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Abstract—Boostrap is a statistical method widely used in
applications such as model averaging and noise estimation. In
this paper, we propose a bilateral smoothing algorithm based on
bootstrap noise estimates for denoising 3D point sets. Following
a classic denoising technique, for a given neighbourhood of the
point set, we first fit a polynomial surface and then update
the position of each point of the neighbourhood by moving
it towards its projection on the fitted surface. However, in the
proposed algorithm, the amount by which we move each vertex
towards its projection depends on the bootstrap error estimate
of the polynomial fitting. As a result, low quality polynomial
fittings with high bootstrap error estimates tend have smaller
effect on the denoising process and do not degrade the final
result. We also propose a multi-pass, density adaptive variant
of the proposed bilateral smoothing and experimentally show
that it can further improve the results.

Index Terms—surface reconstruction, points set smoothing,
bilateral filtering, bootstrap.

I . INTRODUCTION

I N the pipeline of surface reconstruction, we start with
a set of unorganised 3D points, usually obtained from a

3D laser scanner or extracted from a set of images, and we
compute a surface modelling this point set. The reconstructed
surface may be a polygonal mesh, or a free-form surface such
as NURBS, or even a point set surface, that is, be represented
by the point set itself. Regardless of the representation
of the reconstructed surface, it is quite common that the
initially acquired point set will need to be denoised in a pre-
processing step, typically by applying a point set smoothing
algorithm on it.

In this paper, we propose a point set smoothing algorithm
based on bilateral filtering. The algorithm moves each point
P of a neighbourhood of the point set towards the average
of the projections ofP on bootstrap polynomial fittings of
the neighborhood, or, in other words, updatesP as a linear
combination of itself and the average of the projections on the
bootstrap fittings. Being a bilateral smoothing algorithm, the
weight of the linear combination, which indicates the amount
of smoothing received byP , depends on two independent
parameters. The first is a the distance ofP from the centre
of the neighborhood, with points further away receiving
less smoothing. The second parameter is the bootstrap error
estimate for the polynomial fittings, with high error estimates
reducing the amount of smoothing and thus, blocking bad
polynomial fittings out of the smoothing process.

Finally, in Section IV, we discuss a multi-pass variant of
the proposed algorithm, which also adapts the size of the
considered neighbourhoods to an estimate of the local density
of the point set.
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I I. RELATED WORK

Bootstrap is a model averaging technique proposed by
Efron [1]. Given a datasetP of sizeN , one createsB subsets
of P by randomly samplingN elements ofP with repetition.
The repetition in the sampling process means that we usually
sample less thanN distinct elements and thus, the bootstrap
subsets are proper subsets ofP . Bootstrap modelling, fits a
model on bootstrap subset and computes an average model.
Bootstrap error estimation analyses the bootstrap models and
uses the leftover data in the complement of each subset inP
to compute an error estimate for the average bootstrap model.
A detailed description of bootstrap and a discussion of its
properties can be found in standard textbooks on statistical
learning such as [2].

Cabrera and Meer [3] applied bootstrap on a 2-dimensional
setting. In [4], we used bootstrap to obtain error estimates
on 3D point sets. We also presented a naive smoothing
algorithm which projected the points towards their projection
on bootstrap polynomial fittings. The results there were
limited by the simplicity of the projection used.

Data smoothing can be integrated into the reconstruction
algorithm as, for example, in the implicit reconstruction
algorithm proposed in [5]. However, most smoothing ap-
proaches are forms on data filtering and can be used as a
pre-processing step, independently of the reconstruction. In
particular, adapting the approach that originated in image
denoising [6], one may smooth noisy 3D data using bilateral
filtering.

Fleishman et al. [7] and Jones et al. [8] adapted bilateral
image filtering for triangle mesh smoothing. In Fleishman et
al. [7], the first parameter of the filter penalises the distance
of the point from the centre of the neighbourhood, while
the second parameter penalises the difference between the
normal of the point and the normal at the centre of the
neighbourhood. In Jones et al. [8], the second parameter
penalises the distance between the point and an estimate of
its position based on neighbouring triangles.

