

Abstract—One important feature of redundancy analysis

(RA) algorithms is repair rate. To estimate repair rate of
various RA algorithms, software simulations of the algorithms
on a number of memory fault maps representing real faulty
memories are needed. In order to obtain realistic estimations,
the fault distribution in maps has to resemble distributions
observed in real chips as much as possible. In this paper, it is
shown how fault distributions affect repair rate of some RA
algorithms. Also, a universal fault map generator based on
random and cluster-oriented approaches suitable for repair
rate estimations of RA algorithms is proposed.

Index Terms— embedded memory, fault distribution,
memory fault map, redundancy analysis algorithm, repair rate

I. INTRODUCTION

CCORDING to Semico Research Corp. forecast [1],
area occupied by embedded memories on systems-on-a-

chip (SoC) designs is slowly growing and will approach
70 % in the next few years. SoCs are moving from logic
dominant to memory dominant. Overall SoC yield is
therefore dominated by memory yield. As we move deeper
into nanometer technology, embedded memory density and
capacity grows which results in higher susceptibility of
memories to various defects causing memory cells to
perform faulty. This in turn causes memory and SoC yield to
decrease. Maintaining acceptable yield has become an
important task.

Built-in self-repair (BISR) techniques based on using
redundancy are widely used to improve yield. Redundant
rows and columns are added to the memory. Faulty memory
cells are replaced by redundant ones. This replacement is
done according to repair solution, which is basically a
mapping between faulty cells and redundancies. One
important part of BISR actually responsible for finding a
repair solution for memories is redundancy analysis (RA)
algorithm. Over past ten years, many BISR approaches and
RA algorithms for various memory and redundancy
architectures were proposed [2]-[6], [10]-[16]. One
important feature of RA algorithms is repair rate. Repair rate
is defined according to [4] as is stated by (1).

Repair rate depends on the number of redundancies
available on chip, which is a fixed value. More redundancies

Manuscript received March 15, 2013; revised April 5, 2013. This work

was supported in part by the Slovak Science Grant Agency (VEGA
1/1008/12).

Š. Krištofík is with the Institute of Computer Systems and Networks,
Faculty of Informatics and Information Technologies, Slovak University of
Technology, Bratislava 842 16, Slovakia (e-mail: kristofik@fiit.stuba.sk,
zastaph@gmail.com).

means higher repair rates [2]-[4]. It also depends on
effectiveness of RA algorithm. With fixed number of
redundancies, the RA algorithm which has higher repair rate
is more efficient (i.e. it can repair more memories with
available redundancies). Other important features of RA
algorithms are repair time and area overhead on chip needed
to implement the algorithm.

 (1)

To estimate the repair rate of RA algorithms, typical
approach is to develop a software simulation tool capable of
generating fault memory maps (also termed memory maps or
fault maps) and executing the RA algorithm. Memory maps
model a real memory as a two dimensional array of cells
arranged into rows and columns. Examples of memory maps
can be found in section III.

In general, faults can be distributed across the memory
map in various ways. To obtain realistic estimates of repair
rates of RA algorithms, simulations need to be performed on
a certain (usually high) number of memory maps with fault
distributions resembling distributions seen in real faulty
memories as much as possible. Wafer maps with locations of
defects were previously difficult to obtain, but new
techniques were introduced as early as late 80’s [7]. These
techniques showed that defects typically are clustered, not
randomly distributed on wafer level. Many other studies
(e.g. [8], [9]) confirm this observation. As there are many
memory chips per wafer, this clustered distribution affects
memory chips in such a way that some chips are fault free
but others, located around the clusters have more faults (see
Fig. 1). Fig. 1 depicts two examples of wafer maps with
defect locations. The first example (a) assumes a very dense
defect distribution whereas in the second example (b) the
defect clusters occur mainly around the edges.

