
 

  
Abstract—In this paper, the fundamentals of the GALOIS 

Theory concerning algebraic equations are examined as well as 
certain deficiencies of the actual stage of knowledge in this 
field. The importance of an understandable presentation of the 
related field is pointed out. The useful connection with the 
facilities offered by the symbolic software has been developed 
by the author. A new manner for deducing a formula, 
developed by the author, has also been included. There is to be 
added that for making the work accessible, the most important 
theoretical algebraic definitions and procedures have been 
presented for avoiding to the reader the need of resorting to 
many other sources. 
 

Index Terms—Algebraic equations, a symbolic language 
used in the Galois theory, an alternative to the Hudde theorem, 
isomorphisms between certain physical phenomena and 
mathematical objects.  

I. INTRODUCTION 
Many works have been devoted to the Galois Theory of 

algebraic equations. The major part of them concerns 
interesting analyses and valuable results. As known, despite 
this deep research, many practical subjects have not been 
completely solved and, as mentioned in literature, even 
solutions of various cases including radicals could be 
expected. Many interesting results can be found in literature 
[1]-[19]. In [2] and [15], there has been mentioned the 
difficulty for many interested reader in using many 
sophisticated works. Only more recently, certain works, 
among which [1], [2], [15], have been oriented, to a large 
extent, towards applications. The present paper aims to 
examine some practical subjects in order to extend the use 
of the analysis for applications. The scope includes the 
search of procedures which are simpler and more efficient 
for calculations, presented as much as possible, in an easily 
understandable manner. A new procedure, for deriving a 
formula, not found in literature, and other mentioned 
contributions have been developed. Also the link with 
certain symbolic software has been considered. For various 
calculations, the Maple 12 symbolic software has been used. 

II.  THE OBJECT OF THE ANALYSIS 
Let us consider an algebraic equation of the form: 
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or in a compact form: 
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If no special mention is made, only rational number 
coefficients will be considered, hence ( ) Q∈= iaai . 
 We consider that the coefficients of the equation are 
defined over a number field (domain) of rationality, K , also 
called field of rationality. The roots are considered as 
belonging to the identical group, namely ( ) [ ]niix ,, 1∈∀  and 
may be expressed by radicals of degree n  in the domain 
K . At the same time, we shall consider an extension F  of 
K  which contains K  and every root of any polynomial 
with coefficients over K . The order of the group is related 
to the degree of its extension because the last is related to 
the number of roots. 
 A field automorphism (concerning one mathematical 
object) or isomorphism (concerning two mathematical 
objects), fixes the smallest field containing number 1, which 
is Q , the rational number field. Two objects cannot be 
distinguished if they are similar, considering their symmetry 
properties, and considered isomorph (having the same 
form). More precisely, considering a certain case, the 
automorphism is an invertible function denoted as 

)2(: Qf = , for instance ( ) ( )22 bahbaf −=+ , because 
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=− , and similarly if instead of 2  is the 

radical of an other number, even the imaginary unit 
1: −=i . 

 In a simple explanation, we can say that number of 
permutations (substitutions) should be equal to the number 
of roots (hence automorphisms) of the equation 
(polynomial, respectively). 
 For using the Galois Theory in the examination of the 
given equation, two purposes will be considered: a. To look 
for the solution, namely the roots of the equation or, what 
the same is, the values of the variable corresponding to the 
zero value of the corresponding polynomial. b. To establish 
if the equation has an algebraic solution, namely obtained 
by using the four operations: addition, subtraction, 
multiplication, division, to which there is to be added the 
root extraction. This procedure is known as algebraically 
obtaining the solution. For this purpose the Galois group 
theory has to be used. 
 For various calculations, we have used the symbolic 
language Maple 12. For the sake of uniformity, and because 
the writing of formulae in Maple contains small differences 
relatively to the conventional writing, we have written the 
computing formulae using the rules of Maple. Another 
reason has been that if someone would be interested, this 
manner could facilitate the access to applications.  
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 We recall that a group is an algebraic structure consisting 
of a set together with an operation which combines any two 
of its elements to form a third element of this set. For 
instance, if one adds two relative entire numbers (i.e., with 
the sign plus or minus), one performs an operation with a 
group structure of the respective set, but if one adds two 
natural entire numbers, one does not perform an operation 
with a group structure, because the opposite of a natural 
entire number is not a natural entire one. 
 A group is written in the form of a row (sequence) of 
letters. It is useful to mention that Galois used the group 
denomination in the context of a group of permutations or a 
group of substitutions. The starting of a group of 
permutations, usually denoted with G , is a finite set of say 
p  elements (letters, e.g., x ), written all on the same line, 

