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Abstract—The discrete accretion is often realized in tech-
nological processes such as laser surfacing, gas-dynamic de-
position, and vapor phase deposition. Mathematical modeling
of the deformations and temperature fields arising in these
processes allows one to optimize the technological processes
and is a topical problem of mechanics of deformable body.
In present paper an illustrative example an initial boundary-
valued problem for thermoelastic growing parallelepiped is
studied. Full coupling of mechanical and thermal fields as well
as relaxing of the heat flux are taken into account. A closed form
solution is constructed for a body under “smoothly rigid” heat-
insulated fixation conditions for the stationary faces and the
growing load-free face. The temperature field on the growing
face is analyzed numerically for various accretion scenarios. An
analysis of the temperature behavior on the growth boundary
shows that, depending on the accretion rate, the boundary
can be considered as an isothermal (for high values of the
accretion rate) boundary or a boundary with variable effective
temperature determined in the process of solving the problem.

Index Terms—coupled thermoelasticity, micromechanics,
growing bodies, discrete accretion, inconsistency.

I. STATEMENT OF THE PROBLEM

T HE thermomechanics of growing bodies studies the
distributions of mechanical and thermal fields in qua-

sistatic and dynamic processes that occur in the bodies whose
composition varies in the process of deformation and heating.
These types of accretion are often realized in technological
processes such as laser surfacing, gas-dynamic deposition,
and vapor phase deposition. Mathematical modeling of the
deformations and temperature fields arising in these pro-
cesses allows one to optimize the technological processes
and is a topical problem of mechanics of deformable rigid
body.

Mechanics of growing bodies studies the stress-strain state
and dynamic processes in bodies whose composition varies
in the process of deformation [1]–[7]. A discretely accreted
body is represented as a finite family of bodies [6], [7]:

B0 ⊂ B1 ⊂ B2 ⊂ . . . ⊂ BN . (1)

The sequence (1) is associated with the sequence of numbers

0 < τ1 < τ2 < . . . < τN (2)
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determining the accretion times, i.e., the times at which the
partsBk+1\Bk, k = 0, . . . , N−1 are added to the body. The
sequences (1) and (2) together determine the body growth
scenario. The strain, temperature, and velocity fields of the
partBk+1 \Bk added at timeτk are generally inconsistent
with the fields of the bodyBk. Therefore, the dynamic
processes in the growing body vary by jump at the attachment
times.

II. GENERAL PROCEDURE

The process of dynamic discrete accretion can be modeled
by successively solving the boundary value problems for
the bodiesBk. Then the initial data for the stepk (k ≥ 1)
are determined by the values of the corresponding fields at
the final time moment of the stepk − 1 and by the values
associated with the attached elements. Formally, the recursive
sequence of problems in the linear approximation can be
stated as follows:

∀x ∈ B0 L0y0 + f0 = 0,

∀x ∈ ∂B0 B0y0 = 0, y0

∣

∣

t=0
= y0

0, ẏ0

∣

∣

t=0
= v0

0,

. . .

∀x ∈ Bn Lnyn + f0n = 0,

∀x ∈ ∂Bn Bnyn = 0, yn

∣

∣

t=τn
= 0, ẏn

∣

∣

t=τn
= v0

n,

. . .

f0n = f0 +

{

Ln−1yn−1

∣

∣

t=τn
, x ∈ Bn−1,

0, x ∈ Bn \Bn−1,

v0
n =

{

ẏn−1

∣

∣

t=τn
, x ∈ Bn−1,

v0, x ∈ Bn \Bn−1.

Here L0, . . . ,LN are differential operators determined by
the same differential operation (the field equations) but in
different domains,B0, . . . ,BN are operators of boundary
conditions, f0 are external force and thermal fields,v0

are the velocities associated with the attached elements,
and y0, . . . ,yN are increments of the displacement and
temperature fields with respect to the beginning of the step.
The dot denotes the derivative with respect to time, andy0

0,
v0
0 are the initial data for the first step.
The efficiency of such an algorithm depends on the so-

lution representation for each step. For bodies of relatively
simple shape and some classes of boundary conditions, one
can find analytic solutions generating efficient computational
algorithms.

III. A NALYTIC SOLUTION AT A STEP

The solution for a single step is constructed under the
assumption that the displacements and excess temperatures,
as well as their gradients, are small. This allows one to
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consider the problem for a step in the linear statement and
to use the methods of expansion in biorthogonal systems of
functions, which were developed in [8], [9].

The process of deformation is considered in the affine
(point) spaceE . From now on, the dot (·) denotes the inner
product onV . Up to negligibly small variables, the body con-
figuration imagesB can be identified with a parallelepiped
V embedded in the spaceE . The quantitieŝa, b̂, ĥ are the
parallelepiped linear dimensions, which are assumed to be
constant in a single step but can vary in the course of the
accretion process.

