

Abstract—A large attention has been focused on the dynamic

fault tree (DFT). Cut sequence is an algebraic approach to
overcome the shortcomings of the traditional methods for DFT
analysis. In the generation of cut sequences, temporal rules play
a key role, and the complete temporal laws ensure any form of
the DFT can be reduced to cut sequences. Recently, lots of
temporal rules have been put forward, but none of them are
proven to be complete. This paper provides concise, but
complete temporal rules. At first, the algebraic framework for
temporal rules was built. Secondly, we put forward seven
temporal rules, which are proven to be valid. Then,
binary-tree-based completeness validations for temporal rules
were given. Finally, application demonstrates the efficiency of
the proposed temporal rules. Complete temporal rules promote
the establishment of an intact theoretical foundation for cut
sequence approach.

Index Terms—reliability, dynamic fault tree, cut sequence,
temporal rules, completeness

I. INTRODUCTION

ault tree model is well accepted by reliability engineers
and researchers for its advantages of compact structure

and integrated analyzing methods. While traditional (static)
fault trees cannot deal with the systems that characterize
dynamic behaviors, such as sequential failure or redundancy.
In the past few years, a large attention has been focused on
the dynamic fault tree (DFT) [1]. By adding new gates to
static fault tree, DFT aims to take into account dependencies
among events (which typically exist in systems with spare
components).

Markov chains (MCs) and their extensions have proven to
be a versatile tool for analyzing the DFT [1] [2]. However,
the MC-based approaches are faced with two well-known
problems: (1) ineffectiveness in solving large dynamic
models, i.e. the number of states grows exponentially as the
number of the basic events in the system increases; (2) lack of
modeling power capabilities, i.e. the failure time distribution
is limited to the exponential distribution.

Manuscript received Dec. 10, 2012. This work was supported in part by

the National Natural Science Foundation of China under Grant 60904082.
Li Yi is with the Academy of Equipment, Beijing 101416, China (e-mail:

ylili@139.com).
Wang Bo is with the China Astronaut Research and Training Center,

Beijing 100094, China (phone: 86-13701103586; fax: 86-10-66364116;
e-mail: wowbob@139.com).

Liu Dong is with the Academy of Equipment, Beijing, 101416 China
(e-mail: ld4m@139.com).

Yang Haitao is with the Academy of Equipment, Beijing, 101416 China
(e-mail: htya@139.com).

Yang Fande is with the Academy of Equipment, Beijing, 101416 China
(e-mail: fander@139.com).

The difficulty in (1) mainly comes from the existence of
repeated events. A repeated event is defined as an event
connected to several gates. To overcome the problem of (1),
some researchers proposed methods to reduce the size of the
MC by a modularization technique [3]. Static modules are
analyzed by a binary decision diagram-based algorithm, and
MCs are applied to the dynamic modules. However, in many
cases, the size of a single module remains significant, and
potentially leads to an unreasonable long computation times.
Hence, the applicability of the modularization technique is
not always evident.

As a method to extend the modeling capability, i.e., as an
alternative method to deal with the problem of (2), the
algebraic approach of the DFT has been proposed. Liu et al.
[4] proposed a method of DFT analysis called CSSA (Cut
Sequence Set Algorithm). In CSSA, the DFT is reduced into
a set of cut sequences called sequential failure expressions
(SFEs), which are ordered lists of events connected by the
sequential failure symbol. The CSS (Cut Sequence Set) is the
collection of all SFEs that represent the fault tree. Therefore,
the CSSA method avoids the use of MCs entirely. Another
algebraic approach is proposed by Merle et al [5], they put
forward the complete algebraic expression of the DFT via
introducing new temporal operators in order to define the
sequence dependence of the gates. By using the operators and
the conventional Boolean operators, the occurrence time of a
top event (TE) is represented as a sum of the product
canonical form. The terms of this form correspond to the
minimal cut sequence set of the DFT.