Regarding bilateral smoothing of point sets, Qin et al.
[9] proposed an algorithm where the first parameter is the
distance of the point from the estimated tangent plane of the
neighbourhood, while the second parameter is the distance
between the point and the centre of the neighbourhood in the
tangential direction.

III. B ILATERAL FILTERING

In our approach, we wish to combine in a single bilateral
filter the idea applied in MLS smoothing [10], which is to
give weight based on the distance of a point to the central
point of the neighbourhood and the bootstrap errors. Thus,
we would project less the points in the neighbourhood that
are relatively far from the central point and we will also
project less if the surface fitted at the neighbourhood has
high error.
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Given the point setZ = {z1, z2, z3, ..., zN}, for each point
zi we run the bootstrap polynomial fitting described in [4] on
its K-neighbourhood. We usezBi,j to denote the projection
of the j-th point of the neighbourhood ofzi on the fitted
surface andWi to denote the error of the bootstrap fitting.
There are few different formulae to compute the test error,
as described and evaluated in [4]. In our implementation,
we use the .632+ error which seems to slightly outperform
the other estimates. However, we believe that using other
formulae to compute the test error and forWi’s values will
give very similar results.

Let {zi,1, zi,2, zi,3, ..., zi,K} be the K-neighbourhood
around the considered pointzi,0. We would project each
point of the neighbourhood towards the fitted surface by

zi,j → (1− wi,j)zi,j + wi,jz
B
i,j (1)

with the weight given by

wi,j = θ1(‖ zi,j − zi,0 ‖)θ2(Wi,j) (2)

The weighting functionsθk(x) = G(x, hk), with k = 1, 2 are
Gaussians with zero mean and standard deviationhk, that is

G(x, hk) = e−x
2/h2

k , (3)

|| · || denotes Euclidean distance. The standard deviationshk
are user-defined parameters whose influence on the results
will be demonstrated at the end of the section.

A. Results

We tested the proposed method on natural, smooth mesh
models, after stripping off the connectivity and adding a
certain amount noise along the normal direction. By ad noise
level, we mean that on each point we add a uniform random
displacement along the normal direction of maximum length
d times the average over the whole mesh of the distance
distance between a point and its closest neighbour. In our
first experiment we run the Algorithm III-A on the Bimba
model at 0.5 noise level.

Algorithm bilateral(K)
The algorithm runs through every input point, estimating
the bootstrap error of the polynomial fitting of its
K-neighbourhood. Then, it will project the points in the
neighbourhood using the error value and their distances
from the considered point as weights.
1. For every pointz i,0, i =1:N

1.1 Find the K-nearest pointsz i,j j=1:K for the
considered point.

1.2 Compute the +.632 bootstrap error

1.2.1 Findnormal i, the normal atz i,0.
1.2.2 Parametrise the K-neighbourhood

of z i,0 over the tangent plane
corresponding tonormal i. That
means that we can now fit polynomial
surfaces using square minimisation.

1.2.3 Compute the bootstrap fitting using
cubic polynomials and also obtainWi.

2. Get the average ofWi’s. In the experiments, this average
will be used to inform the choice of the parameterh2.
3. For every pointz i,0, i =1:N

3.1 Compute the projections of its neighbours on
the bootstrap surfacezBi,j .

3.2 For everyz i,j , j =1:K

Project the point towardszBi,j according
Eq. 1, with weightwi,j given by
Eq. 2.

Algorithm III-A: Algorithm for bilateral smoothing

Fig. 1. Bilateral smoothing on the Bimba with 0.5 noise level. Figure
shows the noisy model (top left) and its smoothing with naive bootstrap
projection (top right). The bottom rows display the bilateral smoothing for
severalh2 values.|W| is the average value ofWi.

