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Abstract—We propose a mapping algorithm using

multi-thresholds that are determined by incorpora-

tion with pseudo-random bits. Hence, the algorithm

can generate a binary string to appear to be random

in the context of cryptography. Then, the binary

string is used to protect a speech biometric template.

We evaluate our scheme with two speech datasets.

We compare our template with the other protected

templates: time-domain and one-way function tem-

plates. The experimental results show that the error

rate of our template is noticeably lower than the oth-

ers. The randomness of the cryptographic key gener-

ated from our scheme is approximately 4 times better

when compared to the global-threshold scheme.
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1 Introduction

To date, it is well known that biometric authentication
systems are vulnerable to attack . In particular, the secu-
rity of biometric templates is a topic of rapidly growing
importance in the area of user authentication.

A typical biometric authentication system consists of two
phases: enrollment and verification. During the enroll-
ment phase, a user provides the system with biometric
data, from which features are extracted and a template is
created and stored. During the verification phase, users
who claim to be authentic users would scan their bio-
metric data again, and the same feature extraction al-
gorithm is applied. The results are then compared with
the stored template. If they are sufficiently similar, the
matching algorithm accepts the user or rejects otherwise.
The problem is that storing the biometric features di-
rectly as templates would not be secure because the refer-
ence or matching template can be inverted to the original
signal. To address these problems, biometrics are used to
combine or generate a cryptographic key to apply to a
user authentication system.

The main problem of using speech biometric is duration.
The duration of the same biometric provided by the same
user at different times always varies with non-linear ex-
pansion and contraction. The solution is to use the Dy-
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namic Time Warping (DTW) technique to set up a non-
linear mapping of one signal to another by minimizing
the distance between two signals [15]. To utilize DTW,
we need a template as a keying signal to set up a warp-
ing function for incoming inputs. This process needs the
template to define the distance, but the template may
leak information to an attacker. For this reason, this in-
formation must be stored in a secure fashion, on a token
such as a smart card with tamper resistant or by making
a strong template that cannot be transformed to the orig-
inal signal. Our design is focused on the strong template.

Basically, we can store time-domain features such as En-
ergy and Zero Crossing Rate [6]. These features can-
not be inverted to the original signal or transformed to
frequency-domain features that are used to derive the
cryptographic key. However, the robustness is decreased,
because the speech signal is usually distorted by noise.
For robustness, we have to use frequency-domain features
as a template, but those features can be inverted to the
original signal. In this paper, we propose the frequency-
domain features as a stored template that cannot be
inverted to the original template for a dynamic time
warping (DTW) based user authentication system. The
hardening algorithm, see Section 3.3, is proposed to per-
turb the original template by removing some frequency-
domain features from the template. Finally, the rest of
features will be transformed to a time-domain template
that refers to as a hardened template. This template will
be used as a keying signal in DTW process. The Discrete
Fourier Transform (DFT) and the inverse DFT, defined
in Section 2, will be used to create a stored or hardened
template.

The other problem is the correlation among features. In
[6], the author reported that ”an iris code usually has a
run length of 8 consecutive ’1’s or ’0’s.” In other words,
the binary seem to repeat the previous result. For speech,
we cannot specify the exact length of repetition. It de-
pends on the number of phonemes in a pass-phrase and
the idiosyncrasy of each user when he/she utters the
pass-phrase. We address this problem by proposing a
mapping algorithm using multi-thresholds that are de-
termined from pseudo-random bits. Hence, the algorithm
can generate a binary string that an observer cannot pre-
dict.

In this work, we focus on how to reliably, securely, and
randomly (in the context of cryptography) generate a bi-
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nary string from speech. The DTW will make our scheme
more reliable while the hardened template maintains se-
curity. Finally, a multi-thresholds scheme will help our
scheme generate a binary string unpredictably to max-
imize the entropy of the template. The following sec-
tions describe our scheme to generate a cryptographic
key. Feature extraction is the first process to derive cep-
strum and DFT features. This process involves speech
processing detailed in Section 2. In Section 3, we de-
scribe the scheme to generate a cryptographic key from
the extracted features. First, we describe the scheme
to generate multi-thresholds, and then we describe the
mapping algorithm. Lastly, we describe the hardening
scheme. In Section 4, we describe the biometric key re-
trieval process. The experiments and results are provided
in Section 5. Section 6 is conclusion.