Algebraic analysis of static fault trees consists of reducing
any form of fault tree to its cut sets, which relies on a set of
complete Boolean rules to function. In the generation of cut
sequence of the DFT, Boolean rules are not sufficient for the
DFT analysis. Therefore, more logical rules are needed, and
we can apply to these temporal gates. These rules are named
temporal rules. Complete temporal rules ensure any form of
the DFT can be reduced to cut sequences. In Liu and Merle’s
works, lots of temporal rules have been put forward,
unfortunately, none of them told us their rules are complete.

In this paper, we propose novel and concise temporal rules
for generating cut sequences. In order to prove the temporal
rules are complete, we firstly build up a rigorous algebraic
framework for temporal rules, then we seek for the common
form of algebraic expressions for the DFT, finally the
temporal rules’ completeness proof is given.

II. BACKGROUND

A. Dynamic Fault Trees

Static fault tree (SFT), only captures the combination of

Complete Temporal Rules for Cut Sequence
Generation in Dynamic Fault Tree Analysis

Li Yi, Wang Bo, Liu Dong, Yang Haitao, Yang Fande

F

Proceedings of the World Congress on Engineering 2013 Vol II,
WCE 2013, July 3 - 5, 2013, London, U.K.

ISBN: 978-988-19252-8-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2013

events, and is inadequate to model today’s complex dynamic
systems. DFT analysis is an extension of SFT analysis that
allows the modeling of dynamic behavior (sequence of
events and functional dependence between events). DFT
takes into account not only the combination of failure events
but also the order in which they occur. DFT defines special
gates that capture a variety of failure sequence and functional
dependence. The six dynamic gates are proposed; the priority
AND (PAND) gate, the functional dependency (FDEP) gate,
the hot spare (HSP) gate, the warm spare (WSP) gate, the
cold spare (CSP) gate and the sequence enforcing (SEQ)
gate. The PAND gate is used to represent the dependence of
the event sequence. It is logically equivalent to an AND gate,
for which input events must occur in a specific order for the
output event to occur. The output of a PAND gate with two
inputs depicted in fig. 1 (a) becomes true if and only if both
events A and B have occurred and event A has occurred
before event B. The FDEP gate in fig. 1 (b) has a single
trigger input A, and one or more dependent basic events. The
dependent events are functionally dependent on the trigger
event. When the trigger event occurs, the dependent events B
is forced to occur. The WSP gate generalizes the CSP gate
and the HSP gate. Fig. 1 (c) shows a WSP gate with two
warm spares. The event A is a primary input that is originally
powered on, and the other inputs specify the components that
are used as replacements for the primary unit. The failure
rates of spare units are reduced by a factor α, called the
dormancy factor in standby mode. If α = 0, the gate is a CSP
gate. And if α = 1, it is regarded as an HSP gate. The WSP
gate has one output that becomes true after all the input
events occur. The SEQ gate in fig. 1 (d) forces events to
occur in a particular order. The input events are constrained
to occur in the left-to-right order. However, it was shown in
[6] that the SEQ gate is expressible in terms of the CSP. As a
consequence, dynamic gates can be limited to gates PAND,
FDEP, and Spare, only.

FDEP WSP SEQ

A B

A

B C A B A B

(a) (b) (c) (d)
Fig. 1. Dynamic gates. (a) PAND (b) FDEP (c) WSP (d) SEQ

B. Cut Sequence

The occurrence of the DFT’s TE depends not only the
combinations of basic events, but also the basic events’
sequential failure, called cut sequence, and the set of cut
sequence is accordingly named cut sequence set (CSS). The
CSS depicts components’ dynamic behaviors causing the
system’s failure, which is the focus and difficulty in the
DFT’s research.

In Liu’s CSSA approach, X→Y is a SFE in which X fails
first and then Y fails. AND gates are converted into SFEs by
enumerating all possible sequences, of which there are n! for
a gate with n inputs; thus an AND gate with three inputs, e.g.
X.Y.Z, would yield 6 SFEs: X→Y→Z, X→Z→Y, Y→X→Z,
Y→Z→X, Z→Y→X, and Z→X→Y. PAND gates indicate a
single SFE directly, e.g. X PAND Y is the same as X→Y.