and which can be submitted to composition of permutations. 
Such a group have orders which divide n  factorial. In the 
case of the next permutation, the p  elements will be written 
on the next line placed below the preceding. In the case of 
the end permutation, the p  elements will be written on the 
next line placed below the preceding. The grade of a 
permutation group is equal to the number of elements 
(letters, e.g., x ) used in these permutations (substitutions). 
The order of the same group is equal to the performed 
number of substitutions (permutations). Consider a function 
ϕ  of five variables [ ]51,, ∈ixi , and four permutations 
(substitutions) [ ]41,, ∈iSi , including also the unit (also 
called identical or symmetrical) substitution. With the 
adopted notation, there follow four lines and five columns. 
For certain applications, it could be supposed that the 
function ϕ  keeps the same value regardless of the ordinal 
number of each of the five variables.  
 We shall denote the set of roots of an equation as: 
 

,,...,,, 321 nxxxx  (2 a) 
or in a compact form: 

[ ]nixi ,1, ∈∀ . (2 b) 
 

 It is well to recall from the beginning that the Galois 
Theory of equations is based on the permutations also called 
substitutions, in all possible manners, of the roots, generally 
having not known their values, but considering only those 
permutations which keep the value of the roots, regardless 
of the ordinal number of each of them. In the case of (2 b) 
the all possible manners lead to the number n  factorial. We 
could add that despite the discussion in literature, no a 
special importance has to be attributed to the difference 
between permutation and substitution, being very close to 
each other. However, permutation means writing the starting 
permutation and below, the final permutation that will 
replace it. Substitution means to replace the elements of a 
fix permutation by those of another one. It can be 
considered an analogy with the denomination of the 
substitution-permutation network used in block cipher 
algorithms. 
 There has also to be added, what is not always stated, that 
only the set of roots with the position numbers got after 
each permutation, which will fulfil the same relations as 
those of the identical group (unit group) with their ordinal 
number, will be considered. The set of these permutations is 
called, as previously mentioned, the group of permutations 
(substitutions).  

 The permutations are carried out either by transpositions 
or by circular permutations. A transposition means the 
permutation between the elements, not in any manner, but 
only of two elements (e.g., letters) of a sequence of n  
elements, the others 2−n  remaining invariable.  
 A substitution means the resultant of a succession of 
transpositions. In fact, a permutation of three elements is 
equivalent with two transpositions. 
 From the obtained group, it is possible to predict if the 
obtaining of the algebraic solution (using radicals) is 
possible or not. 

III. RECALL OF THE OPERATIONS WITH PERMUTATIONS 
OCCURRING IN THE ANALYSIS 

A. The Decomposition of a Permutation (Substitution) 
in which all Elements or a Part of them Have Been 
Permuted 

Having in view that several operations with permutations 
(substitutions) occur and there are explained in various 
manners in various texts, what could make difficult the 
understanding, we have presented these subjects in 
accordance with our aim, as simply as possible. 
 An example of a decomposition of a permutation into 
cycles may be made in general relatively to the following 
relation, using the Cauchy notation: 
 

,σ
52143

54321
1 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
==

xxxxx
xxxxx

S  (3) 

 

because various authors use various notations, we have to 
mention that according to the choice above, the starting state 
is represented by the upper row, while the new state is 
represented by the lower row. All groups of permutations 
may be decomposed into a product of cycles. For this aim, 
let us rewrite (3) in the form: 
 

,
2,1,4,5,3
5,4,3,2,1

σ 1 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
== S  (4) 

