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Abstract—Boostrap is a statistical method widely used in Il. RELATED WORK

applications such as model averaging and noise estimation. In Bootst . del . techni db
this paper, we propose a bilateral smoothing algorithm based on ootstrap 1s a model averaging technique proposed by

bootstrap noise estimates for denoising 3D point sets. Following Efron [1]. Given a datasé® of size IV, one create® subsets

a classic denoising technique, for a given neighbourhood of the of P by randomly samplingv elements of? with repetition.
point set, we first fit a polynomial surface and then update The repetition in the sampling process means that we usually
the position of each point of the neighbourhood by moving g5mpie less thaav distinct elements and thus, the bootstrap
it towards its projection on the fitted surface. However, in the . -
proposed algorithm, the amount by which we move each vertex SUPS€ts are proper subsets7af Bootstrap modeliing, fits a
towards its projection depends on the bootstrap error estimate Model on bootstrap subset and computes an average model.
of the polynomial fitting. As a result, low quality polynomial ~Bootstrap error estimation analyses the bootstrap models and
fittings with high bootstrap error estimates tend have smaller yses the leftover data in the complement of each subset in
effect on the denoising process and do not degrade the finaly, oompyte an error estimate for the average bootstrap model.
result. We also propose a multi-pass, density adaptive variant ) L . . .

of the proposed bilateral smoothing and experimentally show A detallled description of-bootstrap and a discussion Qf _|ts
that it can further improve the results. properties can be found in standard textbooks on statistical
learning such as [2].

Cabrera and Meer [3] applied bootstrap on a 2-dimensional
setting. In [4], we used bootstrap to obtain error estimates
on 3D point sets. We also presented a naive smoothing
algorithm which projected the points towards their projection
on bootstrap polynomial fittings. The results there were

N the pipeline of surface reconstruction, we start withmited by the simplicity of the projection used.

a set of unorganised 3D points, usually obtained from aData smoothing can be integrated into the reconstruction
3D laser scanner or extracted from a set of images, and @gorithm as, for example, in the implicit reconstruction
compute a surface modelling this point set. The reconstruct@gorithm proposed in [5]. However, most smoothing ap-
surface may be a polygonal mesh, or a free-form surface sugRaches are forms on data filtering and can be used as a
as NURBS, or even a point set surface, that is, be represerfiégrprocessing step, independently of the reconstruction. In
by the point set itself. Regardless of the representatigdrticular, adapting the approach that originated in image
of the reconstructed surface, it is quite common that ttgienoising [6], one may smooth noisy 3D data using bilateral
initially acquired point set will need to be denoised in a préiltering.
processing step, typically by applying a point set smoothing Fleishman et al. [7] and Jones et al. [8] adapted bilateral
algorithm on it. image filtering for triangle mesh smoothing. In Fleishman et

In this paper, we propose a point set smoothing a|gorithﬁl|. [7], the first parameter of the filter penalises the distance
based on bilateral filtering. The algorithm moves each poifif the point from the centre of the neighbourhood, while
P of a neighbourhood of the point set towards the avera$fte second parameter penalises the difference between the
of the projections of? on bootstrap polynomial fittings of Normal of the point and the normal at the centre of the
the neighborhood, or, in other words, updafess a linear Neighbourhood. In Jones et al. [8], the second parameter
combination of itself and the average of the projections on tik€nalises the distance between the point and an estimate of
bootstrap fittings. Being a bilateral smoothing algorithm, thi€s Position based on neighbouring triangles.
weight of the linear combination, which indicates the amount Regarding bilateral smoothing of point sets, Qin et al.
of smoothing received by, depends on two independen{9] proposed an algorithm where the first parameter is the
parameters. The first is a the distancefdfrom the centre distance of the point from the estimated tangent plane of the
of the neighborhood, with points further away receivin§€ighbourhood, while the second parameter is the distance
less smoothing. The second parameter is the bootstrap eRfween the point and the centre of the neighbourhood in the
estimate for the polynomial fittings, with high error estimatei@ngential direction.
reducing the amount of smoothing and thus, blocking bad
polynomial fittings out of the smoothing process. [1l. BILATERAL FILTERING

Finally, in Section 1V, we discuss a multi-pass variant of |, qur approach, we wish to combine in a single bilateral

the proposed algorithm, which also adapts the size of thger the idea applied in MLS smoothing [10], which is to
considered neighbourhoods to an estimate of the local denﬂ]\ye weight based on the distance of a point to the central

Index Terms—surface reconstruction, points set smoothing,
bilateral filtering, bootstrap.

|. INTRODUCTION

of the point set. point of the neighbourhood and the bootstrap errors. Thus,
_ _ _ . we would project less the points in the neighbourhood that
Manuscript received March 17, 2013; revised April 15, 2013. are relatively far from the central point and we will also

Ahmad Ramli and Nor Aziyatul Izni Mohd Rosli are with the School of . . . .
Mathematics, Universiti Sains Malaysia, e-mail: alaramli@usm.my project less if the surface fitted at the neighbourhood has

loannis Ivrissimtzis is with Durham University. high error.

