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Transient Dynamical Problem for a Accreted
Thermoelastic Parallelepiped
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Abstract—The discrete accretion is often realized in tech- determining the accretion times, i.e., the times at which the
nological processes such as laser surfacing, gas-dynamic departs®3;;\B, k= 0,..., N—1 are added to the body. The
position, and vapor phase deposition. Mathematical modeling sequences (1) and (2) together determine the body growth

of the deformations and temperature fields arising in these io. The strain. t ¢ d velocity fields of th
processes allows one to optimize the technological processeSC€Naro. fne stran, temperature, and velocity nelds of the

and is a topical problem of mechanics of deformable body. Part8,i1\ B, added at timer, are generally inconsistent

In present paper an illustrative example an initial boundary- with the fields of the bodyB,. Therefore, the dynamic
valued problem for thermoelastic growing parallelepiped is processes in the growing body vary by jump at the attachment
studied. Full coupling of mechanical and thermal fields as well times.

as relaxing of the heat flux are taken into account. A closed form

solution is constructed for a body under “smoothly rigid” heat-

insulated fixation conditions for the stationary faces and the Il. GENERAL PROCEDURE

growing load-free face. The temperature field on the growing The process of dvnamic discrete accretion can be modeled
face is analyzed numerically for various accretion scenarios. An p SS y IC dIS :

analysis of the temperature behavior on the growth boundary DY successively solving the boundary value problems for
shows that, depending on the accretion rate, the boundary the bodiesB;. Then the initial data for the step (k > 1)

can be considered as an isothermal (for high values of the are determined by the values of the corresponding fields at

accretion rate) boundary or a boundary with variable effective  {na final time moment of the steb— 1 and by the values

temperature determined in the process of solving the problem. . . .
associated with the attached elements. Formally, the recursive
sequence of problems in the linear approximation can be

Index Terms—coupled thermoelasticity, micromechanics, stated as follows:

growing bodies, discrete accretion, inconsistency.
vx € By Loyo+f° =0,

|. STATEMENT OF THE PROBLEM Vx € 9By Boyo =0, yo|,_,=¥0, Yo|,_,= V0,
HE thermomechanics of growing bodies studies the
distributions of mechanical and thermal fields in qua- VX € By, Loyn+£0 =0
n )

sistatic and dynamic processes that occur in the bodies th?e
. . . . . X
composition varies in the process of deformation and heating:
These types of accretion are often realized in technological
processes such as laser surfacing, gas-dynamic deposition, . . {
f,=1"+

€ 0B, Bny” =0, yn‘t:n,, =0, Yn|t=7_n = Vyop

. ; _ Ln-1Yn—1|,_ X € Bp1
and vapor phase deposition. Mathematical modeling of the e ‘t—”’ o

deformations and temperature fields arising in these pro- 0, X € B \ B,
cesses allows one to optimize the technological processes 0 yn,l\t:T , XE€B, 1,
gng is a topical problem of mechanics of deformable rigid Vi = VO, oxe B, \ By1.
ody.
Mechanics of growing bodies studies the stress-strain stitere Lo, ..., Ly are differential operators determined by

and dynamic processes in bodies whose composition variég same differential operation (the field equations) but in
in the process of deformation [1]-[7]. A discretely accrete@ifferent domains,Bo, ..., By are operators of boundary
body is represented as a finite family of bodies [6], [7]: conditions, f° are external force and thermal fields;
are the velocities associated with the attached elements,
Bop B CByC... CBw. (1) and yo,...,yny are increments of the displacement and
The sequence (1) is associated with the sequence of numijgfaperature fields with respect to the beginning of the step.
The dot denotes the derivative with respect to time, afid
0<m<m<...<7n (2) v are the initial data for the first step.

