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Abstract—In this paper, we use a combination of orthonormal
Bernstein and Block-Pulse functions on the interval [0,1], to
solve the linear Fredholm integral equations of the second
kind. We convert these integral equations, to a system of linear
equations. Also we compared the result of the proposed method
with true answers to show the convergence and advantages of
the new method.

Index Terms—Fredholm integral equation, Bernstein, Block-
Pulse, orthonormal.

I. INTRODUCTION

INTEGRAL equation is an equation in which an unknown
function appears one or more integral sign. Naturally, in

such an equation there can occur other terms as well. The
general form of a fredholm integral equation is

u(x) = f(x) +

∫ b

a

K(x, t)u(t)dt, (1)

where u(x) is an unknown function, k(x,t) and f(x) are known
function, a and b are known constant. integral equations
are widely used for solving many problems in mathematical
physics and engineering. In recent years, many different basic
functions have been used to estimate the solution of integral
equations, such as Block-Pulse functions [1− 6], Triangular
functions [7 − 9], Haar functions [10], Hybrid Legendre
and Block-Pulse functions [11− 13], Hybrid Chebyshev and
Block-Pulse functions [14, 15], Hybrid Taylor, Block-Pulse
functions [16], Hybrid Fourier and Block-Pulse functions
[17]. In the first time, Block-Pulse functions were introduced
to electrical engineering by Harmuth and several researchers
discussed the Block-Pulse [18 − 21]. Bernstein polynomials
play a prominent role in various areas of mathematics. These
polynomials have been frequently used in the solution of
integral equations, differentials and approximation theory
[22− 25].

In this paper we used hybrid of orthonormal Bernstein
and Block-Pulse functions for numerical solution of fredholm
integral equations. The advantage of this method to other
existing methods is its simplicity of implementation besides
some other advantages.

This paper is organized as follows: In Section 2, we
introduce Bernstein polynomials and their properties. Also
we orthonormal these polynomials and hybrid them with
Block-Pulse functions to obtain new basis. In Section 3, these
new basis together with collocation method are used to re-
duce the linear fredholm integral equation to a linear system
that can be solved by various method. Section 4 illustrates
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some applied models to show the convergence, accuracy and
advantage of the proposed method and compares it with some
other existed method. In Section 5, numerical experiments
are conducted to demonstrate the viability and the efficiency
of the proposed method computationally. Finally Section 6
concludes the paper.

II. BASIC DEFINITION

In this section we introduce Bernstein polynomials and
their properties to get better approximation, we orthonormal
these polynomials and hybrid them with Block-Pulse func-
tions.

A. Definition of Bernstein polynomials
The Bernstein basis polynomial of degree n are defined

by [26]

Bi,n (x) =

(
n

i

)
xi(1− x)n−i. (2)

By using binomial expansion of (1− x)n−i, we have(
n

i

)
xi(1− x)n−i =

n−i∑
k=0

(−1)k
(
n

i

)(
n− i

k

)
xi+k. (3)

Then {B0,n, B1,n, ..., Bn,n} in Hilbert space L2[0, 1] is a
complete basis. Therefore, any polynomial of degree n can
be expanded in terms of linear combination of Bi,n(x)(i =
0, 1, ..., n).
By using Gram-schmidt algorithm we obtain orthonormal
polynomials to construct new basis, these new basis are
OBi,n(x). for example for n = 4 and i = 3

B3,4(x) = 4x3(1− x).

Our orthonormal polynomial is

OB3,4(x) =

√
3990

4

(
4x3 (1− x)− 4

19
+

68

19
x (1− x)

3

)

−
√
3990

4

(
96

19
x2 (1− x)

2

)
.

B. Definition of Block-Pulse functions (BPFs) and their
properties

An M-set of Block-Pulse function is defined over the
interval [0,T) as

bi(x) =

{
1 iT

M ≤ x < (i+1)T
M

0 otherwise
, (4)

where i = 0, 1, ...,M − 1 with m as a positive integer. Also,
h = T

M and bi is the ith BPF.
In this paper it is assumed that T = 1, so BPFs are defined

over [0, 1) and h = 1
M .
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There are some properties for BPFs, the most important
properties are disjointness, orthogonality, and completeness.
The disjointness property can be clearly obtained from the
definition of BPFs [27]:

bi(x)bj(x) =

{
bi(x) i = j
0 i ̸= j

, (5)

where i, j = 0, 1, ...,M − 1.
The other property is orthogonality. It is clear that [27]∫ 1