2 Speech processing

A speech signal is usually represented by a function of
time sa(t), in which t denotes time. The first step is
the transformation of an analogue signal to digital. This
process is called A/D conversion. The analogue signal is
usually sampled at 8kHz. This means that only a fre-
quency less than 4kHz will be reconstructed according to
sampling theorem [3]. Hence, we use a low-pass digital
filter with a cut-off at 4 kHz to strip the higher frequen-
cies from the signal. If we denote the sampling period as
P, the digital signal will be represented by s(n) = sa(nP),
n = 0, . . ., N-1. The next step is pre-emphasis, which is
the process to raise the Signal to Noise Ratio. The signal
is pre-emphasized by passing the signal to a first order
digital filter H(z) = 1-αz−1, where α ranges between 0.9
to 1 [5]. Framing is the next step. The signal is framed
into the short time analysis interval. Each frame is mul-
tiplied by a window function to reduce abrupt changes at
the start and the end of each frame. These frames have
to be overlapped properly. The length of each frame is
usually around 30 msecs; This length would yield good
results for speech processing with 10 msecs overlap [5].
The last step is feature extraction where the frequency-
domain features are extracted from the signal.

A basic feature of voice is the Discrete Fourier Transform
(DFT). The Discrete Fourier Transform of N points signal
x(n) for k = 0, . . . , N-1 can be defined as:

X(k) =

N−1∑

n=0

x(n) exp
−j2πnk

N
(1)

The inverse transform for n = 0, . . . , N-1 can be defined
as

x(n) =
N−1∑

k=0

X(k) exp
−j2πnk

N
(2)

According to the real function property [13], if x(n) is
real and x(n) and X(k) are transform pairs, then

X(−k) = X(N − k) (3)

This symmetric property, equation (3), can be exploited
to decrease the computation required to transform a real
sequence. To derive DFT, there is no need to compute X
for N/2 <k <N, since these values can be found from the
first half of X.

The most efficient feature to identify a speaker is known
as cepstral coefficients or cepstrum [9]. Cepstrum physi-
cally represents the movement of articulators (the teeth,
alveolar ride, hard palate, and velum) of speakers. Its
use is popular because of low correlation. Hence, it is ap-
propriate to apply it for a cryptographic purpose. Cep-
strum can be defined as the Inverse Fourier Transform of
log-energy of Fourier Transform of a signal s(n) [5]. By
definition c(v) = F−1{log|F{s(n)}|2} where F and F−1

denote Fourier and Inverse Fourier Transform.

3 Biometric key regeneration

Our design can be overviewed as two phases: training and
verifying. The biometric key regeneration is in the train-
ing phase indicated in Fig. 1. Users provide their training
pass-phrases that are repeated l+1 times to the system.
Feature extraction is the first process to derive cepstrum
and DFT features. This process involves digital signal
processing detailed in Section 2. For the sampling rate
of 8 kHz, we use 240 samples per frame that are shifted
every 80 samples. Each frame contains 12 cepstrum and
121 DFT features. The system is initialized by using one
of the training utterances as the keying signal stored as
DFT features of m frames, called DTW template, then
performs DTW to the rest of training utterances. We
use cepstrum features derived from warped signals (ut-
terances) in the mapping process. The cepstrum features
of each utterance will be mapped to a binary string of
length m called a feature descriptor. Lastly, l feature
descriptors are used to define distinguishing features, fea-
tures that the user can reliably generate. The binary
string of distinguishing features derived from the training
utterances is called distinguishing descriptor. The map-
ping and defining distinguishing descriptor procedure are
detailed in Section 3.2.

We initialized the template by using a full set of DFT
features as a DTW template. To the rest of this paper,
we refer a full set of DFT features template to as a full
template. Ideally, if the template is completely useful to
derive the cryptographic key, all bits of distinguishing
features derived from the template will correspond to all
bits of the distinguishing descriptor. Practically, most of
them will correspond if we use a full template. Hence, the
template has to be perturbed which is what we call hard-
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Figure 1: Biometric key regeneration in training phase.

ening the template. As the simplest attack is a random
pass-phrase attack, we set the goal of hardening the tem-
plate by the following statement: “The attacker utilizing
a hardened template should not be better than a random
pass-phrase attack where the attacker randomly select
the other pass-phrases except the correct pass-phrase to
generate the key.”