The efficiency of such an algorithm depends on the so-
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consider the problem for a step in the linear statement and o r _
to use the methods of expansion in biorthogonal systems of I —
functions, which were developed in [8], [9]. 3
r}? Pl 2
_ . = =
(point) spacef. From now on, the dot-Y denotes the inner SBN

The process of deformation is considered in the affine 47 4_
product on). Up to negligibly small variables, the body con- i T
figuration imagesB can be identified with a parallelepiped I
V embedded in the spagé The quantitiesi, b, h are the
parallelepiped linear dimensions, which are assumed to de[ | |
constant in a single step but can vary in the course of th ! !
accretion process. 14 1o

Assume that a mass measupeis introduced on the L/F L)F v ~ /F
body B, and the body is under the action of the external/4~a~,/\g Aay\i /4~a~,/\g
field of mass forceK(t) and of distributed heat sources
whose specific capacity is determined by the fig(#). The Fig. 1. The discrete process growing
displacemental = 4i + 0j + wk caused by these fields
and their gradients are assumed to be negligibly small with
respect to the coordinates of the poittso that the latter a-nlp,
are assumed to be constant, and the infinitesimal strain field n-gl. =0, f1-n}r2 =0
e=3 (Vﬁ + (Vﬁ)T) is associated with the bod$. Here (5)

v - i% +j8% I k% is the dimensional Hamiltonian The initial conditions determine the distributions of the

operator, and...)T is the transposition symbol.
The body response is determined by the linear Duham
Neumann functional [10] for the stressése, 0)
—=u
ot

6(e,0) =2ue + M @ I:e — (3\ + 2p)alI
and by the linear Fourier functional determining the thermﬂlelatlons (4)-(6) determine the mathematical statement of

flow h(A) depending on the gradient of the excess tempefd problem for a single step. _ , .
ture § When implementing the computational algorithm, it is ex-

h= AV 3) pedient to pass to dimensionless spatial coordinateterred
to the characteristics dimensidd and to the dimensionless

Here . and A are the Lamé moduli for the adiabatic statejme + which are related to the dimensional variables as

a is the coefficient of linear thermal expansiah,is the follows:
thermal conductivity coefficienty = T' — T, is the excess ) R ;
)

temperature]” is the absolute temperature, aifid = const y — = — pifyitok, 2= =, y = i t— — B
R R R\ »

is the reading temperature. R

Under the above assumptions, the coupled system §fg yesired functions are the dimensionless displacensents
equations of motion and heat conduction has the form [1Q},§ the dimensionless excess temperatureferred to the

WV )YV 0 (3Mh2u)a Vi pZat pK—0  reading temperaturd,

= hy| B,

0

=0, n6-(I-n®n)|, =0, hn|. =0,

initial displapementslo, the velocitiesvy and the excess
&a_mperatureé’o:

0 .

=vo, 0

u

=6 (6)

= Uy,

i=0 0]7=0 =0

P
R

A DA ~ . ~
AV 0 pelb— (3 +2u)Toa V- (iﬁ)ercD:O a a o W 0
ot ot — — —ui i k = — = — = —. = —.
(4) u & ul+v)+wk, u R v R w R T
Whergc is the speAcglc hgat <::1t conSQtant dgformasloln referrelqlen the differentiation operations become
to unit mass andv" = V-V = 5 + 25 4 I is the
dimensional Laplace operator. The fact that system (4) §:R¢:ig+jg+kg, v? - 2% 9 _plro
coupled can be explained by the presence of the temperature Ox "0y 0z ot w ot

grad|ent. n t_he equajuons of motion "’?“d by the .presenFﬁa the dimensionless variables, Eqgs. (4) are reduced to the
of the dilatation rate in the heat equation. In the Ilteratur?drm

the coupled thermoelasticity of such a type is said to be

“completely coupled.” The equations of the so-called theory Viu+ AVV-u—-BVl—u+K=0,
of temperatures stresses [10] do not take into account the V20— Cf—DV-ii+w=0,
dilatation rate influence on the process of heat conduction

and represent “partially” coupled thermoelasticity. It was

(7)

shown in [11] that taking into account the dilatation rate in g At g BA+2u)aTy
heat equations leads to a significant correction of the solution wo I ’
for bodies of micron dimensions. Re,/pp (BA+2u)Ray/1n
) " . C = D=~—_"7 VvV
Consider the boundary conditions corresponding to the A AP