FDEP gates are represented as (E1 AND E2) OR E3, where
E1, E2, and E3 are SFEs representing the trigger event, the
triggered events, and any non-triggered events respectively.
Finally, SPARE gates (WSP, CSP and HSP) are represented
by specific SFEs that link the failure of the primary to the
failure of the secondary.

III. TEMPORAL RULES’ ALGEBRAIC FRAMEWORK

A. Non-repairable Events

The events of DFT are considered as non-repairable in this
paper. It is also assumed that events occur instantaneously.
To count on the temporal aspect of events, in accordance with
Merle’s work, we consider events are piecewise right
continuous on R+ ∪ {+∞}. Each of them is defined by its
unique time of occurrence, noted t (A) for an event A. In this
paper, we denote by BE the set of non-repairable events.

For any v � BE, an assignment over v is any mapping from
v to {0, 1}. Assignments are extended inductively into
mappings from Boolean formulae into {0, 1}. Let σ be an
assignment, then

1
()

0 ()

otherwise
v

if t v

And

() 1 () 0

() 0 ()

I if t I

if t

B. Operators

Any elements of BE can be composed thanks to a rewriting
of classical Boolean operators. The temporal definition of
Boolean operators OR (+) and AND (·), based on the
assignments of a and b is

() max{ (), ()}

() min{ (), ()}

a b a b

a b a b

To model the sequence of occurrence of events, we
introduce an operator PRIORITY (with symbol ≺), whose
formal definition, based on the assignments of a and b, is
(with a given time interval [0, T])

1 0 () ()
()

0

t a t b T
a b

otherwise

It can be seen that the order of inputs to AND and OR gates
is irrelevant. However, the dynamic gates, such as PAND,
SPARE, and SEQ, depend on the order of their inputs. The
PRIORITY is not a commutative operator.

C. Behavior Model of Static and Dynamic Gates under the
Framework

This chapter presents the behavioral model of dynamic
gates which has been built thanks to the 3 operators in order
to determine the structure function of the DFT. The
behavioral model of gates OR, AND, PAND, FDEP, and
Spare is presented as follows.

1) OR and AND gate
The OR gate’s output event occurs if either of its inputs

Proceedings of the World Congress on Engineering 2013 Vol II,
WCE 2013, July 3 - 5, 2013, London, U.K.

ISBN: 978-988-19252-8-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2013

occurs, assume its inputs events are A and B, a behavioral
model of OR gate can hence be determined as

A + B

For the AND gate, if all of its inputs events occur, its
output event occur, so the behavioral model AND gate with
inputs events A and B is

A · B
2) PAND gate

The PAND gate is a special case of the AND gate in which
the output event occurs only if all input events occur in a
specified ordered sequence. A behavioral model of PAND
gate in fig. 1(a) can be modeled as

A ≺ B

3) FDEP gate
The FDEP gate is a dynamic gate, but its behavioral model

is equivalent to a static model, which has been demonstrated
in many references. The behavioral model in fig. 1(b) is

 B + A

 B + C

4) WSP gate
The behavioral model of Spare gates will be presented in

an increasing order of complexity. Let us consider a Spare
gate with 2 input events, the primary event A and one spare
event B, as shown in fig. 1(c). As stated in [7], the output
event of the gate occurs when the primary and all spares have
failed, so when A and B have failed If A and B fail according
to sequences A≺B or B≺A. It is important to note that in
sequence A≺B, B fails while in its active mode (denoted as
Ba), whereas in sequence B≺A, B fails while in its dormant
mode (denoted as Bd) [5]. The behavioral model of the WSP
gate can be determined as

A≺Ba + Bd≺A

For the CSP gate, because B can only fail in its active
mode, the behavioral model is

A≺Ba

A simper form is

A≺B

Some more complicated behavioral models in detail can be
found in [5][8].