 

where commas have been used for making the relation 
easier legible and the symbol sigma has been written 
without index, being a general usage. The procedure can 
begin, like in relation (5) below, with 1x , denoted simply 1x  
or 1 in relation of the row above, then, it follows 3 that 
corresponds to 1, in the lower row of the relation (3); to 3 of 
the upper row, there corresponds 4, in the lower row. When 
we encounter an answer number equal to that of starting, in 
the present case of value 1 in the lower row, corresponding 
to 4 in the upper row, the first cycle is finished. We 
continue with the next number, not yet used of the upper 
row, in the present case 5, to which there corresponds 2, in 
the lower row, and to 2, in the upper row, there corresponds 
5, in the lower row. Now, all number being browsed, we 
reached the end. The result will be: 
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( )2,5,1,4,3 = ( )( ).5,24,3,1  
(5) 
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B. The Decomposition into Transpositions when all 
Elements or a Part of them Have Been Transposed 

The decomposition into transpositions may be achieved 
in various manners. A simple solution can be obtained from 
the preceding result, as follows: 
 

( )5,4,3,2,1 = 
( )( )2,54,3,1 ( )( )( ).2,531,4,1=  (6) 

 

C. The Product (the Composite) of two Permutations 
(two Substitutions) 

Let us consider two permutations, say 1S  and 2S , the 
starting permutation included, and their product in the form: 
 

,
2,1,4,5,3
5,4,3,2,1

1 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=S       ,

2,3,1,5,4
2,1,4,5,3

2 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=S  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2,3,1,5,4
5,4,3,2,1

12SS . 
(7 a, b, c) 

 

 Therefore, the operations performed in the order 1S and 

2S  and denoted 12SS  represent finally the lower row of 2S  
when starting from upper row of 2S . The same result will 
be obtained when starting from upper line (row) of 1S , 
arriving at the lower row of 1S , and then, starting from 
upper row of 2S  and arriving at the lower line (row) of 2S . 

IV.  ANALYSIS OF A POLYNOMIAL EQUATION 
 In order to be able to easily control the results, we have 
chosen an equation the roots of which could be obtained 
without difficulty. There yields, after factorization using 
Maple 12 software: 
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(9 a, b,..., f) 
 

where, we have denoted with the symbols of Maple 12 
software, which we have used, the imaginary unit by italic 
capital letter I . According to (8), the given equation is 
reducible, while the remaining factor is an irreducible 
polynomial (or equation); therefore it suffices to consider 
only the irreducible factor. 
 Then, in order to obtain the group of permutations 
(substitutions), we shall write one group of permutations, 
including also the unit or symmetric permutation group, of 
the given equation, using the Cauchy notation: 
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 Because except the two linear factors, only the irreducible 
factor has to be examined, the identical reference 
permutation group of the equation will be: 
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Examining the solution of (9 d, e, f), there follows that all 
simple symmetric functions expressing the relation between 
the coefficients and roots keep unchanged their values, but 
not all possible relations. Therefore, the permutations 
below: 
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xxx
S  (10 b, c) 

show, considering the sum 54 xx + , of the group 2S , of 
(10 b), keeps the value of the relations of the identical 
group. The sum 34 xx +  occupying the equivalent positions 
in (10 c) does not keep this value. There follows that from 
all 6 possible permutations (the identical permutation 
included) only two are, in this case, necessary and 
sufficient. The resulting group of permutations, as shown 
below in Sub-sections VI and VIII, is solvable, therefore the 
Galois resolving condition is fulfilled.  
 The fundamental theorem of Galois is expressed as 
follows: Each rational function of the roots, invariable at the 
permutations of the elements of the group, generally 
denoted by G  (above by iS ), belongs to the field of 
rationality, and conversely, each rational function of the 
roots belonging to the field of rationality is invariable at the 
group of permutations.  
 It is useful to add certain completions usually omitted. 
Let us consider a rational function: 
 

( )nxxxx ,...,,: 321 ,ϕ=ϕ , (11) 
 

and a permutation (substitution S): 
 

.
...

...321
1 ⎟
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S n  (12) 

 

 Let us assume that the function ϕ  keeps the same 
numerical value if the variables ix  are submitted to a 
permutation. Denote bϕ  and aϕ  the value of the function 
before and after the substitution, respectively. Therefore, as 
assumed ba ϕ=ϕ . This equality did not exist if the 
variables ix  were independent variables. At the same time, 
it is useful a remark of a few authors that one can disregard 
the case in which the rational functions built up by roots and 
the permutations yield multiple expressions, because all 
considered expressions are invariable [7, p. 479]. 
 Consider a group of substitutions G , set of n  variables 
as in relation (2 b) and a set of rational functions 