ISBN: 978-988-19252-8-2 WCE 2013
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)



Proceedings of the World Congress on Engineering 2013 Vol II,
WCE 2013, July 3 - 5, 2013, London, U.K.

Given the point se¥ = {z, 22, 23, ..., zn }, for each point 3.1 Compute the projections of its neighbours on
z; we run the bootstrap polynomial fitting described in [4] on the bootstrap surfacefj.
its K-neighbourhood. We usefj to denote the projection 3.2 For everyz; ;, j =1:K
of the j-th point of the neighbourhood of; on the fitted Project the point towardzfj according
surface and¥; to denote the error of the bootstrap fitting. Eq. 1, with weightw; ; given by
There are few different formulae to compute the test error, Eq. 2.

as described and evaluated in [4]. In our implementation, . . . .
we use the .632+ error which seems to slightly outperfor@l‘gor'thm llI-A: Algorithm for bilateral smoothing
the other estimates. However, we believe that using otk~-
formulae to compute the test error and of's values will
give very similar results.

Let {zi1,%2,2i3,...2,x} be the K-neighbourhood
around the considered point ,. We would project each
point of the neighbourhood towards the fitted surface by

Zi,j — (]. — wi,j)zi’j =+ wl-yjzf’j (1)
Wlth the We|ght given by 0.5 noise level Bootstrap projection
wij = 01(|] zi5 — zi0 [)62(Wi;) )

The weighting function$y, (z) = G(x, hy), with k = 1,2 are
Gaussians with zero mean and standard deviatjgrihat is

Gz, hy) = e /M, ©)

|| -|| denotes Euclidean distance. The standard deviafipns
are user-defined parameters whose influence on the res: h=05x|w] h =0.75 X [W] h =1.0x|W|
will be demonstrated at the end of the section.

Fig. 1. Bilateral smoothing on the Bimba with 0.5 noise level. Figure
shows the noisy model (top left) and its smoothing with naive bootstrap
A. Results projection (top right). The bottom rows display the bilateral smoothing for
severalhy values.|W| is the average value d;.
We tested the proposed method on natural, smooth mesh

models, after stripping off the connectivity and adding a Figure 1 shows Bimba at 0.5 noise level and its naive boot-
certain amount noise along the normal direction. Birise strap smoothing (top row). Although the bootstrap projection
level, we mean that on each point we add a uniform randagn its own has improved the model and made it smoother,
displacement along the normal direction of maximum lengthe bilateral bootstrap smoothing provides with better results,
d times the average over the whole mesh of the distanespecially around the feature areas. The results of bilateral
distance between a point and its closest neighbour. In @inoothing for severah, values are shown at the bottom
first experiment we run the Algorithm IlI-A on the Bimbarow of the figure. We can see that the choicehgfaffects
model at 0.5 noise level. the amount of smoothing. In particular, given a valugof
Algorithm bilateral(K) the areas of the model with error values significantly higher

. . . . . than h, would not be smoothed. As a rule of thumb, from
The algorithm runs through every input point, estimating _. . L

. . Figure 1 bottom row, we can notice that the model is still

the bootstrap error of the polynomial fitting of its

K-neighbourhood. Then, it will project the points in the noisy when the value of, is half the average model error.

. . o Increasingh, to become 0.75 of the average model error,
neighbourhood using the error value and their distances : :
. . : or equal to the average model error, gives better smoothing
from the considered point as weights.