IV. PROPOSED TEMPORAL RULES

Operators OR, AND and BEFORE satisfy the following
temporal rules, for all a, b, c � BE:

Rule 1 (R1). (a≺b)≺c a≺b≺c
Rule 2 (R2). a≺(b≺c) a≺b≺c + b≺a≺c
Rule 3 (R3). a≺(b+c) a≺b + a≺c
Rule 4 (R4). (a+b)≺c a≺c + b≺c
Rule 5 (R5). a≺a a
Rule 6 (R6). a≺b≺a ∅
Rule 7 (R7). a·b a≺b + b≺a
The symbol “ ” means it can be reduced from left to

right, and right to left in the rule expression, while “ ”
indicates that it can be only reduced from left to right, hence,

we cannot say that a≺b + a≺c a≺(b+c) , which is not a
valid rule.

The validities of the proposed temporal rules can be
mathematically proved with the aid of temporal rules’
algebraic framework. If assignments of both sides of the rule
are the same value, we reckon that the rule is valid. We will
take Rule 1 for example.

Proof of Rule 1(R1): (a≺b)≺c a≺b≺c
For this proof, we will firstly add the following definition:

1 0 () () ()
()

0

t a t b t c T
a b c

otherwise

1. Case 1: If any one of t(a), t(b), t(c) is not in time interval
[0, T], by definition, the assignment of the left side of R1 is 0,
so as the right side of R1. Hence, the assignment of the left
side equals the right side of R1 in case 1, the following we
consider all of t(a), t(b), t(c) are in time interval [0, T].

2. Case 2: 0≤t(a)≤t(b)≤t(c)≤T. By definition, σ(a≺b≺c) = 1,
t(a≺b) = t(b), t(a≺b) ≤ t(c), σ((a≺b)≺c) = 1, so the
assignments of both sides of R1 is 1.

3. Case 3: 0≤t(a)≤t(c)≤t(b)≤T. By definition, t(a≺b) = t(b) ,
then t(c) ≤ t(a≺b), so σ((a≺b)≺c) = 0, and σ(a≺b≺c) = 0. The
assignments of both sides of R1 is 0.

4. For other cases, such as 0≤t(b)≤t(a)≤t(c)≤T,
0≤t(b)≤t(c)≤t(a)≤T, 0≤t(c)≤t(a)≤t(b)≤T, 0≤t(c)≤t(b)≤t(a)≤T,
it can be easily validated by definition that the assignments of
both sides of R1 is 0.

In conclusion, the assignments of both sides of R1 in any
cases are the same.

End of the proof of R1.

V. COMPLETENESS VALIDATIONS FOR TEMPORAL RULES

A. Irreducible Element: Disjunctive Priority Normal
Form

The completeness of temporal rules is to constructing a
rules’ system that can deduce all formulae into irreducible
forms, called disjunctive normal forms, which is the key
point of theoretical foundation for generation of cut
sequences. It can guarantee any forms of the DFT deduced
into cut sequence form. Take a broad view of the current
study, research results within this respect are not published.

To solve this problem, we need firstly establish the
judgment standard of completeness, the starting point lies in
the definition of irreducible element in cut sequences. We
extend the traditional disjunctive normal form with temporal
factors, define:

Def. 1 PNF (Priority Normal Form) Variables in the
formulae are connected only by operator PRIORITY.

Def. 2 DPNF (Disjunctive PNF) All priority normal
forms are connected only by operator OR.

The PNF and DPNF are cut sequence and cut sequence set
respectively.

B. Binary-tree-based Common Form of Formulae

The following we need to prove all formulae can be
deduced into DPNF. It is impossible to test all formulae, so it
is particularly important to look for the common form of
formulae.

Proceedings of the World Congress on Engineering 2013 Vol II,
WCE 2013, July 3 - 5, 2013, London, U.K.