To simulate such distributions as in Fig. 1, more
sophisticated defect distributions than random have to be
considered in simulation tools and yield models (e.g. [8],
[9]). On memory level, however, software tools able to
simulate fault clustering that corresponds to wafer level
defect distributions such as in Fig. 1 are needed to estimate
repair rates of RA algorithms.

In this paper, we propose a universal fault memory map
generator suitable for efficient estimation of repair rates of
RA algorithms. It is based on random and cluster-oriented
approaches.

Efficient Repair Rate Estimation of Redundancy
Algorithms for Embedded Memories

Štefan Krištofík, Member, IAENG

A

Proceedings of the World Congress on Engineering 2013 Vol II,
WCE 2013, July 3 - 5, 2013, London, U.K.

ISBN: 978-988-19252-8-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2013

TABLE I
ESTIMATION OF REPAIR RATE OF RA ALGORITHMS

 year
tool

name
avg.
faults

fault
distribution(s)

fault
maps

fault map
size(s)

redundancy
single

faults %

[10] 2003 BRAVES -
Poisson +
Gamma

1552 1024x64
R 6-10
C 2-6

-

[2] 2006 - 17
random, adjustable
% of 3 fault types

- 1024x64 - adjustable

[11] 2006 - 83 to 189
random +
Poisson

500 1024x1024
R 10-32
C 10-32

-

[12] 2006
eval. & verify

platform
max. 10 Poisson 500 4096x128 -

0 %
50 %

[6] 2007 - 1-15 random 3000 1024x1024
R 2-5
C 2-5

20-65 %

[13] 2007 - 5-400
fixed % of each

of 15 types of faults
18

32x32 to
8192x8192

R 1-30
C 1-30

-

[4] 2009 RepairSim 1-18 random 900000 1024x1024
R 5
C 5

69,32 %

[3] 2009 - 15 negative binomial - 1024x1024
R 4-8
C 4-8

70 %

[14] 2011 -
7,8
3,3

Poisson
Poisson

-
453

256x32
8192x64

R 3-6
C 3-9

20-100 %
70 %

[15] 2011 - max. 10 random 500
8192x64
32768x64

R 0-4
C 0-4

40-100 %

[16] 2011 - -
fixed % of each

of 4 types of faults
1000

1024x128
2048x64

R 1-4
C 1

0-80 %

[5] 2012
eval. & verify

platform
max.10 Poisson 3 512x1024

R 1-5
C 1-3

-

Fig. 1. Wafer level defect distribution examples. (a) [8], (b) [9].

II. RELATED WORK

The repair rates of RA algorithms are estimated in various
ways. Usually, the authors implement their own software
simulation tool capable of running the algorithm or in some
cases more types of algorithms. Table I summarizes the
various approaches for repair rate estimations found in
literature.

Faults injected into memory maps are usually of various
types. Single faults are most common. Usually 50 % or more
of all faults in generated memory maps are single faults.
Single fault is the only fault on its row and column. It is
sharing neither row nor column address with any other fault.
Other commonly injected faults are row and column faults
(more than one fault on a row or column), clustered faults
with cluster radius of 3x3 cells up to larger clusters of
various shapes and other special fault types (e.g. column
twin-bit fault, two adjacent faulty cells in a column). The
fault distributions in fault maps used for repair rate
estimations are either generated randomly or based on some
theoretical distributions. The average numbers of faults in

maps are varied. In some cases, they are set low, but there
are cases where they are set as high as 100 per MB or even
more. Fault maps are usually of various dimensions (sizes)
up to 64MB (8192x8192). Often the maps with rectangular
sizes (for example 1024x64) are considered rather than
square ones. The numbers of redundancies (R=rows
C=columns in Table I) are either set to a fixed value or
experiments are conducted with varying numbers (up to 32
rows and columns per MB).