Assume that a mass measureρ is introduced on the
body B, and the body is under the action of the external
field of mass forceŝK(r̂) and of distributed heat sources
whose specific capacity is determined by the fieldω̂(r̂). The
displacementŝu = ûi + v̂j + ŵk caused by these fields
and their gradients are assumed to be negligibly small with
respect to the coordinates of the pointsr̂ so that the latter
are assumed to be constant, and the infinitesimal strain field
ε = 1

2

(

∇̂û+ (∇̂û)T
)

is associated with the bodyB. Here

∇̂ = i ∂
∂x̂

+ j ∂
∂ŷ

+ k ∂
∂ẑ

is the dimensional Hamiltonian
operator, and(. . .)T is the transposition symbol.

The body response is determined by the linear Duhamel–
Neumann functional [10] for the stressesσ̂(ε, θ̂)

σ̂(ε, θ̂) = 2µε+ λI ⊗ I :ε− (3λ+ 2µ)αθ̂I

and by the linear Fourier functional determining the thermal
flow ĥ(θ̂) depending on the gradient of the excess tempera-
ture θ̂

ĥ = −Λ∇̂θ̂. (3)

Hereµ andλ are the Lamé moduli for the adiabatic state,
α is the coefficient of linear thermal expansion,Λ is the
thermal conductivity coefficient,̂θ = T − T0 is the excess
temperature,T is the absolute temperature, andT0 = const
is the reading temperature.

Under the above assumptions, the coupled system of
equations of motion and heat conduction has the form [10]:






µ∇̂
2
û+(λ+µ)∇̂∇̂·û−(3λ+2µ)α∇̂θ̂−ρ ∂2

∂t̂2
û+ρK̂=0

Λ∇̂
2
θ̂−ρc ∂

∂t̂
θ̂−(3λ+2µ)T0α∇̂·

(

∂

∂t̂
û
)

+ρω̂=0

(4)
wherec is the specific heat at constant deformation referred
to unit mass and∇̂

2
= ∇̂ ·∇̂ = ∂2

∂x̂2 + ∂2

∂ŷ2 + ∂2

∂ẑ2 is the
dimensional Laplace operator. The fact that system (4) is
coupled can be explained by the presence of the temperature
gradient in the equations of motion and by the presence
of the dilatation rate in the heat equation. In the literature,
the coupled thermoelasticity of such a type is said to be
“completely coupled.” The equations of the so-called theory
of temperatures stresses [10] do not take into account the
dilatation rate influence on the process of heat conduction
and represent “partially” coupled thermoelasticity. It was
shown in [11] that taking into account the dilatation rate in
heat equations leads to a significant correction of the solution
for bodies of micron dimensions.

Consider the boundary conditions corresponding to the
“smoothly rigid” heat-insulated fixation (In [12], exact so-
lutions were investigated for an elastic parallelepiped with
“sliding fixation.”) on five of its facesΓ1 and the free heat-
insulated faceΓ2 (Fig. 1):

Fig. 1. The discrete process growing

û·n
∣

∣

Γ1

= 0, n·σ̂ ·(I − n⊗ n)
∣

∣

Γ1

= 0, ĥ·n
∣

∣

Γ1

= 0,

n·σ̂
∣

∣

Γ2

= 0, ĥ·n
∣

∣

Γ2

= 0
(5)

The initial conditions determine the distributions of the
initial displacementŝu0, the velocitiesv̂0 and the excess
temperaturêθ0:

û
∣

∣

t̂=0
= û0,

∂

∂t̂
û0

∣

∣

t̂=0
= v̂0, θ̂

∣

∣

t̂=0
= θ̂0 (6)

Relations (4)–(6) determine the mathematical statement of
the problem for a single step.

When implementing the computational algorithm, it is ex-
pedient to pass to dimensionless spatial coordinatesr referred
to the characteristics dimensionR and to the dimensionless
time t which are related to the dimensional variables as
follows:

r =
r̂

R
= xi+yj+zk, x =

x̂

R
, y =

ŷ

R
, z =

ẑ

R
, t =

t̂

R

√

µ

ρ
.

The desired functions are the dimensionless displacementsu

and the dimensionless excess temperatureθ referred to the
reading temperatureT0,

u =
û

R
= ui+vj+wk, u =

û

R
, v =

v̂

R
, w =

ŵ

R
, θ =

θ̂

T0
.

Then the differentiation operations become

∇=R∇̂= i
∂

∂x
+j

∂

∂y
+k

∂

∂z
, ∇2 = R2

∇̂
2
,
∂

∂t
= R

√

ρ

µ

∂

∂t̂
.