[ ]nii ,1∈∀ϕ , depending on these variables. We shall 
consider only those functions which keep unchanged their 
values for all substitutions of G . Let H be the subgroup 
formed by all permutations (substitutions) keeping the 
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preceding functions invariable. If the subgroup 
H belonging to G  is transformed by any permutation of 
G , into the identical value H , it is called invariant 
subgroup. 
 Any group of permutations is called to be a group 
solvable by radicals if its splitting field is included in a 
radical extension of K . A radical extension is a field that 
includes roots of the given equation (polynomial 
respectively). The splitting field of a polynomial is the 
smallest number field which contains all the roots of a 
polynomial the coefficients of which are in the number field 
K . 
 We shall make some considerations concerning the 
simple and composed groups [7, p. 483]. 
 A group G  having p  letters (namely roots) is considered 
containing another group qG  if the former includes all 
permutations of the latter, called subgroup. The number of 
lines (rows), with the notation we have adopted, represents 
the order of the group. We shall assume that the order of 
groups G  and qG  are m  and μ , respectively, and μ>m . 

 We shall denote the substitutions of qG  using notation as 
explained in Sub-section II, for the upper row, by: 
 

μSSSS ,...,321 ,, . (12 a) 
 

 Therefore, we have obtained the substitutions (12 a) by 
the permutations from G  to qG , and S  belongs to G . Let 
us now perform another permutation T  on (12 a) and 
obtain:  

μSTSTSTST ,...,321 ,, . (12 b) 
 

This substitution must belong to G  but not to qG  of (12 a). 
Indeed, consider the substitution T where, for simplicity, 
the index has been omitted,  
 

;ji SST = ,1−= ij SST  (12 c, d) 
 

where 1−S  denotes the inverse permutation. Therefore, S  
and T should be the same but it is not possible because T , 
as assumed, is simple, then it belongs to G . Hence hitherto, 
we distinguished in G , apart qG  another subgroup T , and 

there follows: 
 

.2μ≥m  (12 e) 
 

If we stop at the step sn , we have: 
 

.μ≥ snm  (13) 
 

 It is necessary that in the previous relations, (12), (13) to 
adopt instead of the symbol greater than or equal to, the 
symbol equal, because the order of a group, being a number 
of substitutions (permutations) should be a natural number, 
and m , being the total number of substitutions 
(permutations) of a group with n  elements, will be n  
factorial, there follows that sn  should also be a natural 
number (hence without decimals). 

Another interesting mathematical (geometrical) object is 
the invariant maximum subgroup of any group G , namely a 
subgroup qG  such that no invariant subgroup exists 

containing qG  as a subgroup. Example of a composed 
group, the sequence of groups such that each term is an 
invariant subgroup [7, p. 487] of the preceding one, the last 
being the identical substitution. The decreasing order of the 
respective group and subgroups permutation number will 
be: 

.,...,21 μmmmm ,,  (14) 
 

The numbers above yield the ratios: 
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where 1 represents the unit (or identical) permutation. 
The numbers of (15) are called factors of composition. 

They have been studied by Camille Jordan [7, p. 487] and 
Otto Hölder [7, p. 492]. 
 The function which for any permutation can take only 
two values equal but of opposite sign is called alternating 
function, whereas the group of substitutions (permutations) 
which keep invariable the mentioned function is called 
alternating permutation group. A group containing n  
elements (letters) has !n  substitutions [7, pp. 462-464]. 
Therefore, according to the preceding definition, the order 
of the corresponding permutation group will be the half: 

.
2perm
!nN =  (16) 

 

If n  is greater than 4, the single invariant group is the 
alternating group as shown in [7, p. 494]. The alternating 
group is an invariant maximum subgroup of the symmetric 
group [7, p. 493], because the order of a subgroup of the 
symmetric group, is a divider of n  factorial.  
 Let us assume now that the roots are distinct. We can 
distinguish the following field and subfields. 
 