ISBN: 978-988-19252-8-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2013

Binary tree is an ordered tree that contains at most two sub
trees for each node. Operators in this paper are all dualistic,
so we can translate formulae into the binary tree form. The
root node of a binary tree is the last operation symbol. We
stipulate the operation order as (from high to low):

·, ≺,	

Typical structures of the binary tree are shown in fig. 2,
where op1, …, op4 represent operators between nodes. For
that operators OR(+) and AND (·) are commutative, if op1,
op3 ∈ {·, +}, fig. 2(a) is equivalent to fig. 2(b), which means
a same type of formulae. Operator PRIORITY is not
commutative, so if op1, op3 ∈ {≺}, fig. 2(a) is different
from fig. 2(b).

2op

1op

4op

3op

Fig. 2. Typical structures of the binary tree

Fig. 3. Binary Trees that representing all formulae

Hence, if op1 � {·,	}, then op2 � {·,	≺, }; if op1 � {≺},

then op2 � {·,	 ≺, ,}; if op3 � {≺}, then op4 � {·,	 ≺, }.
Finally, we obtain 12 (= 6 + 3 + 3) binary trees, as shown in
fig. 3. It can be easily checked that there are not repeated and
isomorphic trees among those 12 trees.

C. Completeness Validation

1) Convert binary trees to formulae
Firstly, we need to obtain the algebraic expressions of 12

binary trees, and it can be handled out with in-order-traversal
strategy, the main process is:

1. Visit left sub-tree, if the root node is not a leaf, and its
operation order is posterior to its father node’s, then
add a left parentheses before visiting, and add a right
parentheses at the end of visiting.

2. Visit right sub-tree, if the root node is not a leaf, and its
operation order is posterior to its father node’s, then
add a left parentheses before visiting, and add a right
parentheses at the end of visiting.

3. Visit any sub-trees, if the root node is not a leaf, and the
connection symbols of root node and father node are
all PRIORITY, then add a left parentheses before
visiting, and add a right parentheses at the end of
visiting.

According to this process, we obtain the algebraic
expressions, as listed in TABLE I.

TABLE I

ALGEBRAIC EXPRESSIONS OF BINARY TREES

No. Expression

(1) (a+b)·c
(2) a·b·c
(3) (a≺b)·c
(4) a+b+c

(5) a·b+c
(6) a≺b+c
(7) (a+b)	≺c
(8) a·b≺c
(9) (a≺b)	≺c
(10) a≺ (b+c)
(11) a≺b·c
(12) a≺(b≺c)

If the proposed temporal rules are complete, then any

algebraic expressions in TABLE I can be deduced to DPNF.
We check those expressions one by one, and the results are
shown in TABLE II.

Typically, we chose (11) to demonstrate the deduction
process.

To deduct: a≺b•c a≺b≺c+b≺a≺c+a≺c≺b+c≺a≺b.
If b=c, a=c, b=a, and b=a=c, it can be easily verified. We

consider a ≠ b ≠ c.
Employing R7, R3 and R2, we have:
a≺b•c a≺(b≺c+c≺b) a≺(b≺c)+ a≺(c≺b)

a≺b≺c + b≺a≺c + a≺c≺b + c≺a≺b .
End of the deduction.

The left expressions can be deducted in the similar way.

From TABLE II, it can be concluded that the proposed
temporal rules are complete for that they can deducted any
formulae to DPNF, in another words, any form of the DFT
can be converted into cut sequence set with the aid of
temporal rules.

Proceedings of the World Congress on Engineering 2013 Vol II,
WCE 2013, July 3 - 5, 2013, London, U.K.