1. For every pointz; o, i =1:N resqlts. . .
] - ) . Figure 2 shows a closer comparison between the naive
1.1 Find the K-nearest points, ; j=1.K for the bootstrap projection and bilateral bootstrap smoothing. We
considered point. can see that the feature areas of the Bimba, such as the
1.2 Compute the +.632 bootstrap error ears, hair and the edges at the bottom of the bust, are badly
1.2.1 Findnormal ;, the normal atz; . smoothed by naive bootstrap projection, Figure 2 (left). On
1.2.2 Parametrise the K-neighbourhood the other hand, bilateral bootstrap smoothing gives clearly
of z, o over the tangent plane superior results, Figure 2(right).
corresponding taoormal ;. That
means that we can now fit polynomial B. Weights influence on smoothing
surfaces using square minimisation. The effect of the choice of parameter valuesfgrand h
1.2.3 Compute the bootstrap fitting using on the smoothing results is shown in Figure 3. In Figure 4,
cubic polynomials and also obtally. we also display the reflection line renderings of the models
2. Get the average ON's. In the experiments, this averageto assist us in gauging the smoothness of the model.
will be used to inform the choice of the parameter When the variance of the Gaussian corresponding to the
3. For every pointz; o, i =1:N distance weight increases, neighbouring points have more
ISBN: 978-988-19252-8-2 WCE 2013
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influence on a considered point. Thus, when the value of
hy increases, the model generally becomes smoother. This
effect is noticeable in both figures &g increases at each
column. We also expect that bilateral smoothing would avoid
oversmoothing the feature areas, preserving thus the model
features, while, in contrast, a naive filter would smooth out
the whole model. As we can see in Figure 3, figr= 1.5d

the ear of the Bimba starts to deform when the value
increases, that is, the weight of the bootstrap error parameter
diminishes. Notice that by increasirig, to infinity we are

left with a single filter based on the distance weight only.

h2=0.5x |W| h2=1.0x |W|

h2=15x|W

hl =0.75d

Fig. 2. Comparison between naive bootstrap projection (left column) ai
bilateral bootstrap smoothing withy = d and ho = 0.75|W| (right
column).
h2=0.5x|W| h2=1.0x|W| h2 - 15x|W| hl=1.0d
h1=0.75d
hl=1.5d
hl=1.0d
Fig. 5. The result of bilateral smoothing for different valueshgfand hg
on the Bunny.
h2=15x%x|W|
hl=1.5d ey
h1=0.75d
Fig. 3. The result of bilateral smoothing for different valuesraf and
ha.
hl=1.0d
h2=0.5x|W| h2=1.0x|W| h2=15x|W|
h1=0.75d
hl=1.5d
hl=1.0d
Fig. 6. Reflection lines for the Bunny model with respect to Figure 5.
We also tested the bilateral smoothing on the Bunny model
with 0.5 noise level. The results for various valuesipfand
s ho is shown in Figure 5, while the reflection lines are shown

Fig. 4. Reflection lines for the Bimba model with respect to Figure 3.
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in Figure 6.
IV. MULTI-PASSBILATERAL SMOOTHING

There are remarks we should make regarding the im-
plementation details of Algorithm 1lI-A. The smoothing
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procedure is only done once, but the position of each poitite existence of a model feature in that neighborhood. In
is updated before we move on to the next one. Thus, if thieis case, we reduce the size of the neighborhood trying to
j-th point is in the neighborhood of theth point and the preserve the feature. The lower bound of at least 10 points
i-th point is processed first, the processing of fh point in each neighborhood ensures that the computations of the
will use the projected-th point value instead of the originallocal fitting surfaces do not become unstable. Notice that
noisy one. This accelerates the smoothing process making ithe error is zero, the size of the neighbourhood should
possible to give reasonable results in one smoothing iteratitve. at its maximum, that is, the user-defined paraméfer

A second remark is that the size of neighbourhofid,is corresponding to the size of the neighborhood on which
user-defined and fixed for all neighborhoods. In practice, fare computed the bootstrap error. When the error is equal
a model consisting of anything between 10,000 and 50,068 the average error over all neighborhoods of the model
points, choosings = 100 seems to give satisfactory resultsmean(w;), we havek; = 10. However,mean(w;) could
However, looking at the results of the previous section, we replaced by user defined parameter controlling the extent
can also notice that while the Bunny has generally beém which we want feature preservation. Notice also, that
smoothed nicely, Bimba did not retain several of its featurds; = 10 is the size of the neighborhood we use for
because of oversmoothing. That is, the chol€e= 100 surface fitting while for bootstrap error estimation we always
caused oversmoothing and a smaller valuekoimay have use fixed neighborhood siz&. The latter is necessary for
been more appropriate, at least at some local neighborhooti$aining meaningful and comparable error estimates.
of the model. As a third remark, we also notice that the
parameters of the bilateral filtér; and h, were also fixed.

