


Abstract—In this paper we focus on extending and

generalizing our model for statistical modeling of network
performance parameters and traffic engineering, CUBE. This
extension will now enable statistical modeling of any number
and type of network performance parameters. In addition to
this extension we have also implemented a system for
application in real computer networks and provide results of
traffic flow optimization capabilities. This system incorporates
our proposed model with extensions – n-CUBE. We list design
and implementation details and also results of two preliminary
experiments that were performed in a network laboratory
environment.

Index Terms— MPLS, networks, QoS, statistics, traffic-
engineering

I. INTRODUCTION

HE objective of this paper is to provide an extension to
the well known area of MPLS traffic engineering by

extending our novel method [1] of gathering network
performance parameters and putting them into comparison.
Network traffic flow optimization is a very modern theme in
heterogeneous networks, where many different types of
traffic are traversing the same logical infrastructure. This is
especially the case in large transit networks (e.g. service
provider infrastructures) where traffic from multiple sources
is aggregated. Authors in [3] have shown that aggregating
traffic into a limited number of MPLS label-switched paths
(LSPs) improves QoS, increases scalability, improves
maintenance and reduces complexity. We also focus on
advantages of aggregating traffic in MPLS networks,
primarily due to the ability to route this traffic across a
specifically defined LSP which lies at the core of most
traffic-engineering methods. Multiprotocol label switching
is nowadays a de-facto standard for traffic-engineering
deployments, since the work presented in [12]. This applies
to large-scale service provider networks in particular, but
there are also additional benefits in using MPLS like a BGP-
free core, internetworking features and various VPN
applications. Traffic engineering encompasses methods and
techniques used to optimize the flow of traffic in order to
utilize all available resources, maximize the throughput and

Manuscript received March 12, 2013; revised April 5, 2013. This work

was supported by the Slovak Science Grant Agency (VEGA 1/0676/12
“Network architectures for multimedia services delivery with QoS
guarantee“).

Martin Hruby (phone: 421-2-654-29502), Michal Olsovsky and
Margareta Kotocova are with the Faculty of Informatics and Information
Technologies, Slovak University of Technology in Bratislava, Slovakia (e-
mails: hruby@fiit.stuba.sk, olsovsky@fiit.stuba.sk,
kotocova@fiit.stuba.sk).

improve the quality of experience. Quality of Experience
(QoE) deals with user expectation, satisfaction and overall
experience. It also known as Perceived Quality of Service
(PQoS) and is a subjective measure from one's perspective
of the overall quality of the service received. From a
technical point of view, the quality of experience should be
improved by improving quality of services.

 Quality of services (QoS) is a critical element when it
comes to designing converged networks. In recent past,
there have been traffic engineering extensions to routing
protocols to incorporate traffic load in the link state
advertisements and path selection decisions [11]. Despite
the fact that bandwidth over-provisioning is currently still
the most common way to improve the quality of service for
some applications, it does not provide any guarantees of
network performance. We have proven this fact by
conducting long-term measurements in a service-provider
network of global coverage and comparing them to similar
results [4].

 Sub-optimal distribution of network traffic has long
been an issue in large service provider networks. In default
configuration, path selection is done by the interior routing
protocol, even for sensitive traffic like VoIP or streaming
video [6] and implementation of traffic optimization
techniques is non-trivial [7], [8]. High redundancy, though
already present in network infrastructure, offers resiliency
but to really utilize all available resources, advanced flow
distribution and optimization techniques must be used.
Network visualization may also help by improving the
understanding of traffic displacement and observing the
effect of applying traffic optimization in a real network [5].
 In order to achieve optimal traffic distribution in a
network, one must first gather up-to-date values of network
performance parameters [2]. Those are usually represented
in the form of a traffic matrix. In our model CUBE, we
establish a different approach.

II. ORIGINAL CONCEPT

In our original work [1] we proposed a model for

statistical modeling of network performance parameters.
This model was implemented in the Matlab environment
and tested on a set of randomly generated graphs. The
model, in its original specification was able to work with
two different sets of network performance parameters using
a bivariate normal distribution. Network performance
parameters were gathered by performing periodic active
measurements on each link in the network. For these
purposes, the IP SLA feature of Cisco IOS [16] was used
and the gathered statistics were retrieved by SNMP pollers.

Traffic Flow Optimization and Visualization in
MPLS Networks

Martin Hruby, Michal Olsovsky, and Margareta Kotocova

T

Proceedings of the World Congress on Engineering 2013 Vol II,
WCE 2013, July 3 - 5, 2013, London, U.K.