Specifically, let the number of bit derived from a random
pass-phrase and a DTW template that corresponds to
the distinguishing descriptor be RP and DT; the system
should yield DT as less than or equal to RP where RP is
a fixed threshold. The RP threshold can be determined
by experimentation that provides a full template as the
keying signal and then defines a distinguishing feature.
The number of bits of a random pass-phrase descriptor
(a feature descriptor derived from a random pass-phrase)
corresponding to the distinguishing descriptor on average
is used as the RP threshold.

To guarantee that utilizing a frequency-domain feature
as a hardened template is more robust than utilizing a
time-domain feature template as we claim. The distin-
guishing descriptor D derived from our scheme should
exceed some thresholds. This threshold can also be de-
termined from the experimentation. At least, this thresh-
old should be greater than a time-domain distinguishing
descriptor TD derived by using a time-domain feature
template. However, it cannot exceed a frequency-domain
distinguishing descriptor FD derived by using a full tem-
plate in frequency-domain. Hence, the threshold should
lie between TD and FD. For now, let that the suitable
threshold is T. If these conditions hold, DT ≤ RP and
D > T, the template will not help the attackers as they
just using a random pass-phrase attack is easier (better).
For this reason, if DT is greater than RP, the template
will be hardened as detailed in Section 3.3. In addition,
the biometric will be rejected if D is less than or equal
to T, because the system cannot find a suitable length of

the distinguishing feature from the biometric. After each
step in hardening the template, the hardened DTW tem-
plate, or DTW template in Figure 1 will be the keying
signal of the training pass-phrase and the process will be
re-started until the conditions are met. Finally, the IDFT
of the hardened DTW template is stored as a hardened
template and 2n-1 distinguishing descriptor, where n = 3,
4, . . ., will be selected based on feature variation to form
a binary string S.

Once the hardened template is set, a pseudo-random key
k is generated and then encoded properly denoted by
E(k). In our case, we use BCH code [10]. The encod-
ing code E(k) has to tolerate error within Hamming dis-
tance (H), a maximum number of bit differences between
a distinguishing descriptor and a feature descriptor of
a legitimate user. For the next step, the distinguishing
descriptor S and the encoding code E(k) will be hidden
using an XOR operation and then stored as a lock data
denoted by L. Only the user with a feature descriptor S′

that is sufficiently similar to a distinguishing descriptor
within Hamming distance ( |S−S′|≤ H ) can unlock the
L and correctly decode the key. We refer to the fuzzy
commitment scheme [8] for more detail.

3.1 Multi-thresholds generation

We select a set of thresholds in such a way that the en-
tropy of the biometric template is maximized. According
to [7], the entropy of the biometric template can be under-
stood as a measure of the number of different identities
that are distinguishable by a biometric system. Hence,
the set of thresholds that is used in mapping process
should yield a binary string that appears to be random
in a context of cryptography.

We first generate pseudo-random bits p ∈ {0, 1}m us-
ing algorithm in [1]. Next, a set of thresholds is se-
lected based on the criteria that a query biometric will
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be mapped to a binary string that is close to p. Finally,
the pseudo-random bits will be securely deleted. As the
mapping algorithm simply maps a feature to ‘1’ if the fea-
ture is greater than a threshold and ‘0’ otherwise, hence
we select a threshold to be lower than the mean of that
feature if a corresponding pseudo-random bit is ‘1’ and
greater than the mean otherwise. Specifically, to gener-
ate the multi-thresholds for user j, let µj(i) and σj(i) be
the mean and standard deviation of the linear combina-
tion of the cepstrum features of ith frame over l training
utterances, the algorithm executes as follows:

1. Generate pseudo-random bits p ∈ {0, 1}m using
algorithm in [1].

2. Set the multi-thresholds Tj(i) =
µj(i)+(−1p(i))kσj(i) for some parameter
k > 0

3. Securely delete pseudo-random bits

3.2 Mapping the biometric to a binary
string

The following algorithm is used to map cepstrum features
to a binary string and to define D, the distinguishing
descriptor for user j with l training utterances.

1. Perform DTW to the training utterances.

2. For each frame of kth training utterances, let
fj,k(i) represented the cepstrum feature, where
i = 1, . . ., m is the number of frame. Compute
f ′

j,k(i) from the linear combination of fj,k(i).

3. Generate multi-thresholds Tj(i), i = 1, . . . , m
using the algorithm in Section 3.1.

4. Compute the ith feature, φj,k(i) = f ′

j,k(i)-Tj(i).