III. PROPOSED FAULT MAP GENERATOR

The proposed fault map generator RNDCLUS is based on
the random cluster generator approach proposed in [7],
which is able to generate symmetric clusters of faults, using
symmetric Gaussian distribution, on the wafer level. The
clusters are centered in the centers of the fault maps. In next
step, it randomly stretches, rotates and relocates the clusters.
In last step, it adds additional clusters to the map that
simulate scratches that occur during manufacturing process.
We adopt this approach and use it on the memory fault map
level. We however, omit the scratching simulation, but add
an option to generate fault maps randomly when desired by
the user. We now describe the fault map generation process
of RNDCLUS.

A. Random option and centered clusters

Probability of faults occurring in memory cells is defined
as follows [7]:

 (2)
where C is a constant and σ is the standard deviation. The
values of P(x,y) range from 0 to 1. The address values of x
and y both range from -1 to 1. They are related to actual
memory addresses in a way that is explained in Fig. 2, which
shows an example for a small 8x8 memory map. Probability
matrix of values of P(x,y) in Fig. 2 was obtained from (2)
using values C=1 and σ=0,6.

Proceedings of the World Congress on Engineering 2013 Vol II,
WCE 2013, July 3 - 5, 2013, London, U.K.

ISBN: 978-988-19252-8-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2013

Fig. 3. Examples of fault maps: (a) random, (b) centered cluster, (c), (d) randomized clusters.

To generate actual fault maps, for each map location an
auxiliary value of N(x,y) ranging from 0 to 1 is randomly
generated. Then if N(x,y) < P(x,y) a fault is injected into the
location given by corresponding values of x and y. The
result is a symmetric cluster of faults centered in the center
of the fault map. The value of σ sets the radius of the cluster
and the value of C sets the fault density within the cluster.
An example of a fault map with a symmetric cluster is shown
in Fig. 3 (b). The fault clustering can be seen around the
center as well as some other faults near the edges. An
example of a fault map created with random option is shown
in Fig. 3 (a) for comparison. The addresses of faults are
generated randomly and range from 0 to dimension-1.
Random option is used exclusively with centered cluster
function (i.e. fault map either has a centered cluster or it is
generated randomly – see section III.F).

Fig. 2. Values of P(x,y) for 8x8 memory.

B. Relocated clusters

Relocating the clusters of faults is done by generating
random values xm and ym. Their values range from 0 to
dimension-1. Then all faults are relocated to a new location
given by summing their original location (row address y,
column address x) with the values xm and ym:

 (3)

 (4)
In case the new location is out of the bounds of the fault
map, the approach [7] used the cropping technique and
discarded the out-of-bounds faults. We however modify this
behavior and treat the fault map as a surface of a sphere and
the fault re-emerges on the other side of the fault map. This
is done to avoid possible high fault count losses in memory

maps.

C. Shaped clusters

Shaping of clusters is done by generating random values
xs and ys. Their values range from 0,1 to 1 meaning that the
cluster is stretched by a minimum of 0 % (when xs or ys=1)
and up to 90 % (when xs or ys=0,1). Next, all faults have
their original location multiplied by the values of xs and ys:

 (5)

 (6)
By executing previous procedure, the clusters would be not
only stretched, but also slightly moved towards the upper left
corner of the map since their actual row and column
locations are decreased. Therefore, after the procedure, we
compensate this by following modifications obtained with
trial and error experiments:

 (7)

 (8)

D. Rotated clusters

Rotation of clusters is done by generating a random value
of angle α ranging from 0 to 359. The clusters are rotated by
this angle counterclockwise around the center of the map. If
a fault is out of the bounds of the fault map, we again do not
use the cropping technique, as stated in section III.B, and the
fault re-emerges on the other side of the map. Since we use
the non-standard left handed Cartesian coordinate system to
assign location (addresses) to faults where the row address is
increased downwards instead of upwards, it is first necessary
to temporarily convert the addresses to standard right
handed system. Next, the center of the coordinate system is
“moved” to the center of the fault map by temporarily
modifying the fault addresses. Without this step, the rotation
would be done around the lower left corner of the fault map
and not around the center. The actual rotation follows and all
faults have their locations in the map recalculated according
to these standard rotation equations:

 (9)

 (10)
In the last two steps, two temporal changes made previously
are reverted and addresses are reverted back to left handed
coordinate system.