ISBN: 978-988-19252-8-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2013

Fig. 1 - CUBE model with two links

Two sets of parameters were gathered (delay and jitter)
and then fed into the CUBE model, which has 3-dimensions.
Delay is plotted on the X axis, jitter on the Y axis and a
probability distribution function is plotted on the Z axis.

This model enabled us to make assumptions about the
distribution of network performance parameter values over
time. If gathered correctly over a statistically significant
period of time [13], this model can generalize the behavior
of network performance parameters on the link. We take
advantage of this property and segment the model into areas,
to which weights (for IGP protocols) can be assigned.

The output of this modeling is therefore a set of weights
applicable to links in the network and these weights are used
by our modification of Dijkstra’s and Kruskal’s algorithm
[14] to determine a coherent overlay network to be used by a
specific type of traffic. In our original proposal, we only
focused on VoIP traffic. Two important network
performance parameters for VoIP traffic are network delay
and jitter [9], [10]. Other types of traffic (and possible future
applications) may have different requirements and
expectations.

In our original concept we establish a VoIP backbone
suitable for routing VoIP traffic and connecting IP
telephony components. In this paper we extend this
approach and generalize our methods of traffic flow
optimization.

III. N-CUBE EXTENSION

The CUBE model is extended with support of any type of
network performance parameters. The type of parameter is
completely abstracted and the decision of which network
performance parameters to model is left on the user.
Originally we modeled time parameters – delay and jitter
because from our point of view these parameters were
crucial for VoIP traffic. However, different types of traffic
may have different requirements so the focus can be shifted
to other variables if desired. For instance data (file)
transmissions are adversely affected by packet loss and
throughput. If those parameters can be gathered in a
network, they can be fed into the n-CUBE model (regardless
of type). In theory, any network parameter can be modeled
(e.g. MOS, etc.).

 Fig. 2 – MPLS class-based tunnel (LSP) selection

The CUBE model is also extended with support of any

number of parameters modeled at any time. Originally we
modeled two parameters by using a bivariate normal
distribution. In n-CUBE however, the number of parameters
can be n so the n-CUBE thus becomes an n-dimensional
hypercube. Every dimension except one is used to plot one
parameter and the final dimension is used for the
multivariate normal distribution – probability density
function.

The general idea however, doesn’t change. The n-
dimensional hypercube is segmented into user-configurable
areas and links are assigned weights just as in the original
CUBE model. The most important extension however, is the
ability to find a shortest path for a particular type of network
traffic. This path can be represented by an LSP in MPLS
networks and set up using an explicitly defined MPLS
traffic-engineering tunnel. For this feature we use the, now
well-known, class-based tunnel selection [15]. Class-based
tunnel selection allows us to specify up to 8 different LSPs
(the limitation is due to the number of bits in the MPLS EXP
field) for forwarding traffic inside our transit network, see
Fig. 2.

The final extension present in the n-CUBE model is the
model memory, represented by the parameter Y. The n-
CUBE model is designed for a continuous data feed and its
optimization function as defined in [1] is triggered on a set
parameters determined by the memory parameter. The
memory parameter has an impact on the resulting
probability density function of the multivariate normal
distribution, as depicted in Fig. 3 and Fig. 4.

 Fig. 3 – One link modeled in n-CUBE with the memory parameter Y=3

...

Proceedings of the World Congress on Engineering 2013 Vol II,
WCE 2013, July 3 - 5, 2013, London, U.K.

ISBN: 978-988-19252-8-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2013

 Fig. 4 – One link modeled in n-CUBE with the memory parameter Y=10

While in the original model – CUBE, we only tested our

solution on a set of randomly generated graphs to determine
performance and validate its correct function; in n-CUBE
we have implemented a working solution for use in a real
network environment. In the following section we describe
the implementation details of our system.

IV. IMPLEMENTATION

In this section we describe the implementation of our

proposed n-CUBE model. For implementation purposes we
have decided to break up functional elements into blocks.
The blocks will function as separate entities with possible
multiple instances per block. Blocks are defined as depicted
in Fig. 5 and described below:
1) Application in the NMC – this application leverages a

common existing infrastructure of the network
management center which has access to all managed
routers from a set of centralized jump servers. The
application will feature three autonomous processes
working asynchronously and achieving:
a) Polling – fetching runtime variables from routers

via SNMPv3 (mostly IP SLA statistics)
b) Update – pushing updated configurations to routers

via SSH (modification of link weights as a result of
n-CUBE model weight assignment)

c) Data interface – storing the fetched runtime
variables into a common repository, which is
accessible to all (e.g.: file, SQL database, etc.)