( ) ( )5433 xxxx ,,QQQ ⊆⊆ . (17) 
 

 Because 4x and 5x  are complex conjugate numbers in 
the field extension ( )54 xx ,Q , we can consider that they 
satisfy a quadratic equation, or in the present case, we 
obtain them in the form of radical expressions of third order, 
hence by solving a cubic equation. There also follows that 
the presence of the two first roots, although unnecessary, 
does not trouble the results by using the described 
procedure. 
 After numerical experiments, we realized that the 
reduction of the entire functions and implicitly of the group 
of permutation, by factorization in order to keep only the 
irreducible factor, using for instance a Maple software, and 
the procedure known in literature, the former one seems to 
be advantageous, and concerning the results, no practical 
differences have occurred, except the former could be more 
complete. 

V.  PROCEDURE FOR SOLVING A POLYNOMIAL EQUATION BY 
RADICALS 

 According to Galois procedure, one starts from the 
equation (1) above. Its coefficients belong to any number 
field Q⊂C . One also considers a rational function of its 
roots, in the form: 
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n

k
kki xV  (18 a) 

 

here the coefficients kα  also belong to the number field C  
like the coefficients ia . The roots denoted by the n  letters 

kx  may be written with these letters one after the other in 
all possible manners, obtaining n  factorial sequences. 
Using the terms of these rows in (18 b) below, one will 
obtain !n  values of iV . Using these results, one can write 
the following expression called the Galois transform, from 
x  to V  of the given equation:  

 

( ) .!,0
1

∏
=

==−
N

i
i nNVV  (18 b) 

 

 For obtaining from (18 a) a number of !n  distinct 
expressions, it is possible to use for each expression other 
ordinal numbers of the roots, by using the permutations of 
type (4).  
 In Sub-section II, we assumed the case in which the 
function ( ) [ ]nixi ,, 1∈ϕ  keeps the same value, regardless 
the order in which the roots ix  are taken (their ordinal 
number). Now, we shall assume the case in which for every 
order in which the roots ix  are taken, the function will have 
another value. Then, it means that for any value of iV  of the 
root of the equations (18 b), there should correspond a 
certain sequence of the root set ix . The condition to be true, 
is the relation (18 a) be bijective. 
 According to a theorem of Galois, the roots of the given 
equation are rational functions of any root of the Galois 
transform equation. This proposition has been proved by 
several authors in the known literature by a thorough logical 
analysis. 
 This result may be directly obtained from the 
explanations given above, after (18 a). It is to be noted that 
the importance of this transform is that it is factored, 
although not suitable for computing, because of the large 
number of equations.  
 It is worth noting that we have prepared a program we 
called Évariste-Galois-Nic.mw, which by a simple system of 
equations deduced from the transform relations and Viète 
formulae, then, certain automatic elimination procedures, 
yield several results including the theorem above, in a 
simple and suggestive manner, for enough large conditions.  

VI. THE EXISTENCE OF AN ALGEBRAIC SOLUTION INCLUDING 
RADICALS 

 For this purpose, we go back to the permutation group of 
the given equation. We assume that a number field C has 
been used. Let us consider a supplementary number [8, p. 
228] say α  outside of C . The number field of C  and α  
and the five arithmetic operations form a new field of 
numbers denoted ( )αC , also called adjoin field [8, p. 320]. 
 It is worth noting that at the base of the analysis of the 
algebraically solving a polynomial equation with cyclical 
solution lies the remarks of Gauss and Abel that the 
polynomial equation deduced from the binomial one, can be 
solved by radicals. The condition necessary and sufficient 

for an algebraic equation could be solved by radicals, in the 
number field ( )αC , is that its permutation group in ( )αC , 
have the composition factors prime numbers. The radicals of 
the root expressions should be assumed prime numbers, 
since otherwise they have to be replaced by superposed 
prime numbers. 
 Let us assume that the symbols of the roots have only 
prime numbers indices as power exponent. Assume that the 
greatest indices q  of these radicals are nqQq <∈ , . 
 The following sequence of the binomial equations, 
solvable by radicals will be considered: 
 

[ ].2,1 qixi ,∈=  (19) 
 

 The first radical to be encountered may be 2 . The next 
adjoin field, radical included, will be ( )21 CC =  and the 
square roots will be in the same number field. If instead of 