“smoothly rigid” heat-insulated fixation (In [12], exact so-
lutions were investigated for an elastic parallelepiped withh Egs. (7) and later, the dot denotes the derivagizeand
“sliding fixation.”) on five of its faced"; and the free heat- the fields K andw are the dimensionless densities of the

insulated face’, (Fig. 1): force and thermal actionK = % andw = RiﬂT“.
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The boundary and initial conditions (5)—(6) in the dimenthe pair of mutually adjoint operatois, and £}, generates
sionless variables are stated as mutually adjoint eigenvalue problems (generalized Sturm-—
un®n+n (Vut (Vu)T)-(I n® n)‘rl _o, Liouville problems)
n (Vu+(Vw)") +n((A-1)V-u—-Bo)|. =0, o Lk=0, L)k =0. ©)
n.V9|F =0, n-V9|F =0, (8) Since the domaiv’ is bounded and the differential operator
! h 0 under study are regular, the nontrivial solutions of prob-
o lems (9) form countable sequences of complex-valued vector
_ g e /2 _ G . . functions{k;}, {k}, i = 1,2,..., which correspond to the
whereuo = 5, vo = VO\/: anddy = 7 are dimensionless sequence of generalized eigenvalies. Since the operator

initial data. _ - pencils are not self-adjoint, the eigenvalues are generally
Equations (7) along with conditions (8) present the stalgsated on the complex plane in a rather complicated way,

ment of the initial-boundary value problem in dimensionless;t since the coefficienDd is positive and small, one can
form. The solution of this problem is sought as the spectrghy that the eigenvalues form three subsequences one of
expansion according to [8], [9]. Since the differential opergypnich consists of numbers on the negative real semiaxis and
tors generated by the system of Egs. (7) are not self-adjoint, it the |imit point—oo, and the other two sequences are
is necessary to consider complex-valued functions, and hefgeied near the imaginary axis in the negative half-plane
it is necessary to introduce a Hilbert spakeon the set of and have the accumulation poirtsco. The same reasoning

u‘t:():uo7 u Vo, 9|

|t:0 = t=0

complex-valued vector functions shows that the function systenfk;} and{k;} are complete
u ui + vj + wk in #.Moreover, the functionk; andk; i # j satisfy the
a= <9) = < 0 ) biorthogonality conditions [8]:
defined and square integrable in the donmidiand satisfying <H1kia k;> + (vi +v5) <H2ki7 k]*> =0,

product(-,-) in H is meaningful, -DV. —-C 0 0

which can explicitly be written as
Va,b € : <a,b>=<(‘9") (‘é)>=/ (u-v + 6€) av. prctl
’ v 7/ [(DVU1+091)§;<+(V1+VJ)HZﬁj] dV:O,
1%

the condition that the bilinear form determining the inner 2y < 0 0 ) oy (I 0)
1= 3 2 = )

Here the bar denotes complex conjugation.
The coupled equations of motion and heat conduction (7) K — (uz> K — <U§) .
along with the boundary conditions (8) determine a pencil of ’ o) 0%

differential operators ir{, which can be written in matrix Thus, the function systemék;} and {k?} form mutually

form biorthogonal bases i. According to [8], the solution of the
V2 - 12T+ AVV. —-BV initial-boundary value problem (7), (8) can be represented by
Ly = _ DUV vi_cv)/ the expansion
The domain of the operatat, is denoted by the symbap u > uo e .
and is defined as a subset %f (9) = Z |:(<(90)7H1ki + ViH?ki>
— — _ t
D= {a | Bla =0A Bga = 0} C H, +< <V()) ’sz:>> €Vt/< <K) ,k:> ew(tr)} kiNi_l,
5 <u) <u~n®n—|—n-(Vu—l—(Vu)T)-(I—nQ@n)‘Fl 0 0 \\W
o)~ Vo ’ :
n-vel, "~ (g Dg) , (10)
u n(Vu+(Vu)?)+n ((4-1)Vu-—Bo) ‘m
By o)~ n-VG\F » whereN; = (Hik;, kI)+2v; (Hak;, ki) are the normalizing

factors.
whereB; and B, are the operators of boundary conditions. The efficiency of representation (10) depends on the effi-
The operator pencill, is associated with the adjointciency of the representation of the functiofls;} and{k}},
pencil £ defined in the domairD* C H and satisfying i.e., on the solutions of the generalized Sturm—Liouville prob-

the following relations: lems [11]. As a rule, these solutions for three-dimensional
. . problems either cannot at all be written in closed form or
VueD, VweD' (Lyuv)=(u,Ll)v). their representations ar extremely cumbersome. At the same

time, the problem considered in this paper admits a very

The adjoint pencil can be defined explicitly as [8] ) .
compact representations of all components of the expansion