K

Algorithm bilateral_multi-pass(K,iteration)
Similar to Algorithm [lI-A but multiple iterations and
adaptively chosen neighborhood size and smoothing

Size of neighbourhood

parameter.
for i=1:N © .
Let W=0 for all ’s. Find the K-nearest points
z;;'s for the considered point, j=1:K. ’ .
Compute the bootstrap error and obtsih e
end for Fig. 7. Heuristic selection of neighborhood Si#&.
for i=1:N
Compute neighbourhood SiZE; by Equation 4 Finally, the algorithmic parametet; is adaptively com-
Compute local average distance between points, ~ puted as the product of a user-defined constamind the
dy average distance between points in the local neighbourhood
Fit the surface polynomial on the neighbourhood K;, denoteddy,
K; and obtain the fitted values?;. hi=axdy (6)
end for Figures 8 and 9 show the Bimba model with 0.5 noise level
for k=1:number _of_iteration after being smoothed with the multi-pass bilateral filter. In
for j=1. K; this example, we chosk, = 0.1d;, and hy = 0.3|WW| and
Project the point and its neighbourhood run 300 iterations. The figures show a significant improve-
to zfj with weightw; ; such that ment compared to Algorithm IlI-A. Visually, the area around
z2;;=(1-w ;) z; ;+w; ;27; as in the hair retained its features and was not oversmoothed as in
Equation 1, but with; = a * d;, as Algorithm 11I-A.
defined in Equation 6 Compared to the approach in the previous section, the
end for multi-pass smoothing (Algorithm V) produces a better result
end for due to mainly three reasons. Firstly, near features, as detected

by a high bootstrap error, we project to surfaces that have
Algorithm 1V: Algorithm for multi-pass bilateral filtering.  been fitted to more localized neighborhoods, preserving this
We propose an improvement of the bilateral filter ofvay the features better. Secondly we use a localized vBlue
the previous section by applying multiple iterations of théo compute the parametér, adapting to the local density
smoothing procedure as well as adapting neighbourhood sifethe model. As the model is not distributed uniformly, the
and spatial distance parametgr The procedure is describeddistance from one point to another is not a constant. Thirdly,
in Algorithm V. R multiple iterations smooth the model more slowly, preventing
The size of the neighbourhool; of the i-th point is a the oversmoothing caused by the high values:pfand h,
piecewise linear function with two components, given by that we have to choose if we are applying a single smoothing
. iteration.
K; = max{10,y} “) Figure 10 shows the Bunny model at 0.5 noise level after

where 10— K being smoothed by the multi-pass bilateral filter for various
y=—— Wi+ K (5) Vvalues ofh; and hy and 300 iterations. When the value of
mean(W) hi increases, the feature area might be oversmoothed. We

see Figure 7. The main idea is that, assuming that the poiain observe this oversmoothing effect in the areas around
set contains moderate only noise, a high error indicateges and the mouth of the Bunny. On the other hand, by
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Fig. 8. Multi-pass bilateral smoothing witty = 0.1d, andhe = 0.3|W]|,
after 300 iterations.

Fig. 9. Multi-pass bilateral smoothing witty = 0.1d, andhe = 0.3|W|,
after 300 iterations, original (left) and smoothed (right).

h2=0.3x|W| h2=0.5x|W|

Fig. 10. Multi-pass bilateral smoothing for varioks and ha, after 300

iterations. Bottom right figure shows the noisy model before smoothing. 4]
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increasing the valuegils, we can nicely preserve the features.
Indeed, when higher values &f are chosen the features at
the eyes and mouth are preserved, while the area around the
leg is also smoother compared to left hand side of the figure.
Finally, we compare on Bimba the multi-pass algorithm
against two other state-of-the-art smoothing algorithms. Fig-
ure 11 shows the result of our method next to Poisson Surface
Reconstruction smoothing [11] and AMLS smoothing [12].
We notice that while our method preserves the feature areas
better than Poisson, AMLS gives smoother results while still
nicely preserving features, as for instance around the ear.

Fig. 11. Comparison with other methods, from left to right: Poisson Surface
Reconstruction, our method and AMLS.

V. SUMMARY

In this paper, we used bootstrap error estimates to guide
a projection based point set smoothing algorithm. Bilateral
filtering was the standard framework employed to incorporate
the bootstrap error estimates into the smoothing algorithm.
In particular, by using the error estimates as proxies for the
quality of the local surface fittings, the proposed smoothing
algorithm favours projections on good quality fittings and
is able to recover surface characteristics that have been
corrupted by noise. The proposed multi-pass variant of the
bilateral smoothing was inspired by MLS smoothing, which
also is an iterative process projecting points to a fitted surface
with certain weights.

While the proposed method has been shown to be able
to successfully smooth noisy models with features, several
important questions remain unresolved. One of the issues
worth researching further is the automatic estimation of the
values of the parameters;, and hs, which at the moment
have to be provided by the user. Another serious current lim-
itation is that the method may not always be able to preserve
all sharp edges. Notice that this is a common limitation of
point set smoothing algorithms based on local neighbourhood
processing. The resolution of these limitations can the goal
of future research.
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