ISBN: 978-988-19252-8-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2013

TABLE II

DEDUCTION RESULTS OF ALGEBRAIC EXPRESSIONS

No. Result DPNF?
Rules
Used

(1) a≺c+c≺a+b≺c+c≺b Y BRs
(2) a≺b≺c+a≺c≺b+b≺a≺c+b≺c≺a+c≺a≺b+c≺b≺a Y BRs,

R1,
R2,
R7

(3) a≺b≺c+c≺a≺b+a≺c≺b Y R1,
R2,
R7

(4) dispense with deduction Y NONE
(5) a≺b+b≺a+c Y R7
(6) dispense with deduction Y NONE
(7) a≺c+b≺c Y R4
(8) a≺b≺c+b≺a≺c Y R4,

R7
(9) a≺b≺c Y R1
(10) a≺b+a≺c Y R8
(11) a≺b≺c+b≺a≺c+a≺c≺b+c≺a≺b Y BRs,

R2,
R3,
R7

(12) a≺b≺c+b≺a≺c Y R2

Y= the result is a DPNF, BRs = Boolean Rules, R = rule

VI. APPLICATIONS

The Cardiac Assist System (CAS) [9] is designed to treat
mechanical and electrical failures of the heart. The system
can be divided into 4 modules: Trigger, CPU unit, motor
section, and pumps. In this paper, we focus on the pumps
unit.

The pumps unit is comprised of two cold spares, each
having a primary pump (PUMP_1 and PUMP_2), and
sharing a common spare pump (Backup_PUMP). In order for
the pumps unit to fail, all three pumps need to fail and CSP_1
needs to fail before (or at the same time as) CSP_2. The DFT
which models the potential failure of the pumps unit of CAS
is shown in Fig. 4

Fig. 4. The DFT of pumps unit of CAS

The behavioral model of PAND gate presented in Section

III allows expressing PUMPS as

PMMPS = CSP1 ≺ CSP2

According to the behavioral model of Spare gate

CSP1 = P1 ≺ BP + P2 ≺ P1

CSP2 = P2 ≺ BP + P1≺ P2

CSP1 ≺ CSP2 can now be expressed as

Steps Deduction Results Rules used

0 (P1 ≺ BP + P2 ≺ P1) ≺ (P2 ≺ BP + P1≺
P2)

1 (P1 ≺ BP) ≺ (P2 ≺ BP + P1≺ P2) + (P2 ≺
P1) ≺ (P2 ≺ BP + P1≺ P2)

R4

2 (P1≺BP)≺(P2≺BP) +
(P1≺BP)≺(P1≺P2) + (P2≺P1) ≺
(P2≺BP) + (P2≺P1)≺(P1≺P2)

R3

3 (P1≺BP)≺P2≺BP + P2≺(P1≺BP)≺BP +
(P1≺BP)≺P1≺P2 + P1≺(P1≺BP)≺P2 +
(P2≺P1)≺P2≺BP + P2≺(P2≺P1)≺BP +
(P2≺P1)≺P1≺P2 + P1≺(P2≺P1)≺P2

R2

4 P1≺BP≺P2≺BP + (P2≺P1≺BP +
P1≺P2≺BP) ≺BP + P1≺BP≺P1≺P2 +
(P1≺P1≺BP + P1≺P1≺BP) ≺P2 +
P2≺P1≺P2≺BP + (P2≺P2≺P1 +
P2≺P2≺P1) ≺BP + P2≺P2≺P1≺P2 +
(P1≺P2≺P1 + P2≺P1≺P1) ≺P2

R1 R2 R4

5 ∅ + (P2≺P1≺BP + P1≺P2≺BP) ≺BP + ∅
+ (P1≺BP)≺P2 + ∅ + (∅ + P2≺P1)≺BP +
∅+ (∅+ P2≺P1)≺P2

R5 R6

6 P2≺P1≺BP≺BP + P1≺P2≺BP≺BP +
P1≺BP≺P2 + P2≺P1≺BP + P2≺P1≺P2

R4 R1

7 P2≺P1≺BP + P1≺P2≺BP + P1≺BP≺P2 R5 R6

From algebraic view, in the deducting, we make use of R3,

R3 is not a rigorous, equivalent rule (it can be only utilized
from left to right), and it will bring conflicts in logic.
Therefore, a check should be manipulated, which recurs to a
physical meanings’ validation. From the real meanings, if P1
fails at first, BP will be used, and then if P2 fails secondly,
there is no spares left, so output of CSP2 will occur, after BP
fails, output of CSP1 occurs after CSP2, and the output of
PUMPS won’t occur, which is not coincident with the
physical meanings. Hence P1≺P2≺BP should be canceled.
Finally, with application of the proposed temporal rules, we
obtain two cut sequences

P2≺P1≺BP, P1≺BP≺P2

For instance, the algebraic term P2≺P1≺BP indicates that
P2, P1 and BP must fail in this order, which is a dynamic
failure mode.