2) Common repository – this should be a universally, but

securely accessible resource which enables fast data
storage and retrieval. Consistency of data and shared
access is guaranteed by underlying methods (operating
system or data base).

3) n-CUBE modeling – this application will retrieve

runtime data stored in the common repository and
model link weights based on multivariate normal
distribution of desired network performance parameters.
This will be achieved by a Matlab application.

Fig. 5 – Functional elements of our implementation

TABLE I

DESCRIPTION OF IMPLEMENTATION PARAMETERS

Parameter Description

t1 defines a period of time after which data
retrieval from the network takes place, in
seconds

t2 Defines a period of time after which and
action is triggered, in seconds (zero is
instantaneous)

t3 Defines a period of time after which new
data is fed into the n-CUBE for modeling , in
seconds

t4 Defines a period of time after which new
metrics are fed back into the network, in
seconds

For verification purposes, the entire solution will be

deployed in a network laboratory environment, depicted in
Fig. 7. Our design supports clustering and segmentation and
thus enables scalability for long-term use. A more detailed
design diagram can be seen in Fig. 6 where functional
blocks are interconnected with managed routing areas
(under common control).

Polling and Update processes are periodically managing
their designated area (all routers within an area) at specified
intervals. The interval value is configurable and it is advised
to synchronize this interval to the IP SLA object frequency.

The Polling process periodically sends SNMP GET
messages to managed routers inside a common area to
retrieve latest measurement details (IP SLA statistics) and
stores each new value inside the data interface.

The Update process maintains a last-known copy of the
data interface (file or SQL database table) and only applies
configuration changes to managed network area in case of a
change and only to routers which are affected by the change.
The configuration change is done by an automated agent
who logs into the managed router via a secure SSH channel
and applies a change configuration.

Compute-servers are running a Matlab application
instance accessing a particular section of the data interface
(e.g. file or SQL database table). Modeling the n-CUBE is
done in real-time and the data is periodically updated in
configurable time intervals. Link weight updates are being
fed back to the data interface at these intervals whenever a
change is determined by the n-CUBE model.

router

common
repository

Polling
process

Update
process

Visualization
n-CUBE
modeling

Data interface
process

Proceedings of the World Congress on Engineering 2013 Vol II,
WCE 2013, July 3 - 5, 2013, London, U.K.

ISBN: 978-988-19252-8-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2013

Fig. 6 – Data flow in the logical design

Having described our implementation and all of its details,
we will now proceed to experiments where we introduce
artificially generated traffic into a measurement topology
(see Fig. 7) and evaluate the effectiveness and correctness of
our system.

V. EXPERIMENTS

With our implementation we performed two sets of
experiments to determine its preliminary traffic-engineering
capabilities on artificially generated traffic.

A. Experiment 1

In the first experiment we will generate traffic artificially
as described in the previous section. During the course of
the experiment, IP SLA measurement probes will be sent (in
addition to being sent on every link as part of data
gathering) end-to-end to quantify end-to-end performance
parameters between communicating parties. All generated
traffic except the IP SLA probes will be part of the same
class and bears the same marking (in the MPLS domain it
will be EXP=1). The IP SLA probes will be sent with a
different marking (in the MPLS domain it will be EXP=2).
Traffic optimization will be done for all IP SLA traffic
(EXP=2). One-time optimization option was used.

Fig. 7 – Physical topology for use in our experiments

Fig. 8 – Experiment 1 network visualization (prior to optimization)

We have generated traffic and IP SLA probes (end-to-end)
with different markings, but prior to optimization only the
routing protocol was used to determine the shortest path to
the destination. This means that all traffic was forwarded
along the same path, regardless of its marking. Once the
optimization function was triggered, the IP SLA traffic (with
a different marking, MPLS EXP=2) was suddenly being
routed over a different path. Thus the measured end-to-end
delay and jitter fell dramatically. In this way we optimized
EXP=2 traffic and offloaded it from a congested path,
thereby improving the overall perceived quality of service in
that traffic class. In the following figures, we provide
visualization, which is part of our optimization
implementation. Prior to optimization, the default path (as
chosen by the routing protocol) was 1 -> 3 -> 6 -> 8. And
this was the path that all traffic was forwarded along; see
Fig. 8 (no optimization path) and Fig. 9 where the
optimization path is visualized. Measurement results after
optimization can be seen in Fig. 10.