- V? -2 + AVV. DV (also see [12]).
v BV. vi-Cr)’
D* — {a | Bia=0ABja= 0} CH, IV. ACCOUNT THERELAXING OF THE HEAT FLUX
B =By, One of the drawbacks of the classical law (3) is the fact

infinite in applications. Nevertheless, it effectively describes

B: <u) _ (n(Vut (Vo) )+ ((A-1)V-u+D0)| .
2\0 H'VH\FQ heat propagation in a wide range of applications. Therefore,

) that the thermal signal transmission speed turns out to be
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the Fourier law has to be modified only if the relaxation time The initial-boundary problems used in the present paper

and the external action pulse duration are quantities of thenerate quadratic pencils of the form

same order of magnitude. )

In the last two hundred years, various linear generaliza- Ly, =Ho+vHi +v"Hs.

tions of the Fourier heat conduction law have been suggestﬁge

(a survey and historic comments are given in [13]). In the

literature, most frequently used is the Cattaneo—Jeffreys law, ” <@2 LAV R Y — B@)
0= )

operator coefficients are formulated as

which can be written as 0 vz

mth+h = —AV0, (11) 0 0 £ 0
. . . H, = - ~ 2 , Ho= ( - ) .
wherer; is the relaxation time. -DV. EV —-C -GV —F

In the present paper, we use the heat conduction law with ) .
two relaxation times, andr,, namely, We recall that the differential operato®y, H1, and #.

have a common domain of definitid®;, determined by the
mh+h=—A(V6 + V). (12) boundary condition operatdss,:

The choice of the law in the form (12) is a natural gen- Bu<u) _ (Wujr (Vu)*] n+nA-1)V u- BG)
eralization of coupling laws in differential form. Here it 0 Ev0+CH—Fvn-V60— Dn-Vo

is appropriate to draw an analogy with, for example, t
constitutive relations of linear viscoelasticity in differentia

ov
or the initial-boundary problem under study, the adjoint
pencil has the form

form.
Now let us reformulate the statement of the problem. The L:=Hy+ 0H} + 0°HS,
heat conduction equation in system (4) has to be replaced by
the following one 0 DV v
o w08 ) e (D)
A(V?0 + V20) — pe(r16 + 6)

— (BA+2u)aby (V-1 + Vi) + mw+w=0. (13) The domain of definition of the adjoint pencil

The boundary conditions, corresponding to heat conduc- D3 ={y | Bylyl =0},

tion, may be formulated as B - B
) ) B (1) = [Vu+ (Vu)' ] n+n(A-1)V-u+0oD¢

[C(116 +6) — DAn-(1,V0 + V)], = 0. “(9) _< Ev0+ C6— Fon- V6 + Bn- V0 )

oV

The initial temperature rate distributiaf should be speci-
fied as the initial data: V. REPRESENTATIONS OF THEEIGENFUNCTIONS
9" — 90 (14) Let us focus on system (4). The representation of functions
t=0 '

of the family {k;} (and respectively, ofk;}) which is
In dimensionless variables the mention above equatiogsnsistent with the boundary conditions (8) has the form
have the following form
isin(nz) cos(my) a(z) + jcos(nz) sin(my) b(z)
9 -2~ 920 o0 92 - k= +k cos(nz) cos(my) c(z) |,
a_gv 0— F@ - Ca - C’:@ u cos(nx) cos(my) d(z)

- ou =~ ,
- DV~§ + Q1 =0. (15) where, for brevity, the following notation is used:= ~=,

m = % n/, m’ € N, andN is the set of positive integers;
the functionsa(z), b(z), c(z), andd(z) are determined by