Merle’s method provides the same cut sequences for the
DFT, but its reduction process is more complex, for that its
temporal rules are not concise; what’s more, it seems its
temporal rules are complete, but it doesn’t give algebraic
proof and explains. Merle’s method contains over 80
temporal rules, the proposed temporal rules in this paper
contain only 7 terms, which has canceled many redundant
rules, but ensures the completeness. Besides, Liu’s CSSA
provides similar temporal rules, but there is a lack of validity
and completeness proof under a rigorous algebraic
framework.

Proceedings of the World Congress on Engineering 2013 Vol II,
WCE 2013, July 3 - 5, 2013, London, U.K.

ISBN: 978-988-19252-8-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2013

VII. CONCLUSION

Temporal rules are key theoretic foundation in generating
cut sequences in DFT analysis. This paper put forward
several novel temporal rules, rigorous proofs and case’s
application demonstrate the proposed temporal rules are
valid and complete. In the future, we will resolve algorithms
that would allow to automatically extract the cut sequences
from the DFT.

REFERENCES
[1] J. B. Dugan, S. J. Bavuso, and M. A. Boyd, “Dynamic fault tree models

for fault-tolerant computer systems,” IEEE Trans. on Reliability, vol. 3,
1992, pp. 363–377.

[2] H. Boudali, P. Crouzen, M. Stoelinga, “A compositional semantics for
dynamic fault trees in terms of interactive Markov chains”, In:
Proceedings of the international symposium on automated technology
for verification and analysis (ATVA’07), Springer Verlag — LNCS,
vol.4762;2007. p.441–56.

[3] R. Gulati, J. B. Dugan, “A modular approach for analyzing static and
dynamic fault trees”, Proceedings of Annual Reliability &
Maintainability Symposium, Philadelphia, PA1997:568–73.

[4] L. Dong, X. Weiyan, Z. Chunyuan, L. Ri, and H. Li, “Cut Sequence Set
Generation for Fault Tree Analysis”, Proc. Of International
Conference on Embedded Software and Systems. Daegu,South Korea,
14-16 May 2007,LNCS 4523,pp.58-69

[5] G. Merle ,“Algebraic modeling of Dynamic Fault Trees, contribution to
qualitative and quantitative analysis”, PhDthesis, LURPA, ENS de
Cachan; July 2010

[6] H. Boudali, P. Crouzen and M. Stoelinga ,“Dynamic Fault Tree
analysis through input/output interactive Markov chains,” In
Proceedings of the International Conference on Dependable Systems
and Networks (DSN 2007), pages 25–38, Edinburgh, UK, 2007

[7] M. Stamatelatos and W. Vesely , “Fault Tree Handbook with
Aerospace Applications”, NASA Office of Safety and Mission
Assurance, vol. 1.1, pages 1–205, 2002.

[8] B. Wang, D. Liu, and Y. Li, “Algebraic Modeling for Dynamic Gates in
Dynamic Fault Trees,” International Conference on Mechanical and
Aerospace Engineering (ICMAE 2012), July 7-8, 2012, Paris, France,
pp. 573-577

[9] Y. Dutuit and A. Rauzy, “A Linear-Time Algorithm to Find Modules of
Fault Trees,” IEEE Trans. on Reliability, vol. 45, no. 3, pages 422–425,
1996.

Proceedings of the World Congress on Engineering 2013 Vol II,
WCE 2013, July 3 - 5, 2013, London, U.K.

ISBN: 978-988-19252-8-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2013