TABLE II
TIMELINE OF EXPERIMENT 1

Time Action

0:00 All generators start generating traffic at
maximum possible rate

10:00 Traffic optimization is triggered

B. Experiment 2

In the second experiment we will generate traffic
artificially as described in the previous section. During the
course of the experiment, in addition to sending IP SLA
probes on each link as part of data gathering, we will send
two distinct IP SLA measurement probes. One probe will be
marked as EXP=4 in the MPLS domain and the other as
EXP=5. Traffic generated from the first generator will be
marked as EXP=5 in the MPLS domain and all other
generated traffic will be marked as EXP=4. Traffic
optimization will be done for traffic marked with EXP=5
and a class-based tunnel will be created to transmit all traffic
marked as such. All other traffic will be sent over the
original path (before or after optimization).

Once the optimization was triggered, traffic marked as
EXP=5 in the MPLS domain was forwarded along a new,
traffic-engineered path. Thus we have redirected the flow of
traffic away from the congested path. As can be seen in Fig.
11, once EXP=5 traffic was redirected to a new path toward
its destination, the throughput improved also for the rest of
traffic (marked EXP=4).

Fig. 9 – Experiment 1 network visualization (after optimization)

R1

R2

R5

R4

R9

R3

R10

R6

R7 R8

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

8

9

10

Proceedings of the World Congress on Engineering 2013 Vol II,
WCE 2013, July 3 - 5, 2013, London, U.K.

ISBN: 978-988-19252-8-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2013

TABLE III
TIMELINE OF EXPERIMENT 2

Time Action

2:00 two generators start generating traffic
marked as EXP=4 at maximum possible rate

6:00 third generator starts generating traffic
marked as EXP=5 at maximum possible rate

10:20 Traffic optimization is triggered

17:00 all generators stop generating traffic

VI. CONCLUSION

In this paper we proposed an extension to our model for
traffic flow optimization, n-CUBE. This model enables
discovery and modeling of any number and type of network
performance parameters. The model now features a memory
parameter which allows the user to specify the number of
measurements which are taken into account. Our model
assigns weights to logical network links by segmenting the
n-CUBE into a finite number of areas based on statistical
distributions and probabilities. Such weights can then be

Fig. 10- Experiment 2 - measured throughput in kb/s (top figure) round-trip time for EXP=4 traffic in ms (middle figure) and round-trip time for EXP=5
traffic in ms (bottom figure)

Fig. 11- Experiment 1 - measured round-trip time in ms (top figure) and jitter in ms (bottom figure)

Proceedings of the World Congress on Engineering 2013 Vol II,
WCE 2013, July 3 - 5, 2013, London, U.K.

ISBN: 978-988-19252-8-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2013

used by well-known algorithms (e.g. Dijkstra’s algorithm)
to find a shortest path. We have implemented the n-CUBE
model in a real environment and performed two sets of
experiments so far on which we prove the traffic-
engineering capabilities. The traffic-engineering path can be
created as an explicitly defined LSP by our implementation.
In our experiments we have generated artificial network
traffic into a measurement topology and then triggered
network optimization by allowing our model to feed new
configurations into the network. Traffic optimization can be
triggered either for the entire traffic transmitted over our
network or for a particular traffic class. The results of our
experiments were listed in graphical output form (see Fig.
11 and Fig. 10).

VII. FUTURE WORK

Our results have shown that the model, as currently
implemented, is able to dynamically react to changes in the
network and optimize the flow of traffic, while taking in
mind the class into which the traffic belongs. Future work
will involve experimentation with some parameters of our
model, as described in section IV – Implementation,
focusing on t3 and t4 parameters. In our experiments we
have only experimented with one-time optimization. In
future work, we will perform experimentation with
continuous and progressive optimization options, which
require long-term experiments and were not yet done.
Particularly the progressive option where the t4 parameter is
subject to change after successive optimization cycles is still
under research.

ACKNOWLEDGMENT

We would like to thank the Institute of Computer Systems
and Networks at the Faculty of Informatics and Information
Technologies in Bratislava, for granting access into their
network laboratories were our experiments were carried out.