Proceedings of the World Congress on Engineering 2013 Vol II,
WCE 2013, July 3 - 5, 2013, London, U.K.

ISBN: 978-988-19252-8-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2013

E. Randomized clusters with added random faults

By combining the procedures from sections III.A – III.D,
the resulting fault distribution can be randomized even more.
Lastly, to add some more final randomization to resulting
fault distributions, a small number of faults is added at
random locations. This number is generated randomly and
its value range from 0 to 5 meaning that a maximum of 5
randomly located faults are added to the distributions
obtained by procedures from sections III.A – III.D. Two
examples of randomized clusters with added random faults
are shown in Fig. 3 (c) and (d). For example, the fault map
in Fig. 3 (c) was obtained from the fault map in Fig. 3 (b) by
using values α=124, xs=0,28, ys=0,52, xm=8, ym=1 and
number of randomly added faults was 3. The circled faults
are the ones added randomly.

The results from Fig. 3 (c) and (d) are very similar when
compared to results in [17] and [18]. Both studies show
random fault map examples similar to that in Fig. 3 (a) and
clustered fault map examples similar to those in Fig. 3 (c)
and (d).

F. Parameters

Based on the observations in section II, we have set the
basic parameters of RNDCLUS according to Table II. It is
able to generate a large number of square fault maps of sizes
up to 1024x1024. Gauss distribution was chosen because it
generates sufficient ‘starting’ clustering of faults and then by
modifying it (sections III.A – III.D) we are able to achieve
similar results to those reported in [17] and [18]. Therefore
there is no need to use more complex theoretical
distributions. The average number of faults for small
memories (16x16) was set to 10. For large memories
(1024x1024), it was first set to 15 as in [3]. Then we tried to
set the parameters C and σ of generator so that the average
number of faults in generated maps is 15, but were able to
approximate it only to 17. For 512x512 memories, the
approximation was also done and the average number of
faults was 16. For other fault map sizes, the average number
of faults obtained was 15. The approximations were done on
a trial and error basis while setting the values of C and σ and
running the simulations until desired average numbers were
obtained. The resulting parameters C and σ for each fault
map dimension are listed in Table III. All the example fault
maps on Fig. 3 were created using the parameters from
Table III for dimension 16. The procedures from sections
III.A – III.D are used randomly with a certain probability
given by values in Table IV, for each generated memory
map. Most of these values are user adjustable.

TABLE II

BASIC PARAMETERS

fault map
size

avg.
faults

fault
maps

fault
distribution

16x16 10

1-100000 Gauss
+ random

32x32 –
256x256

15

512x512 16
1024x1024 17 1-10000

TABLE III
PARAMETERS C AND σ

dim. 16 32 64 128 256 512 1024

C 1 0,4 0,05 0,05 0,05 0,05 0,05
σ 0,15 0,1 0,018 0,009 0,0045 0,0023 0,0012

TABLE IV

ADVANCED PARAMETERS

parameter range description

cluster_chance 0-1
A prob. there is a cluster in fault map. If
there is not, random option is invoked.

cluster_reloc 0-1
A probability that if there is a cluster in
fault map, it will be randomly relocated.

cluster_shp 0-1
A probability that if there is a cluster in
fault map, it will be randomly shaped.

cluster_rot 0-1
A probability that if there is a cluster in
fault map, it will be randomly rotated.

rndcnt_max 0-5
Sets the max. of randomly added faults
in case there is a cluster in fault map.

rndcnt_max_nc -

Sets the max. of randomly added faults
in case there is not a cluster in fault

map. These values are fixed to
2*(avg. faults) column from Table II.

G. Function

The functional flow of RNDCLUS is shown in Fig. 4.
Output is stored into text file containing generated fault
maps in the form of a list of fault location addresses.