Figure 1 shows Bimba at 0.5 noise level and its naive boot-
strap smoothing (top row). Although the bootstrap projection
on its own has improved the model and made it smoother,
the bilateral bootstrap smoothing provides with better results,
especially around the feature areas. The results of bilateral
smoothing for severalh2 values are shown at the bottom
row of the figure. We can see that the choice ofh2 affects
the amount of smoothing. In particular, given a value ofh2,
the areas of the model with error values significantly higher
thanh2 would not be smoothed. As a rule of thumb, from
Figure 1 bottom row, we can notice that the model is still
noisy when the value ofh2 is half the average model error.
Increasingh2 to become 0.75 of the average model error,
or equal to the average model error, gives better smoothing
results.

Figure 2 shows a closer comparison between the naive
bootstrap projection and bilateral bootstrap smoothing. We
can see that the feature areas of the Bimba, such as the
ears, hair and the edges at the bottom of the bust, are badly
smoothed by naive bootstrap projection, Figure 2 (left). On
the other hand, bilateral bootstrap smoothing gives clearly
superior results, Figure 2(right).

B. Weights influence on smoothing

The effect of the choice of parameter values forh1 andh2

on the smoothing results is shown in Figure 3. In Figure 4,
we also display the reflection line renderings of the models
to assist us in gauging the smoothness of the model.

When the variance of the Gaussian corresponding to the
distance weight increases, neighbouring points have more
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Fig. 2. Comparison between naive bootstrap projection (left column) and
bilateral bootstrap smoothing withh1 = d and h2 = 0.75|W | (right
column).

Fig. 3. The result of bilateral smoothing for different values ofh1 and
h2.

Fig. 4. Reflection lines for the Bimba model with respect to Figure 3.

influence on a considered point. Thus, when the value of
h1 increases, the model generally becomes smoother. This
effect is noticeable in both figures ash1 increases at each
column. We also expect that bilateral smoothing would avoid
oversmoothing the feature areas, preserving thus the model
features, while, in contrast, a naive filter would smooth out
the whole model. As we can see in Figure 3, forh1 = 1.5d
the ear of the Bimba starts to deform when theh2 value
increases, that is, the weight of the bootstrap error parameter
diminishes. Notice that by increasingh2 to infinity we are
left with a single filter based on the distance weight only.

Fig. 5. The result of bilateral smoothing for different values ofh1 and h2

on the Bunny.

Fig. 6. Reflection lines for the Bunny model with respect to Figure 5.

We also tested the bilateral smoothing on the Bunny model
with 0.5 noise level. The results for various values ofh1 and
h2 is shown in Figure 5, while the reflection lines are shown
in Figure 6.

IV. M ULTI -PASS BILATERAL SMOOTHING

There are remarks we should make regarding the im-
plementation details of Algorithm III-A. The smoothing
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procedure is only done once, but the position of each point
is updated before we move on to the next one. Thus, if the
j-th point is in the neighborhood of thei-th point and the
i-th point is processed first, the processing of thej-th point
will use the projectedi-th point value instead of the original
noisy one. This accelerates the smoothing process making it
possible to give reasonable results in one smoothing iteration.

A second remark is that the size of neighbourhood,K, is
user-defined and fixed for all neighborhoods. In practice, for
a model consisting of anything between 10,000 and 50,000
points, choosingK = 100 seems to give satisfactory results.
However, looking at the results of the previous section, we
can also notice that while the Bunny has generally been
smoothed nicely, Bimba did not retain several of its features
because of oversmoothing. That is, the choiceK = 100
caused oversmoothing and a smaller value ofK may have
been more appropriate, at least at some local neighborhoods
of the model. As a third remark, we also notice that the
parameters of the bilateral filterh1 and h2 were also fixed.

Algorithm bilateral_multi-pass(K,iteration)
Similar to Algorithm III-A but multiple iterations and
adaptively chosen neighborhood size and smoothing
parameterh1.
for i=1:N

Let Wi=0 for all i’s. Find the K-nearest points
z i,j ’s for the considered point, j=1:K.