5. Binarize φj,k(i) to the feature descriptor,
bj,k(i), by testing whether φj,k(i) is positive or
negative. Map to ‘1’ if it is positive and ‘0’
otherwise.

6. For the training utterances, determine XORing
of , bj,k(i), for k = 1, . . . , l. If the XORing of
bj,k(i) is zero, the i

th feature will be distinguish-
ing feature and set Bj(i) = bj,k(i), otherwise
Bj(i) = ⊥.

7. Determine D, the number of bits that Bj(i) 6=
⊥. If D is less than or equal to T, reject the
biometric.

3.3 Hardening template

As described earlier, the DFT features should be used to
create a template to be a keying signal. The template is
m frames of 121 features each. We need to store a hard-
ened template in order to set the time alignment to the
input signal using DTW technique. This template should

DTW
Feature 

Extractor
Feature Descriptor 

Generator
Decoding

Database

Cryptographic 
Key

Voice
User

Lock DataHardened Template, Threshold

Figure 2: Biometric key retrieval in verification phase.

not be transformed to original template. The straightfor-
ward way is to enumerate over m frames of the original
template then choose a set of optimal features that yield
DT ≤ RP, but the computational time is not possible.
Hence, the optimal search algorithm should be employed.
In [4, 14], there are good examples of a search algorithm
for selecting the feature. We choose a Sequential Back-
ward Search (SBS) that is a top down search procedure
starting from the full set of features and remove one fea-
ture per step until the condition is met. By using SBS,
it is easy to terminate the program under the assump-
tion we described earlier. We remove a DFT feature that
maximizse DT each step until DT less than or equal to
RP. Notice that in the algorithm we state that “remove
the feature that minimizes DT”, because when this fea-
ture is removed, DT derived from the rest of the features
is minimized. The algorithm for hardening a template is
described by the following steps:

1. Initialize by setting one of the training utter-
ances as a DTW template, a set of DFT fea-
tures.

2. Remove one of the features from the DTW tem-
plate that minimizes DT by performing the al-
gorithm in Section 3.2.

3. While DT > RP go to step 2.

4. Terminate, the IDFT of the remaining features
is stored as the hardened template.

5. Define 2n-1 the least variation of the distin-
guishing features, where n = 3, 4, . . ., to form
binary string S.

6. Set the lock data, L = E(k)
⊕

S, where E(k)
is the encoded key and

⊕
denotes XOR oper-

ation.

7. Securely delete a set the training utterances.

8. Store L, Tj , and the hardened template in the
database.

4 Biometric key retrieval

The biometric key retrieval process is in the verification
phase indicated in Fig. 2. The user requests the template
from the database that contains the hardened template,
the multi-thresholds, and the lock data. Then the system
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performs DTW to user’s pass-phrase. The signal that
resulted from DTW is executed using the algorithm in
Section 3.2 to generate the feature descriptor, and the
feature descriptor of the distinguishing feature will be
XORed with the lock data. The next step is the decoding
process. If the error is within Hamming distance, the key
can be correctly reconstructed. To check whether the key
is identical to the key generated in the training phase, we
checked the hash function [12]. In the training phase,
the initialized key, k, of user j was stored as h(k). Once
the key k′, is regenerated from the verification phase, the
system checks to see whether h(k) = h(k′). If h(k) =
h(k′), the key, k′, is correct.

5 Experiments and results

We evaluate the performance using Equal Error Rate
(EER) which is the rate at which a False Acceptance Rate
(FAR) and a False Rejection Rate (FRR) are equal. The
FAR is the percentage of the time that the system accepts
the wrong speaker or one who is not authorized to access
the system. In the same way, the FRR is the percent-
age of the time that the system rejects the authorized
speaker. Two databases are used in experiments: The
MIT mobile device speaker verification corpus (MDB)
[16] and A data set in quiet environment (QDB). MDB is
a public database available by MIT. QDB is our database
collected over a month period.

5.1 Datasets

5.1.1 The MIT mobile device speaker verifica-

tion corpus

This database was collected from 48 speakers (22 females
and 26 males). The utterances were recorded in three
acoustic environments: office, lobby, and intersection via
two types of microphones: external earpiece headset and
built-in mobile device. The database consists of two sets:
a set of enrolled users and a set of dedicated imposters.
For the enrolled set, speech data was collected over two
sessions on separate days (20 minutes for each session).
For the imposter set, users participated in a single 20
minutes session. There are six lists of pass-phrases that
were varied by three environments and two types of mi-
crophones. We select the first list to our experiment be-
cause it provided pass-phrases that were said by the same
speaker multiple times under the same environment (of-
fice). So, we can use this list in the training and the
testing phase.