IV. EXPERIMENTAL RESULTS

We now show how various fault distribution types can
affect estimation of repair rate of RA algorithms. The
modified essential spare pivoting (MESP) algorithm [3] was
selected for implementation because it is targeted specially
on cluster faults. It targets the block-based redundancy
architecture with divided word and bit line techniques.
Memory is divided into several quadrants of same size and
redundancies are divided into several blocks of same size.

We estimate the repair rate of MESP on small (dim. 16),
medium (dim. 128) and large (dim. 1024) memories.
Maximum number of generated maps from Table II was
selected. The number of quadrants of MESP is assumed to
be 16. RNDCLUS generator is used in 6 various
configurations shown in Table V.

We have selected these configurations to answer the
following questions:

1. Is repair rate of MESP higher when dealing with
clustered faults than with random faults, as is expected
[3]? We observe the differences in repair rate between
configuration RND and others.

2. How is repair rate of MESP affected by the percentage
of clustered faults? We observe repair rate while
decreasing parameter cluster_chance from 0,75 to 0,5
and then to 0,33.

3. How is repair rate of MESP affected by the number of
randomly added faults? We observe repair rate while

Proceedings of the World Congress on Engineering 2013 Vol II,
WCE 2013, July 3 - 5, 2013, London, U.K.

ISBN: 978-988-19252-8-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2013

Fig. 4. Flow diagram of RNDCLUS.

TABLE V
CONFIGURATIONS OF RNDCLUS

configuration type random cluster-oriented

configuration name RND C 0,75 C 0,5 C 0,33 add3 noadd C 0,75 C 0,5
cluster_chance 0 0,75 0,50 0,33 0,75 0,75 0,75 0,50
cluster_reloc - 0,75 0,75 0,75 0,75 0,75 0,75 0,75
cluster_shp - 0,50 0,50 0,50 0,50 0,50 0,50 0,50
cluster_rot - 0,75 0,75 0,75 0,75 0,75 0,75 0,75
rndcnt_max - 5 5 5 3 0 5 5

decreasing parameter rndcnt_max from 5 to 3 and then
to 0.

4. Will repair rate of MESP estimated by RNDCLUS be
similar to repair rate reported in [3]? If not, what are
the possible causes and what can be done to obtain
more similar results?

Table VI shows the repair rate of MESP using all 6
RNDCLUS configurations from Table V. The number of
redundancies ranged from 3 row and column blocks (3/3) to
12 row and column blocks (12/12). In the last column of the
table, the resulting repair rate obtained by RNDCLUS with
the results reported in [3] is compared where available.
However, results for RNDCLUS were obtained for average
number of faults equal to 17 whereas results in [3] are for
average number of faults equal to 15. Also, it is unknown
how the numbers of faults were generated for each memory
map (Were they generated equally or using some
distribution?) and what was the total number of generated
fault maps. By analyzing the results in Table VI, the
aforementioned questions can be answered:

1. Yes. In small memories this becomes evident when the
number of redundancies reaches 4 and for medium and
large memories when it reaches 7.

2. Repair rate slightly increases when the numbers of
redundancies are small and it begins to decrease with
increasing the number of redundancies. This is an
expected result since the larger the map, the thinner are
the generated clusters and the percentage of single
faults increases which in turn has negative impact on
repair rate.

3. Repair rate increases greatly with all sizes of memories
with decreasing the number of added random faults.
This suggests that the initial value of rndcnt_max equal
to 5 was set too high.

4. Yes, in most cases. Repair rates are similar to those
reported in [3] when cluster-oriented distributions are
considered. They are slightly lower with most of the
RNDCLUS configurations. This may be caused by
higher average fault count than in [3]. In case random
option is used, the repair rate is significantly lower for
any number of redundant blocks.

V. CONCLUSIONS AND FUTURE WORK

The goal of this work is to offer the most exact
estimations of repair rates of RA algorithms which can only
be done if simulations are performed on memory fault maps
with fault distributions that resemble fault distributions in
real memory arrays as closely as possible. But to obtain such
information from industry is not an easy task and one can
only rely on other published approaches.