0

bi (x) bj (x) dx = hδij , (6)

where δij is Kronecker delta.
The third property is completeness. For every f ∈ L2[0, 1]

when m approaches to infinity, Parsevals identity holds [27]:∫ 1

0

f2(x)dx =
∞∑
i=0

f2
i ∥bi(x)∥2, (7)

where

fi =
1

h

∫ 1

0

f(x)bi(x)dx. (8)

C. Definition Hybrid Orthonormal Bernstein Block-Pulse
functions (OBH) functions

We define OBH on the interval [0, 1] as follow:

OBHi,j(x) =

{
Bj,n(Mx− i+ 1) i−1

M ≤ x < i
M

0 othrewise
, (9)

where i = 1, 2, ...,M and j = 0, 1, ..., n.
thus our new basis is {OBH1,0, OBH1,1, ..., OBHM,n} and
we can approximate function with this base.

III. FUNCTION APPROXIMATION BY USING OBH
FUNCTIONS

A function u(x), square integrable in [0, 1], maybe ex-
pressed in terms of the OBH basis as follow [28]:

u(x) =
∞∑
i=1

∞∑
j=0

cij ·OBHi,j(x). (10)

If we truncate the infinite series in (9), then we have

u(x) ≈
M∑
i=1

n∑
j=0

cij ·OBHi,j(x) = CTOBH(x), (11)

where

OBH(x) = [OBH1,0, OBH1,1, ..., OBHM,n]
T , (12)

and
C = [c1,0, c1,1, ..., cM,n]

T . (13)

Therefore we have

CT < OBH(x), OBH(x) >=< u(x), OBH(x) >,

then

C = D−1 < u(x), OBH(x) >,

where
D =< OBH(x), OBH(x) > (14)

=

∫ 1

0

OBH(x) ·OBHT (x)dx

=


D1 0 ... 0
0 D2 ... 0
...

...
. . .

...
0 0 ... DM

 ,

then by using (8), Di(i = 1, 2, ...,M) is defined as follow:

(Dn)i+1,j+1 =

∫ i
M

i−1
M

Bi,n(Mx− i+1)Bj,n(Mx− j +1)dx

(15)

=
1

M

∫ 1

0

Bi,n(x)Bj,n(x)dx

=

(
n
i

)(
n
j

)
M(2n+ 1)

(
2n
i+j

) .

We can also approximate the function k(x, t) ∈ L2[0, 1] as
follow:

k(t, s) ≈ OBHT (x)KOBH(t), (16)

where K is an M(n+1) matrix that we can obtain as follows:

K = D−1 < OBH(x) < k(x, t), OBH(t) >> D−1. (17)

IV. SOLVING SECOND KIND FREDHOLM INTEGRAL
EQUATION VIA OBH FUNCTIONS

Consider the following integral equation:

u(x) = f(x) +

∫ 1

0

k(x, t)u(t)dt. (18)

where f(x) ∈ L2[0, 1), k(x, t) ∈ L2[0, 1) × [0, 1). u(x)
is an unknown function which can be expanded into OBH
functions with nM terms.

u(x) = UTOBH(x), (19)

where U is an unknown nM–vector and OBH(x) is given
by Eq.(9). Likewise, k(x, t) and u(x) are also expanded into
the OBH functions

k(x, t) = OBHT (x)KOBH(t), (20)

f(x) = FTOBH(x), (21)

where K is a known nM × nM–matrix and F is a known
nM–vector. Substituting Eq.(19)–(21) into Eq.(18) produces

OBHT (x)U = OBHT (x)F + (22)

+

∫ 1

0

OBHT (x)KOBH(t)OBHT (t)Uds.

Applying Eq.(14), Eq(22) becomes

OBHT (x)U = OBHT (x)F +OBHT (x)KDU. (23)

Therefore
U = F +KDU, (24)

where the dimensional subscripts have been dropped to
simplify the notation. Rewriting Eq.(24), we have