REFERENCES
[1] Hruby, M., Olsovsky, M., Kotocova, M.: “Routing VoIP Traffic in

Large Networks” In Proceedings of the World Congress on
Engineering (WCE 2012), 4-6 July, 2012 Imperial College London,
London, U.K, Vol. II. Hong Kong: International Association of
Engineers, 2012, ISBN 978-988-19252-1-3, pp. 798—803

[2] Zoric, S.; Bolic, M.: “Fairness of scheduling algorithms for real-time
traffic in DiffServ based networks”. In Proceedings of 2010 IEEE
15th Mediterranean Electrotechnical Conference (MELECON); 26-
28 April 2010; pp.1591-1596

[3] Vallat, W.; Ganti, S.: “Aggregation of traffic classes in MPLS
networks” In 24th Canadian Conference on Electrical and Computer
Engineering (CCECE), 2011, pp.1260-1263, 8-11 May 2011

[4] Garcia-Dorado, J.L.; Finamore, A.; Mellia, M.; Meo, M.; Munafo,
M.: “Characterization of ISP Traffic: Trends, User Habits, and Access
Technology Impact”. In IEEE Transactions on Network and Service
Management, vol.9, no.2, pp.142-155, June 2012

[5] Haoxiang, W.: “From a Mess to Graphic Maps: Visualization of
Large-Scale Heterogeneous Networks“. In Second International
Conference on Computer Modeling and Simulation 2010 (ICCMS
'10), vol.1, pp.531-535, 22-24 Jan. 2010

[6] Kun-chan Lan; Tsung-hsun Wu: “Evaluating the perceived quality of
infrastructure-less VoIP” In IEEE International Conference on
Multimedia and Expo (ICME), 2011, 11-15 July 2011, pp.1-6

[7] Hansen, T.J.; Morup, M.; Hansen, L.K.: “Non-parametric clustering
of large scale sparse bipartite networks on the GPU” in IEEE

International Workshop on Machine Learning for Signal Processing
(MLSP), 2011, pp.1-6, 18-21 Sept. 2011

[8] Wang, X.; Wan, S.; Li, L.: “Robust Traffic Engineering Using Multi-
Topology Routing”, In Global Telecommunications Conference,
2009, pp.1–6

[9] Hyeongu Son; Youngseok Lee: “Detecting Anomaly Traffic using
Flow Data in the real VoIP network” In 10th IEEE/IPSJ International
Symposium on Applications and the Internet (SAINT), 2010, 19-23
July 2010, pp.253-256

[10] Narayan, S.; Yhi Shi: “Application layer network performance
evaluation of VoIP traffic on a test-bed with IPv4 and IPv6 LAN
infrastructure” In International Conference on Computational
Technologies in Electrical and Electronics Engineering (SIBIRCON),
2010, 11-15 July 2010, pp.215-219

[11] Xu, K.; Liu, H.; Liu, J.; Shen, M.: “One More Weight is Enough:
Toward the Optimal Traffic Engineering with OSPF” In Proceedings
of the 2011 31st International Conference on Distributed Computing
Systems (ICDCS); 20-24 June 2011; pp.836-846

[12] Awduche, D. O.; Jabbari, B.: “Internet traffic engineering using
multi-protocol label switching (MPLS)” In Computer Networks: The
International Journal of Computer and Telecommunications
Networking, vol. 40, no. 1; September 16, 2002; ISSN: 1389-1286;
pp.111-129

[13] Guang Cheng: ”Real-time inferring network traffic patterns” In
Consumer Communications and Networking Conference (CCNC),
2011 IEEE , vol., no., pp.457-461, 9-12 Jan. 2011

[14] Hruby, M; Olsovsky, M; Kotocova, M.: “Solving VoIP QoS and
Scalability Issues in Backbone Networks” In IAENG Transactions on
Engineering Technologies - Special Issue of the World Congress on
Engineering 2012, Lecture Notes in Electrical Engineering, Vol. 229,
ISBN 978-94-007-6189-6

[15] Hongyun Man; Linying Xu; Zijian Li; Lianfang Zhang, “End-to-end
QoS implement by DiffServ and MPLS” In Proceedings of the 2004
Canadian Conference on Electrical and Computer Engineering,
vol.2, no., pp.641,644 Vol.2, 2-5 May 2004

[16] Cisco Systems: “IP Service Level Agreement (IP SLA)”, white paper,
C11-425882-00, Cisco Systems, Inc., September 2007

Proceedings of the World Congress on Engineering 2013 Vol II,
WCE 2013, July 3 - 5, 2013, London, U.K.

ISBN: 978-988-19252-8-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2013