Vi+E

The coefficientsy, F', G can be written as

T2/l Ticp 13X\ + 2p) o solving the system of linear differential equations
"Ry TTa YT
Ry/p P 10 0 0 0 0 —4An 0
, . . 01 0 0| pu 0 0 —-Am 0 | ~
The dimensionless inhomogeneous terms can be calculateq = o4 ol lan am o —B|U
by the formulas 00 o0 1 0 0 —Dv 0
~ R? ~ R2 (14 A)n? +m? + 12 Amn
QO=—uw, U =—(nw-+w). _ Amn (1+ A)ym2 +n? + 12
Abo 1= R, et ( 0 0
The boundary conditions have the dimensionless form D””O 5 Dym
—bn
=0 s s 20 s xe o 0 -B S
E=6+Cl— F—=n-Vi— DVn-Vi =0, n? b m? 402 o =0 an
0 0
t t ov (16) 0 n? +m?+ Cv
~ 1 7 ~ T2 1Y -
b= Cﬁ PX F= Dﬁ o Here U = (a(z2),b(2),c(2),d(2))T is a formal four-

I . . component vector function, and the primedenotes the
The initial data in dimensionless form are formulated as yqrivatives with respect to the variable Note that sys-

~ 00 = oR [p tem (17) is not symmetric, because the initial problem is
e‘ffo =0 9|*— =0y iai
= 0o =0 6o\ 1 not self-adjoint.
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_Although the order of the system of Egs. (17) is rathend for the initial approximations one can take the real roots
high, the fundamental system of its solutions has the simpi¢ the equation of uncoupled heat conduction and the pure

form imaginary roots of the equation for elastic vibrations, which
—-m —-m BC are determined by the equations
S n Cz 7 n —(z 7 Cz
Gi=| o | z=| o |¢ 7 U=y | sinh(nh) = 0,
0 0 0
) . . L?sinh(Ch) cosh(£h) —2¢€ (L—v?) cosh(Ch) sinh(£h) =0.
o= 0)e<, = 115 & s = Z_ ~¢= Note that forn = m = 0 and L = v2, the right-hand side
n R R of Eqg. (20) splits into the factors
0 2DPV 2DPV
m m sinh(Ch) [P*n cosh(£h) sinh(nh)+
e R R A +MEsinh(Ch) sinh(¢h) cosh(nh)] =0 (21)
L 2B The roots of Egs. (20)—(21) are associated with the
complex-valued eigenfunctions, and they can be written in
(=2 +n?+m?, ¢= \/nz Lm2 4 ”2?,41211/)’ the following common general form:
in [YC cosh(¢z)+W cosh(&z)
P+2
n= \/n2 +m? + Vﬁ7 P=R+VR+ M, -V cosh(nz)} sin(nz) cos(my)

Q=R—-/R*+ M, R=AC+BD+C —v, M =4vBD. - + m[yg cosh(Cz)+W cosh(¢z)
By substituting the fundamental solutions into the bound >~ ' , .

ary conditions corresponding to the upper and lower faces +k [UV sinh(nz) —Y (n” + m”) sinh(¢z)

of the parallelepipedz( = 0, h), one obtains a system of {Wsinh(gz)} cos(nx) cos(my)

eight linear equations for the constants of integration of 902 [ cosh(es)— Y cosh )

system (17). By equating the determinant of the coefficients v [P cosh(§z) =G cos (m)} cos(n) cos(ny)

of this system with zero, one obtains an equation for the _ _

eigenvalues;;. This determinant can be written in the very Y =2L [§ sinh(h&)cosh(hn) —n cosh(hg)sinh(hn)] ,

concise form V =4[n*+m?]¢¢ sinh(h€)cosh(h¢) — L? cosh(hé)sinh (h¢),

W =4[n?+m?|¢n sinh(hn)cosh(h¢) — L? cosh(hn)sinh(h().

-V cosh(nz)] cos(nx) sin(my) )

(e — 1] [PQnL2 sinh(Ch) cosh(£h) sinh(nh)
+ MEL? sinh(Ch) sinh(€h) cosh(nh)
—2¢&n (L—v?) (P?+ M) cosh(Ch) sinh(&h) sinh(nh) | =0,
(18) VI. NUMERICAL SIMULATION

whereL = v + 2(n2 + m?). As was already noted, the effects of coupled mechanical

The eigenfunctions can be classified by expanding tﬁ@d thermal fields play a Significant role for bodies of micron
left-hand side of Eq. (18). The first class consists of tféimensions. Therefore, it is of special interest to model the
eigenfunctions associated with the zeros of the first factBfocess of thermoelastic accretion for bodies of such scales.