5.1.2 A data set in quiet environment

This database contains 4,320 recordings collected on a
laptop computer via an external earpiece headset micro-
phone from 6 male speakers during several rounds. The

data collection was taken in the graduate study room at
Lehigh University’s Library that can be referred to as
quiet environment. In the first round, the subjects were
asked to say their 5 pass-phrases. Each pass-phrase was
uttered 10 times. In addition, they were asked to say 270
short sentences to make a speech corpus. In the second
round, they were asked to say their same set of pass-
phrases. Each was uttered five times. Furthermore, they
were asked to say other subjects’ pass-phrases. Each was
uttered five times. Lastly, they were asked to imitate
the other subject pass-phrases by listening to the pass-
phrases that we replayed to them. Each pass-phrase was
uttered five times. In the third round, we selected the
best imitator to mimic the target speaker’s pass-phrases.
Each pass-phrase was uttered five times.

5.2 Experimental setup

For MDB, we use a pass-phrase that is repeated four
times in session I as the training pass-phrase. The same
pass-phrase is used as a verification pass-phrase that is
repeated four times in session II. To investigate the per-
formance of the system, we use the same pass-phrase ut-
tered by other speakers in session I to evaluate the im-
poster trial. The number of imposters that is available
in the database varies from 1 to 6. In addition, we use
six pass-phrases that are different from the verification
pass-phrase to evaluate the random pass-phrase trial.

For QDB, we use five pass-phrases from each speaker in
our experiment, a total of 5*6 = 30 different pass-phrases.
Six recordings from the first round are used to train the
system. We reduce the number of training pass-phrase
to six as using more than six recordings does not signif-
icantly improve performance. Instead, it just increases
the computation time. Five recordings from the second
round are used for verification. Five recordings of the
same pass-phrase uttered by other speakers in the second
round are used to evaluate the imposter trial, in total of
5*5=25 recordings for each pass-phrase. We randomly
select 25 other pass-phrases from other speakers that do
not correspond to the verification pass-phrase to evaluate
the random pass-phrase trial.

We set the length of binary string to 127 and 255 bits for
MDB and QDB. Nevertheless, some pass-phrases cannot
generate the binary string of that length. In this case, the
algorithm should reject these pass-phrases. However, this
experiment aims to compare the performance of various
templates. The system performance is not a critical issue
so that we use a zero padding scheme to adjust the lengths
of binary string of these pass-phrases to those lengths. In
our case, we use BCH code so that we can set the code
word to 127 and 255 bits.

We compare the performance of the hardened template
with the full, the time-domain, and the one-way function
template. Note that, the full template is an insecure tem-
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Table 1: Equal Error Rate (EER) and Error Corrected
by BCH Error Correction Code of the various templates
with MDB and QDB. (*) in the second column indicates
insecure template.

Database Template EER (%)
Random Imposter

MDB Full∗ 3.62 12.75
Hardened 4.43 13.14
Time-domain 6.22 15.59

One-way 8.24 21.44
QDB Full∗ 2.87 12.87

Hardened 3.80 13.80
Time-domain 5.60 15.20

One-way 7.13 20.27

plate and the others are secure. The full template con-
tains m frames of 121 DFT features. For the hardened
template, 121 features of the full template are reduced
to 9 and 11 on average for MDB and QDB. We use the
time-domain energy as the time-domain template. For
the one-way function template, the one-way function we
use is a simple hash function that uses the vector of each
frame (the full template) as the input and outputs the
summation of the vector of each frame.

5.3 Experimental results

TABLE 1 shows the recognition performance of the full,
the hardened, the time-domain, and the one-way func-
tion template with MDB and QDB. The results show
that the EER of our scheme noticeably outperforms the
time-domain and the one-way function template. These
results are also illustrated in Fig. 3 for MDB. When com-
paring our scheme to the full template, the recognition
performance of our scheme is slightly degraded. These
results guarantee that the hardened template slightly de-
grades performance. However, the full template is an
insecure template.

The quality of sound does not noticeably affect the recog-
nition performance of the proposed template when com-
pared with the other templates. This implies that the
quality of sound is not critical to the performance of the
system. Even if we test up to 30 pass-phrases in QDB, we
cannot conclude now that the quality of sound is effec-
tive, as the number of speakers participating in QDB is
too small. However, when we compare a small scale to a
large scale database, the compared results of the various
templates are similar. We will investigate this issue with
a large scale database with high quality sound in the near
future.