Various known approaches to repair rate estimation
problem were reviewed and based on that, a universal, user-
adjustable fault map generator RNDCLUS was proposed.
According to experimental results, it is suitable for
estimation of repair rate of RA algorithms. By setting the
values of various parameters of RNDCLUS, one can modify
the output and is able to select whether the distributions are
more random or more cluster-oriented.

Experiments have shown some interesting results as well
as proving some expected results. They also proved that the
repair rate of RA algorithms is very heavily dependent on
fault distributions in fault memory maps. It is worth further
studying, with different algorithms and sets of parameters to
obtain more results. Future research work will be invested to
further study this on other algorithms as well as to further
improving the proposed generator with features such as
adding new distributions or new cluster-generating
approaches i.e. more than one cluster per map, random
cluster sizing, random cluster positioning in small quadrants
of memory maps and so on.

Proceedings of the World Congress on Engineering 2013 Vol II,
WCE 2013, July 3 - 5, 2013, London, U.K.

ISBN: 978-988-19252-8-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2013

TABLE VI

Repair rate % of MESP with different configurations of RNDCLUS

dim.

redundancy
RND C 0,75 C 0,5 C 0,33 add3 noadd [3]

16

3/3 32,91 26,60 28,88 30,28 34,59 52,53 -
4/4 45,22 52,90 50,43 49,02 64,28 77,33 -
5/5 58,10 76,66 70,49 66,51 83,44 87,79 -
6/6 71,77 89,71 83,74 79,98 91,70 92,43 -
7/7 85,75 95,81 92,52 90,40 96,02 96,10 -
8/8 96,33 98,82 98,04 97,53 98,90 98,86 -

128

3/3 20,27 5,46 10,41 13,75 5,71 6,96 -
4/4 26,93 9,70 15,44 19,34 11,03 16,47 -
5/5 33,87 18,84 23,97 27,25 22,88 34,34 -
6/6 40,88 34,03 36,31 37,88 41,39 55,44 -
7/7 47,81 52,72 51,42 49,94 61,22 72,81 -
8/8 54,81 69,69 64,75 61,26 76,29 83,26 -
9/9 61,91 81,89 75,33 70,59 85,56 88,60 -

10/10 69,07 88,91 82,40 77,81 90,42 91,54 -

1024

3/3 18,28 4,57 9,25 11,38 4,57 5,80 -
4/4 24,47 7,39 13,22 16,22 8,24 12,38 -
5/5 30,36 14,36 20,09 22,46 18,02 28,37 -
6/6 36,35 27,68 30,73 31,36 34,77 49,32 -
7/7 42,10 45,77 44,29 42,69 55,35 67,45 -
8/8 47,96 63,10 58,14 54,13 71,60 78,85 65,50
9/9 53,91 76,29 68,79 63,42 82,10 85,06 83,00

10/10 59,62 84,45 76,09 70,36 87,54 88,25 93,00
11/11 65,49 88,97 80,69 75,88 90,68 90,09 96,00
12/12 71,36 91,55 84,41 80,18 92,58 91,75 98,00

REFERENCES

[1] Semico Research Corp., “Semico: System(s)-on-a-Chip A Braver
New World”, 2007. [Online]. Available:
http://www.semico.com/press/press.asp?id=200

[2] S.-K. Lu, Y.-C. Tsai, C.-H. Hsu, K.-H. Wang and C.-W. Wu,
“Efficient Built-In Redundancy Analysis for Embedded Memories
With 2-D Redundancy”, IEEE Trans. VLSI Systems, vol. 14, no. 1,
pp. 34-42, 2006.

[3] S.-K. Lu, C.-L. Yang, Y.-C. Hsiao and C.-W. Wu, “Efficient BISR
Techniques for Embedded Memories Considering Cluster Faults”,
IEEE Trans. VLSI Systems, vol. 18, no. 2, pp. 184-193, 2009.