The representation of the eigenfunctions in the case heat
conduction law (12) has the same structure.

on the right-hand side in Eq. (18); i.e., Consider the thermoelastic process of growth of a mi-
2th ‘ croscopic copper crystal which is represented as a growing
e —=1=0 = 20h=2mik, k=12,.... parallelepiped with the initial dimensioris= R, b = 2R,

andh = 4R. HereR is the characteristic dimension equal to
1um (i.e., R = 10~5m). The numerical simulation is based
O ) k2 on the following physical and mechanical characteristics:
Vnmk = W\ + M7 + (7) , nmkeEN, \ = 89.4708 GPa, u = 40.9531 GPa, p = 8960Kkg/n?, a =
16.4- 1075 1/K, A = 385 W/(m-K), and ¢ = 385 J/(kgK).
Consider the “fast” accretion process. It is assumed that

The corresponding eigenvalues can be written as

and the corresponding eigenfunctions have the form

—imsin(nx) cos(my) cos (42) the growth is uniform, i.e.Ah = hy41 — hy = const and
kifribk: + nsin(nz) cos(my) cos (=) | . (19) A7 = 741 — 7 = const. The dimensionless rate of the
0 material attachment is, = % = 0.1, which corresponds

Fﬂethe dimensional raté, = 213m/s. This rate value is
ssociated with the characteristic time the growing body
%ight doublingr, = 18.71 ns. Note that, is approximately
ive times greater than the period of the fundamental mode of

the body vibrations at the beginning of the accretion process

P?nL?sinh(Ch) cosh(£h) sinh(nh) (3.658ns) and is five times less than the basic relaxation

2 . . . time (91.27ns), i.e., the value inverse to the real eigenvalue
- MEL ;mh(gh) bmh(éh) CObh(n_h) that is the least in absolute value. The given rate valuis
—20€n(L—V*\P?+ M)cosh(Ch) sinh(¢h) sinh(nh) =0 associated with different accretion scenarios corresponding
(20) 1o differentAh. There is an analogy with different partitions

The eigenfunctions of the second class determine t
coupled thermoelastic vibrations. The corresponding eig
values can be determined as complex-values roots of
transcendental equation
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0

1 computational algorithm implementation according to the

solution representation constructed in the paper allows one to
determine the stresses, temperature, and velocities of points
of the discretely built-up body at any time moment.

Figure 2a shows the dependence of the temperatuedt
the middle points of the parallelepiped cross-sectians (%,
y = g) on the coordinate and timet, which corresponds
to the accretion scenario with successively attachéd
layers (V = 15) of dimensionless thicknesah = 0.2
(Ah = 0.2 um). For the accepted accretion ratg = 0.1,
one has the quantithr = 2% = 2 (A7 = 0.09355ns),
and the parallelepiped height increases frhm= 4 um to
his = 7um. For these parameters, the accretion process
has the same typical time parameters as the heat transfer
process. In particular, this is illustrated by the graph; namely,
the temperature on the growth boundary smoothly varies
from the initial temperature of the body to the temperature
of the attached layers. Figureb2llustrates the temperature
distribution for the rate of growth that is ten times greater
than v,. The effective (step-averaged) temperature of the
growing boundary is close to the temperature of the attached

layers. Figure 2 shows the temperature distribution for the

Il
[ |

jwwmj"m rate of growth that is ten times less that Figure 3 shows
‘J_‘MJJL the temperature on the moving boundary (thin line) and its
- value averaged over the step (thick line).
An analysis of the temperature behavior on the growth
: i 1 boundary shows that, depending on the accretion rate, the
o 5, —— ’260300 boundary can be considered as an isothermal (for high values
z 4 6 o 100 of the accretion rate) boundary or a boundary with variable

(© “effective” temperature determined in the process of solving

Fig. 2. The dependence of the temperature for the different rate of growme prOblem'
1 1
(8) va, (b) 10vq, (€) 0.1vq REFERENCES
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