Compute the bootstrap error and obtainWi
end for
for i=1:N

Compute neighbourhood sizêKi by Equation 4
Compute local average distance between points,

dL
Fit the surface polynomial on the neighbourhood

K̂i and obtain the fitted valueszBi,j .
end for
for k=1:number of iteration

for j=1: K̂i

Project the point and its neighbourhood
to zBi,j with weight wi,j such that
z i,j=(1-w i,j) z i,j+wi,jzBi,j as in
Equation 1, but withh1 = a ∗ dL as
defined in Equation 6

end for
end for

Algorithm IV: Algorithm for multi-pass bilateral filtering.
We propose an improvement of the bilateral filter of

the previous section by applying multiple iterations of the
smoothing procedure as well as adapting neighbourhood size
and spatial distance parameterh1. The procedure is described
in Algorithm IV.

The size of the neighbourhood̂Ki of the i-th point is a
piecewise linear function with two components, given by

K̂i = max{10, y} (4)

where
y =

10−K
mean(W )

Wi +K (5)

see Figure 7. The main idea is that, assuming that the point
set contains moderate only noise, a high error indicates

the existence of a model feature in that neighborhood. In
this case, we reduce the size of the neighborhood trying to
preserve the feature. The lower bound of at least 10 points
in each neighborhood ensures that the computations of the
local fitting surfaces do not become unstable. Notice that
if the error is zero, the size of the neighbourhood should
be at its maximum, that is, the user-defined parameterK
corresponding to the size of the neighborhood on which
we computed the bootstrap error. When the error is equal
to the average error over all neighborhoods of the model
mean(wi), we haveK̂i = 10. However,mean(wi) could
be replaced by user defined parameter controlling the extent
to which we want feature preservation. Notice also, that
K̂i = 10 is the size of the neighborhood we use for
surface fitting while for bootstrap error estimation we always
use fixed neighborhood sizeK. The latter is necessary for
obtaining meaningful and comparable error estimates.

Fig. 7. Heuristic selection of neighborhood sizêKi.

Finally, the algorithmic parameterh1 is adaptively com-
puted as the product of a user-defined constanta and the
average distance between points in the local neighbourhood
K̂i, denoteddL

h1 = a ∗ dL (6)

Figures 8 and 9 show the Bimba model with 0.5 noise level
after being smoothed with the multi-pass bilateral filter. In
this example, we choseh1 = 0.1dL and h2 = 0.3|W | and
run 300 iterations. The figures show a significant improve-
ment compared to Algorithm III-A. Visually, the area around
the hair retained its features and was not oversmoothed as in
Algorithm III-A.

Compared to the approach in the previous section, the
multi-pass smoothing (Algorithm IV) produces a better result
due to mainly three reasons. Firstly, near features, as detected
by a high bootstrap error, we project to surfaces that have
been fitted to more localized neighborhoods, preserving this
way the features better. Secondly we use a localized valuedL
to compute the parameterh1, adapting to the local density
of the model. As the model is not distributed uniformly, the
distance from one point to another is not a constant. Thirdly,
multiple iterations smooth the model more slowly, preventing
the oversmoothing caused by the high values ofh1 and h2

that we have to choose if we are applying a single smoothing
iteration.

Figure 10 shows the Bunny model at 0.5 noise level after
being smoothed by the multi-pass bilateral filter for various
values ofh1 and h2 and 300 iterations. When the value of
h1 increases, the feature area might be oversmoothed. We
can observe this oversmoothing effect in the areas around
eyes and the mouth of the Bunny. On the other hand, by
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Fig. 8. Multi-pass bilateral smoothing withh1 = 0.1dL andh2 = 0.3|W |,
after 300 iterations.

Fig. 9. Multi-pass bilateral smoothing withh1 = 0.1dL andh2 = 0.3|W |,
after 300 iterations, original (left) and smoothed (right).

Fig. 10. Multi-pass bilateral smoothing for varioush1 and h2, after 300
iterations. Bottom right figure shows the noisy model before smoothing.

increasing the valuesh2 we can nicely preserve the features.
Indeed, when higher values ofh2 are chosen the features at
the eyes and mouth are preserved, while the area around the
leg is also smoother compared to left hand side of the figure.