[4] W. Jeong, I. Kang, K. Jin and S. Kang, “A Fast Built-in Redundancy
Analysis for Memories With Optimal Repair Rate Using a Line-
Based Search Tree”, IEEE Trans. VLSI Systems, vol. 17, no. 12, pp.
1665-1678, 2009.

[5] T.-J. Chen, J.-F. Li and T.-W. Tseng, “Cost-Efficient Built-In
Redundancy Analysis With Optimal Repair Rate for RAMs”, IEEE
Trans. Computer-Aided Design of Integrated Circuits and Systems,
vol. 31, no. 6, pp. 930-940, 2012.

[6] P. Öhler, S. Hellebrand and H.-J. Wunderlich, "An Integrated Built-in
Test and Repair Approach for Memories with 2D Redundancy", in
Proc. 12th IEEE European Test Symposium, 2007, pp. 91-96.

[7] C. H. Stapper, “Simulation of Spatial Fault Distributions for
Integrated Circuit Yield Estimations”, IEEE Trans. Computer-Aided
Design, vol. 8, no. 12, pp. 1314-1318, 1989.

[8] R. Allison, “SAS/Graph Wafer Maps”, in Robert Allison’s
SAS/Graph Examples, 2004. [Online]. Available:
http://robslink.com/SAS/democd10/waferx.htm

[9] W. Kuo and T. Kim, “An overview of manufacturing yield and
reliability modeling for semiconductor products”, in Proc. IEEE,
1999, vol. 87, no. 8, pp. 1329-1344.

[10] C.-T. Huang, C.-F. Wu, J.-F. Li and C.-W. Wu, “Built-In
Redundancy Analysis for Memory Yield Improvement”, IEEE Trans.
Reliability, vol. 52, no. 4, pp. 386-399, 2003.

[11] H.-Y. Lin, F.-M. Yeh and S.-Y. Kuo, "An Efficient Algorithm for
Spare Allocation Problems", IEEE Trans. Reliability, vol. 55, no. 2,
pp. 369-378, 2006.

[12] T.-W. Tseng, J.-F. Li et al., “A Reconfigurable Built-In Self-Repair
Scheme for Multiple Repairable RAMs in SOCs”, in Proc. IEEE
International Test Conference, 2006, pp. 1-9.

[13] S. Bahl, “A Sharable Built-in Self-repair for Semiconductor
Memories with 2-D Redundancy Scheme”, in Proc. 22nd IEEE Int.
Symposium on Defect and Fault Tolerance in VLSI Systems, 2007,
pp. 331-339.

[14] C.-L. Su, R.-F. Huang et al., ”A Built-in Self-Diagnosis and Repair
Design With Fail Pattern Identification for Memories”, IEEE Trans.
VLSI Systems, vol. 19, no. 12, pp. 2184-2194, 2011.

[15] T.-W. Tseng and J.-F. Li, “A Low-Cost Built-In Redundancy-
Analysis Scheme for Word-Oriented RAMs With 2-D Redundancy”,
IEEE Trans. VLSI Systems, vol. 19, no. 11, pp. 1983-1995, 2011.

[16] Y.-J. Chang, Y.-J. Huang and J.-F. Li, “A Built-In Redundancy-
Analysis Scheme for RAMs with 3D Redundancy”, in Proc.
International Symposium on VLSI Design, Automation and Test,
2011, pp. 1-4.

[17] A. Pelc and D. M. Blough, “A clustered failure model for the memory
array reconfiguration problem”, IEEE Trans. Computers, vol. 42, no.
5, pp. 518-528, 1993.

[18] M. Choi, N. Park, F. J. Meyer, F. Lombardi and V. Piuri, “Reliability
measurement of fault-tolerant onboard memory system under fault
clustering”, in Proc. 19th Instrumentation and Measurement
Technology Conference, 2002, vol.2, pp. 1161-1166.

Proceedings of the World Congress on Engineering 2013 Vol II,
WCE 2013, July 3 - 5, 2013, London, U.K.

ISBN: 978-988-19252-8-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2013

