
configuration changes to managed network area in case of a 
change and only to routers which are affected by the change. 
The configuration change is done by an automated agent 
who logs into the managed router via a secure SSH channel 
and applies a change configuration. 

Compute-servers are running a Matlab application 
instance accessing a particular section of the data interface 
(e.g. file or SQL database table). Modeling the n-CUBE is 
done in real-time and the data is periodically updated in 
configurable time intervals. Link weight updates are being 
fed back to the data interface at these intervals whenever a 
change is determined by the n-CUBE model.   
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Fig. 6 – Data flow in the logical design 

 
Having described our implementation and all of its details, 
we will now proceed to experiments where we introduce 
artificially generated traffic into a measurement topology 
(see Fig. 7) and evaluate the effectiveness and correctness of 
our system. 

V. EXPERIMENTS 

With our implementation we performed two sets of 
experiments to determine its preliminary traffic-engineering 
capabilities on artificially generated traffic.  

A. Experiment 1 

In the first experiment we will generate traffic artificially 
as described in the previous section. During the course of 
the experiment, IP SLA measurement probes will be sent (in 
addition to being sent on every link as part of data 
gathering) end-to-end to quantify end-to-end performance 
parameters between communicating parties. All generated 
traffic except the IP SLA probes will be part of the same 
class and bears the same marking (in the MPLS domain it 
will be EXP=1). The IP SLA probes will be sent with a 
different marking (in the MPLS domain it will be EXP=2). 
Traffic optimization will be done for all IP SLA traffic 
(EXP=2). One-time optimization option was used. 
 

 
Fig. 7 – Physical topology for use in our experiments 

 
Fig. 8 – Experiment 1 network visualization (prior to optimization) 

We have generated traffic and IP SLA probes (end-to-end) 
with different markings, but prior to optimization only the 
routing protocol was used to determine the shortest path to 
the destination. This means that all traffic was forwarded 
along the same path, regardless of its marking. Once the 
optimization function was triggered, the IP SLA traffic (with 
a different marking, MPLS EXP=2) was suddenly being 
routed over a different path. Thus the measured end-to-end 
delay and jitter fell dramatically. In this way we optimized 
EXP=2 traffic and offloaded it from a congested path, 
thereby improving the overall perceived quality of service in 
that traffic class.  In the following figures, we provide 
visualization, which is part of our optimization 
implementation. Prior to optimization, the default path (as 
chosen by the routing protocol) was 1 -> 3 -> 6 -> 8. And 
this was the path that all traffic was forwarded along; see 
Fig. 8 (no optimization path) and Fig. 9 where the 
optimization path is visualized. Measurement results after 
optimization can be seen in Fig. 10. 
 

TABLE II 
TIMELINE OF EXPERIMENT 1 

Time Action 

0:00 All generators start generating traffic at 
maximum possible rate 
 

10:00 Traffic optimization  is triggered 

 

B. Experiment 2 

In the second experiment we will generate traffic 
artificially as described in the previous section. During the 
course of the experiment, in addition to sending IP SLA 
probes on each link as part of data gathering, we will send 
two distinct IP SLA measurement probes. One probe will be 
marked as EXP=4 in the MPLS domain and the other as 
EXP=5. Traffic generated from the first generator will be 
marked as EXP=5 in the MPLS domain and all other 
generated traffic will be marked as EXP=4. Traffic 
optimization will be done for traffic marked with EXP=5 
and a class-based tunnel will be created to transmit all traffic 
marked as such. All other traffic will be sent over the 
original path (before or after optimization). 

Once the optimization was triggered, traffic marked as 
EXP=5 in the MPLS domain was forwarded along a new, 
traffic-engineered path. Thus we have redirected the flow of 
traffic away from the congested path. As can be seen in Fig. 
11, once EXP=5 traffic was redirected to a new path toward 
its destination, the throughput improved also for the rest of 
traffic (marked EXP=4). 

 
Fig. 9 – Experiment 1 network visualization (after optimization) 
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TABLE III 
TIMELINE OF EXPERIMENT 2 

Time Action 

2:00 two generators start generating traffic 
marked as EXP=4 at maximum possible rate  

6:00 third generator starts generating traffic 
marked as EXP=5 at maximum possible rate 

10:20 Traffic optimization is triggered 

17:00 all generators stop generating traffic 

 

VI. CONCLUSION 

In this paper we proposed an extension to our model for 
traffic flow optimization, n-CUBE. This model enables 
discovery and modeling of any number and type of network 
performance parameters. The model now features a memory 
parameter which allows the user to specify the number of 
measurements which are taken into account. Our model 
assigns weights to logical network links by segmenting the 
n-CUBE into a finite number of areas based on statistical 
distributions and probabilities. Such weights can then be 

Fig. 10- Experiment 2 - measured throughput in kb/s (top figure) round-trip time for EXP=4 traffic in ms (middle figure) and round-trip time for EXP=5 
traffic in ms (bottom figure) 

 

Fig. 11- Experiment 1 - measured round-trip time in ms (top figure) and jitter in ms (bottom figure) 
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used by well-known algorithms (e.g. Dijkstra’s algorithm) 
to find a shortest path.  We have implemented the n-CUBE 
model in a real environment and performed two sets of 
experiments so far on which we prove the traffic-
engineering capabilities. The traffic-engineering path can be 
created as an explicitly defined LSP by our implementation. 
In our experiments we have generated artificial network 
traffic into a measurement topology and then triggered 
network optimization by allowing our model to feed new 
configurations into the network. Traffic optimization can be 
triggered either for the entire traffic transmitted over our 
network or for a particular traffic class. The results of our 
experiments were listed in graphical output form (see Fig. 
11 and Fig. 10). 

 

VII. FUTURE WORK 

Our results have shown that the model, as currently 
implemented, is able to dynamically react to changes in the 
network and optimize the flow of traffic, while taking in 
mind the class into which the traffic belongs. Future work 
will involve experimentation with some parameters of our 
model, as described in section IV – Implementation, 
focusing on t3 and t4 parameters. In our experiments we 
have only experimented with one-time optimization. In 
future work, we will perform experimentation with 
continuous and progressive optimization options, which 
require long-term experiments and were not yet done. 
Particularly the progressive option where the t4 parameter is 
subject to change after successive optimization cycles is still 
under research. 
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