Finally, we compare on Bimba the multi-pass algorithm
against two other state-of-the-art smoothing algorithms. Fig-
ure 11 shows the result of our method next to Poisson Surface
Reconstruction smoothing [11] and AMLS smoothing [12].
We notice that while our method preserves the feature areas
better than Poisson, AMLS gives smoother results while still
nicely preserving features, as for instance around the ear.

Fig. 11. Comparison with other methods, from left to right: Poisson Surface
Reconstruction, our method and AMLS.

V. SUMMARY

In this paper, we used bootstrap error estimates to guide
a projection based point set smoothing algorithm. Bilateral
filtering was the standard framework employed to incorporate
the bootstrap error estimates into the smoothing algorithm.
In particular, by using the error estimates as proxies for the
quality of the local surface fittings, the proposed smoothing
algorithm favours projections on good quality fittings and
is able to recover surface characteristics that have been
corrupted by noise. The proposed multi-pass variant of the
bilateral smoothing was inspired by MLS smoothing, which
also is an iterative process projecting points to a fitted surface
with certain weights.

While the proposed method has been shown to be able
to successfully smooth noisy models with features, several
important questions remain unresolved. One of the issues
worth researching further is the automatic estimation of the
values of the parametersh1 and h2, which at the moment
have to be provided by the user. Another serious current lim-
itation is that the method may not always be able to preserve
all sharp edges. Notice that this is a common limitation of
point set smoothing algorithms based on local neighbourhood
processing. The resolution of these limitations can the goal
of future research.

REFERENCES

[1] B. Efron, “Bootstrap methods: Another look at the jackknife,”Annals
of Statistics, vol. 7, pp. 1–26, 1979.

[2] T. Hastie, R. Tibshirani, and J. Friedman,The Elements of Statistical
Learning: Data Mining, Inference, and Prediction. Springer, August
2001.

[3] J. Cabrera and P. Meer, “Unbiased estimation of ellipses by bootstrap-
ping,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 18, no. 7, pp.
752–756, 1996.

[4] A. Ramli and I. P. Ivrissimtzis, “Bootstrap test error estimations of
polynomial fittings in surface reconstruction,” inVMV, 2009, pp. 101–
112.

Proceedings of the World Congress on Engineering 2013 Vol II, 
WCE 2013, July 3 - 5, 2013, London, U.K.

ISBN: 978-988-19252-8-2 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2013



[5] F. Calakli and G. Taubin, “Ssd: Smooth signed distance surface
reconstruction,”Comput. Graph. Forum, vol. 30, no. 7, pp. 1993–2002,
2011.

[6] C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color
images,” in Proc. International Conference on Computer Vision.
Washington, DC, USA: IEEE, 1998, p. 839.

[7] S. Fleishman, I. Drori, and D. Cohen-Or, “Bilateral mesh denoising,”
ACM Trans. Graph., vol. 22, no. 3, pp. 950–953, 2003.

[8] T. R. Jones, F. Durand, and M. Desbrun, “Non-iterative, feature-
preserving mesh smoothing,”ACM Trans. Graph., vol. 22, no. 3, pp.
943–949, 2003.

[9] H. Qin, J. Yang, and Y. Zhu, “Nonuniform bilateral filtering for point
sets and surface attributes,”The Visual Computer, vol. 24, no. 12, pp.
1067–1074, 2008.

[10] M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, and C. T.
Silva, “Computing and rendering point set surfaces,”IEEE Transac-
tions on Visualization and Computer Graphics, vol. 9, no. 1, pp. 3–15,
2003.

[11] M. Kazhdan, M. Bolitho, and H. Hoppe, “Poisson surface reconstruc-
tion,” in SGP ’06: Proceedings of the fourth Eurographics symposium
on Geometry processing. Aire-la-Ville, Switzerland, Switzerland:
Eurographics Association, 2006, pp. 61–70.

[12] T. K. Dey and J. Sun, “An adaptive mls surface for reconstruction with
guarantees,” inSymposium on Geometry Processing, 2005, pp. 43–52.

Proceedings of the World Congress on Engineering 2013 Vol II, 
WCE 2013, July 3 - 5, 2013, London, U.K.

ISBN: 978-988-19252-8-2 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2013