The EER of the imposter trial in MDB (13.14% in TA-
BLE 1) seems high when compared to 10.97% of the work
in [16]. Several things need to be explained. First, that

work [16] used the speaker dependent, text dependent
model where each phone model was created during enroll-
ment phase. Even though it yields better performance,
those models expose the speaker information to attack-
ers. Second, the performance is not a primary concern
in our work. However, we suggest the ways to promote
the performance in the conclusion section. Lastly, our
scheme can be used in a wide variety of applications, in-
cluding file encryption, access to virtual private network,
and user authentication.

5.4 Security of the template

The security of the scheme is based on the template pro-
tection. Our scheme falls under the hybrid schemes.
First, the DTW template is protected using a non-
invertible transformation scheme. The algorithm will
search for a set of optimal features in order to use them
as the template. These features cannot be transformed
to the original template so that the security of a template
protection scheme suggested in [11] is met. Next, the key
binding scheme is applied to protect the key, and then the
training data will be securely deleted from the system. It
is computationally hard to decode the key without any
knowledge of biometric data [7].

We can estimate the security of the template using the
sphere packing bound similar to [6]. Let z be the un-
certainty of voice and w be the error bits that can be
corrected by the system, the lower bound can be set to :

2z∑
w

i=1
(zi)

.

To estimate the lower bound, we use four recordings in
session II for each speaker in MDB. To evaluate the secu-
rity of the hardened template for the multi-thresholds
scheme, two speakers are rejected because the binary
strings are below 127 bits. We are left with a total of
46 speakers. We carry out 16,560 of inter-speaker com-
parisons to evaluate the uncertainty similar to [2]. For a
binary string of 127 bits, the uncertainty of our template
is 65 bits. From TABLE 1, the system should be able
to correct the error up to 27 bits (imposter trial), that is
approximately 21%. Here, z is 65 bits and w is 14 bits.
The estimated entropy of the template is 21 bits. We fur-
ther carry out 12,480 of inter-speaker comparisons using
the global-threshold scheme. Eight speakers are rejected
for the same reason. The estimated entropy of the tem-
plate is 5 bits. We note that those speakers are rejected
to reflect more precise entropy of the template. They are
not rejected because of the hardening process. TABLE
2 summarizes the security of the various templates when
we compare the multi-thresholds to the global-threshold
scheme in MDB. It is clear that the entropy of the multi-
thresholds scheme of the various templates is significantly
improved.
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Figure 3: Comparison of the performance of the full, the hardened, the time-domain, and the one-way function
template on MDB: (a) Random pass-phrase trial. (b) Imposter trial.

Table 2: The security of the various templates when
we compare the multi-thresholds to the global-threshold
scheme in MDB.

No. Speakers Entropy (bits)
Template Multi Global Multi Global

Full 46 42 19 6
Hardened 46 40 21 5

Time-domain 46 22 21 6
One-way 46 17 23 6

6 Conclusions and Future Work

We address two problems in a cryptosystem. First, the
problem of the feature correlation can be mitigated by
using the proposed multi-thresholds. As a result, the
randomness of the key (entropy) is increased from 5 to 21
bits. Second, we address the challenge in using DTW in
a cryptosystem, more specifically, the template to create
a warping function must not be able to transform to an
original template, while the template should not degrades
the performance. A solution, the hardened template is
proposed. We compared our template with full, time-
domain, one-way function templates. The full template
yielded the best performance while ours had the second
best results. However, the difference between the full
template and ours was slight (0.39 and 0.93 for imposter
trial in MDB and QDB). We noted that the full template
is not secure and it leaves all the biometric information
(a full set of DFT template) in the system.

There are a number of future works to be investigated.
First, we need more experiments to identify the best fea-
ture that will offer the best performance as the EER of
the system is still high. More specifically, we will explore
features to use as a template. These features must be

frequency-domain features due to our design. Next, we
will explore features to generate the key. These features
are frequency-domain and time-domain features. Alter-
natively, we may use a random key to promote the per-
formance. Second, the security against potential attacks
needs to be further explored. In particular, a generative
attack is the most serious attack we concern. Lastly, we
will explore the mentioned issues with larger numbers of
users and higher-quality speech.
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