2 , the encountered radical had been 2− , the adjoin 
field were ( )21 −= CC . Let the next encountered radical 

be 3 , and the adjoin number field will be ( )32 CC = . 
The procedure has to be continued until the last number 
field say fC . 
 The obtained expressions of permutation group and 
subgroups correspond to the numbers given above, in (15), 
which represent the sequence of the factors of composition 
of the groups [8, pp. 335-336]. This stage is necessary, since 
otherwise, without knowing the number field it is not 
possible to establish if the considered equation is reducible 
or not in a certain field, and the simplest case of the 
binomial equation could not be solved. Also, it is sufficient 
because at the end, the identical substitution is obtained, 
hence the roots are not modified [7], [8, p. 336]. 
 In the case of a symmetric group with two elements 
(roots, letters), the group sequence of G  is: 
 

,1,G  (19 a) 
 

and according to (13) the composition factors is 2, and the 
equation is solvable by radicals. 
 In the case, of a symmetric group with two elements 
(roots, letters), and an alternating subgroup with three 
elements, the group sequence of G  is: 
 

,1,, 1GG  (19 b) 
 

and according to (13) the composition factors are 2 and 3, 
hence prime numbers, therefore the case is solvable by 
radicals. In the case of a symmetric group with a number of 
elements greater than 4, as already mentioned above, the 
permutation group includes the alternating subgroup A , the 
sequence of G  is; 
 

,1,, AG  (20) 
 

and, according to (13) and (15), the composition factors are 

2, 
2
!n , hence the second is no more a prime number, and the 

case is not solvable by radicals. 
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VII. A NEW PROOF OF THE FORMULA OF CUBIC EQUATIONS 
We established it using the isomorphism of a set of 

electric currents and certain mathematical objects. With this 
circumstance we established formulae permitting to express 
the Viète relations between the roots and coefficients of an 
algebraical equation easily applicable by Maple language 
even for higher degrees. In the case of 3=n , we found: 
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(21 a, b, c) 

 

These relations may be an alternative to Hudde method 
[6, p. 53]. 

VIII. COMPUTER ANALYSIS OF THE PERMUTATION GROUP 
OF AN EQUATION 

 There are several computer programs for the calculation 
of the permutation group of a polynomial equation. We shall 
refer to the Maple 12 program. The calling program is 
presented below using the example we have chosen above. 
First it is to be noted that the program accept only 
irreducible functions, otherwise it returns only the called 
polynomial function and stops. 
 For the last mention, we shall refer to the irreducible 
function resulted above, after factorization: 
 

);galois(:Scope
 2; := galois]infolevel[

4;+ := 3

N

xxN

=

−
 (22 a) 

 

where the command of the second row aims the obtaining of 
certain details:  
 

};)"(",)"({",,"",]"[{" 3231632T3Returned −= S (22 b) 
 

where the meaning of symbols is as follows: a) a string (i.e., 
a sequence) giving the name of the Galois group, here the 
third group in the list of degree 3 transitive groups; b) a set 
of strings giving the description of the group; c) a string 
giving the parity of the group, minus for odd groups and 
plus for even groups; d) the order of the group; e) the set of 
generators, in disjoint cycle notation (disjoint sets are those 
sets which have no element in common), like the roots, as 
given in Maple books. The group constituted by a set, e.g., 
the identical one, is called transitive if any element ix  can 
replace any element jx , both of the same set, and 
conversely, by two substitutions. 

Generating set of a group also called generator of a group 
or group generator is a set denoted by S  such that every 
element of G  can be expressed as being the product of the 
elements of group S , in finite number and their inverses.  
If S  contains a single element, it is usually denoted >< x  
also called cyclic subgroup of the powers of x  and it 
represents the entire G . 

IX. REMARK CONCERNING THE ABEL EQUATIONS  
 An interesting remark concerns the Abel equations 
because they have cyclic solutions. For this reason, they 
have been thoroughly treated in literature [8, p. 258].  
 For the same reason, we tried to examine the inverse 
problem, namely taking any value for the considered to be 
the first root, 1r , of a polynomial equation, to establish the 
other roots of the equation, which by the composition of 
functions, the former being the chosen root 1r , and the latter 
any convenient function, g , after a number of compositions 
namely gr o1 , for the second root, etc., equal to the number 
of chosen roots, we obtain just the starting value. We have 
taken for g  a linear binomial and a quadratic binomial plus 
two constants to be determined. After all numerical 
experiments, we found as a solution only the classical case 
of the binomial equation with the left-hand side the 
unknown raised at an entire power. In fact, also the known 
general solution of this type of equations is expressed in 
terms of some functions that we have not directly available. 
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