U = (I −KD)−1F, (25)

where I is nM × nM–identity matrix. The unknown vector
U can be obtained by solving Eq.(25). Thus the solution u(x)
can be calculated in the OBH function expansion by using
U and Eq.(19).
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TABLE I
MAXIMUM ERROR IN EXAMPLE 1 WITH h = .01

h ∥E∥∞for n = 3;M = 2 ∥E∥∞for n = 3;M = 4

0.1 4.4× 10−6 4.7× 10−6

0.2 8.4× 10−7 5.1× 10−6

0.3 2.1× 10−6 7.5× 10−6

0.4 9.7× 10−8 5.3× 10−6

0.5 8.8× 10−6 3.4× 10−6

0.6 9.0× 10−6 9.0× 10−6

0.7 7.1× 10−6 1.4× 10−5

0.8 4.5× 10−6 1.2× 10−5

0.9 9.1× 10−6 9.8× 10−7

TABLE II
MAXIMUM ERROR IN EXAMPLE 2 WITH h = 0.01

h ∥E∥∞for n = 4;M = 2 ∥E∥∞for n = 5;M = 2

0.1 5.5× 10−6 9.0× 10−6

0.2 2.1× 10−4 2.1× 10−5

0.3 3.7× 10−5 9.7× 10−6

0.4 2.2× 10−4 6.6× 10−8

0.5 3.1× 10−4 7.5× 10−6

0.6 4.1× 10−4 1.2× 10−5

0.7 5.1× 10−4 1.7× 10−5

0.8 5.2× 10−4 2.1× 10−5

0.9 5.6× 10−4 2.4× 10−5

V. NUMERICAL EXAMPLE

We applied the presented schemes to the following fred-
holm integral equation of second kind. For this purpose, we
consider three examples.
Example1:
Consider the following linear fredholm integral equation

u(x) = sin(x)− x+ (x+ 1)cos(1)− sin(1)+

+

∫ 1

0

(x+ t)u(t)dt,

with the exact solution u(x) = sin(x) for 0 ≤ x ≤ 1.
The numerical results for grid points xi = ih with h=0.01,
n = 3 M = 4 and n = 3 M = 2 are shown in table 1.
∥E∥∞ shows the maximum error at each grid point. In this
table we indicate that by low degree of hybrid Block-Pulse
function, we can get good approximation.

Example2:
Consider the following linear fredholm integral equation

u(x) = e2x+
1
3 +

∫ 1

0

(−1

3
e2x−

5
3 t)u(t)dt,

with the exact solution u(x) = e2x for 0 ≤ x ≤ 1. The
numerical results for grid points xi = ih with h=0.01, n = 4
M = 2 and n = 5 M = 2 are shown in table 2. ∥E∥∞
shows the maximum error at each grid point. This table
shows that by increasing the value of n we get better results.

Example3:
Consider the following linear fredholm integral equation

u(x) = sin(x) +

∫ 1

0

(1− xcos(xt))u(t)dt,

TABLE III
MAXIMUM ERROR IN EXAMPLE 3 WITH h = 0.01

h ∥E∥∞for n = 2;M = 2 ∥E∥∞for n = 3;M = 2

0.1 1.0× 10−10 4.4× 10−7

0.2 1.0× 10−10 3.4× 10−7

0.3 1.0× 10−10 1.0× 10−6

0.4 1.0× 10−10 4.0× 10−7

0.5 3.7× 10−7 5.2× 10−6

0.6 2.4× 10−8 7.5× 10−7

0.7 2.0× 10−7 1.9× 10−6

0.8 1.9× 10−7 1.1× 10−6

0.9 3.1× 10−8 1.0× 10−6

⋄⋄⋄ Numerical solution - Exact solution

Fig. 1. Results for example 1 with n = 3,M = 4.

*** Numerical solution - Exact solution

Fig. 2. Results for example 2 with n = 5,M = 2.

with the exact solution u(x) = 1 for 0 ≤ x ≤ 1. The
numerical results for grid points xi = ih with h=0.01, n = 2
M = 2 and n = 3 M = 2 are shown in table 3. ∥E∥∞
shows the maximum error at each grid point. As it is clear
form this table we get good results by low degree Bernstein
polynomials.
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ooo Numerical solution - Exact solution

Fig. 3. Results for example 3 with n = 2,M = 2.

VI. CONCLUSION

In this paper by use of the combination of orthonormal
Bernstein and Block-Pulse functions we solved linear Fred-
holm integral equations. The method is based upon reducing
the system into a set of algebraic equations. The generation
of this system needs just sampling of functions multiplication
and addition of matrices and needs no integration. The
main advantage of this method is its efficiency and simple
applicability . The matrix D is sparse; hence is much faster
than other functions and reduces the CPU time and the
computer memory, at the same time keeping the accuracy
of the solution. The numerical examples support this claim.
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