In the dimensionless variables, Eqs. (4) are reduced to the
form

{

∇
2u+ A∇∇·u−B∇θ − ü+K = 0,

∇
2θ − Cθ̇ −D∇·u̇+ ω = 0,

(7)

A =
λ+ µ

µ
, B =

(3λ+ 2µ)αT0

µ
,

C =
Rc

√
ρµ

Λ
, D =

(3λ+ 2µ)Rα
√
µ

Λ
√
ρ

.

In Eqs. (7) and later, the dot denotes the derivative∂
∂t

, and
the fieldsK and ω are the dimensionless densities of the
force and thermal actionsK = RρK̂

µ
andω = R2ρ ω̂

ΛT
.
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The boundary and initial conditions (5)–(6) in the dimen-
sionless variables are stated as

u·n⊗ n+ n·
(

∇u+ (∇u)T
)

·(I − n⊗ n)
∣

∣

Γ1

= 0,

n·
(

∇u+ (∇u)T
)

+ n ((A− 1)∇·u−Bθ)
∣

∣

Γ2

= 0,

n·∇θ
∣

∣

Γ1

= 0, n·∇θ
∣

∣

Γ2

= 0,

u
∣

∣

t=0
= u0, u̇

∣

∣

t=0
= v0, θ

∣

∣

t=0
= θ0,

(8)

whereu0 = û0

R
, v0 = v̂0

√

ρ
µ

andθ0 = θ̂0
T0

are dimensionless

initial data.
Equations (7) along with conditions (8) present the state-

ment of the initial–boundary value problem in dimensionless
form. The solution of this problem is sought as the spectral
expansion according to [8], [9]. Since the differential opera-
tors generated by the system of Eqs. (7) are not self-adjoint, it
is necessary to consider complex-valued functions, and hence
it is necessary to introduce a Hilbert spaceH on the set of
complex-valued vector functions

a =

(

u

θ

)

=

(

ui+ vj+ wk

θ

)

defined and square integrable in the domainV and satisfying
the condition that the bilinear form determining the inner
product〈·, ·〉 in H is meaningful,

∀a,b ∈ H : 〈a,b〉=
〈(

u,

θ,

)(

v,

ξ

)〉

=

∫

V

(

u·v̄ + θξ̄
)

dV.

Here the bar denotes complex conjugation.
The coupled equations of motion and heat conduction (7)

along with the boundary conditions (8) determine a pencil of
differential operators inH, which can be written in matrix
form

Lν =

(

∇
2 − ν2I +A∇∇· −B∇

−Dν∇· ∇
2 − Cν

)

.

The domain of the operatorLν is denoted by the symbolD
and is defined as a subset ofH:

D =
{

a
∣

∣ B1a = 0 ∧ B2a = 0
}

⊂ H,

B1

(

u

θ

)

=

(

u·n⊗n+n·
(

∇u+(∇u)T
)

·(I−n⊗n)
∣

∣

Γ1

n·∇θ
∣

∣

Γ1

)

,

B2

(

u

θ

)

=

(

n·
(

∇u+(∇u)T
)

+n ((A−1)∇·u−Bθ)
∣

∣

Γ2

n·∇θ
∣

∣

Γ2

)

,

whereB1 andB2 are the operators of boundary conditions.
The operator pencilLν is associated with the adjoint

pencil L∗

ν defined in the domainD∗ ⊂ H and satisfying
the following relations:

∀u ∈ D, ∀v ∈ D∗ 〈Lνu,v〉 = 〈u,L∗

νv〉 .

The adjoint pencil can be defined explicitly as [8]

L∗

ν =

(

∇
2 − ν̄2I +A∇∇· Dν̄∇

B∇· ∇
2 − Cν̄

)

,

D∗ =
{

a
∣

∣ B∗

1a = 0 ∧ B∗

2a = 0
}

⊂ H,

B∗

1 = B1,

B∗

2

(

u

θ

)

=

(

n·(∇u+(∇u)∗)+n ((A−1)∇·u+ν̄Dθ)
∣

∣

Γ2

n·∇θ
∣

∣

Γ2

)

.

The pair of mutually adjoint operatorsLν andL∗

ν generates
mutually adjoint eigenvalue problems (generalized Sturm–
Liouville problems)

Lνk = 0, L∗

νk
∗ = 0. (9)

Since the domainV is bounded and the differential operator
under study are regular, the nontrivial solutions of prob-
lems (9) form countable sequences of complex-valued vector
functions{ki}, {k∗

i }, i = 1, 2, . . ., which correspond to the
sequence of generalized eigenvalues{νi}. Since the operator
pencils are not self-adjoint, the eigenvalues are generally
located on the complex plane in a rather complicated way,
but since the coefficientD is positive and small, one can
show that the eigenvalues form three subsequences one of
which consists of numbers on the negative real semiaxis and
has the limit point−∞, and the other two sequences are
located near the imaginary axis in the negative half-plane
and have the accumulation points±i∞. The same reasoning
shows that the function systems{ki} and{k∗

i } are complete
in H.Moreover, the functionski andk∗

j i 6= j satisfy the
biorthogonality conditions [8]:

〈

H1ki,k
∗

j

〉

+ (νi + νj)
〈

H2ki,k
∗

j

〉

= 0,

H1 =

(

0 0
−D∇· −C

)

, H2 =

(

−I 0
0 0

)

,

which can explicitly be written as

−
∫

V

[

(D∇·ui + Cθi) θ̄
∗

j + (νi + νj)ui ·ū∗

j

]

dV = 0,

ki =

(

ui

θi

)

, k∗

j =

(

u∗

j

θ∗j

)

.

Thus, the function systems{ki} and {k∗

i } form mutually
biorthogonal bases inH. According to [8], the solution of the
initial–boundary value problem (7), (8) can be represented by
the expansion

(

u

θ

)

=

∞
∑

i=1

[(〈(

u0

θ0

)

,H∗

1k
∗

i + ν̄iH2k
∗

i

〉

+

〈(

v0

0

)

,H2k
∗

i

〉)

eνt−
∫ t

0

〈(

K

ω

)

,k∗

i

〉

eνi(t−τ)
]

kiN
−1
i ,

H∗

1 =

(

0 D∇·
0 −C

)

, (10)

whereNi = 〈H1ki,k
∗

i 〉+2νi 〈H2ki,k
∗

i 〉 are the normalizing
factors.

The efficiency of representation (10) depends on the effi-
ciency of the representation of the functions{ki} and{k∗

i },
i.e., on the solutions of the generalized Sturm–Liouville prob-
lems [11]. As a rule, these solutions for three-dimensional
problems either cannot at all be written in closed form or
their representations ar extremely cumbersome. At the same
time, the problem considered in this paper admits a very
compact representations of all components of the expansion
(also see [12]).

IV. A CCOUNT THERELAXING OF THE HEAT FLUX

One of the drawbacks of the classical law (3) is the fact
that the thermal signal transmission speed turns out to be
infinite in applications. Nevertheless, it effectively describes
heat propagation in a wide range of applications. Therefore,
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the Fourier law has to be modified only if the relaxation time
and the external action pulse duration are quantities of the
same order of magnitude.

In the last two hundred years, various linear generaliza-
tions of the Fourier heat conduction law have been suggested
(a survey and historic comments are given in [13]). In the
literature, most frequently used is the Cattaneo–Jeffreys law,
which can be written as

τ1ḣ+ h = −Λ∇θ, (11)

whereτ1 is the relaxation time.
In the present paper, we use the heat conduction law with

two relaxation timesτ1 andτ2, namely,

τ1ḣ+ h = −Λ(∇θ + τ2∇θ̇). (12)

The choice of the law in the form (12) is a natural gen-
eralization of coupling laws in differential form. Here it
is appropriate to draw an analogy with, for example, the
constitutive relations of linear viscoelasticity in differential
form.

Now let us reformulate the statement of the problem. The
heat conduction equation in system (4) has to be replaced by
the following one

Λ(∇2θ + τ2∇
2θ̇)− ρc(τ1θ̈ + θ̇)

− (3λ+ 2µ)αθ0(τ1∇·ü+∇·u̇) + τ1ω̇ + ω = 0. (13)

The boundary conditions, corresponding to heat conduc-
tion, may be formulated as

[C(τ1θ̇ + θ)−DΛn·(τ2∇θ̇ +∇θ)]
∣

∣

∂V
= 0.

The initial temperature rate distributionϑ0 should be speci-
fied as the initial data:

θ̇
∣

∣

t=0
= ϑ0. (14)

In dimensionless variables the mention above equations
have the following form

∇̃
2
θ̃ + E

∂

∂t̃
∇̃

2
θ̃ − F

∂2θ̃

∂t̃2
− C

∂θ̃

∂t̃
−G

∂2

∂t̃2
∇̃·ũ

−D∇̃· ∂ũ
∂t̃

+ Ω̃1 = 0. (15)

The coefficientsE, F , G can be written as

E =
τ2
√
µ

R
√
ρ
, F =

τ1cµ

Λ
, G =

τ1(3λ+ 2µ)αµ

ρΛ
.

The dimensionless inhomogeneous terms can be calculated
by the formulas

Ω̃ =
R2

Λθ0
ω, Ω̃1 =

R2

Λθ0
(τ1ω̇ + ω).

The boundary conditions have the dimensionless form
(

Ẽ
∂

∂t̃
θ̃ + C̃θ̃ − F̃

∂

∂t̃
n·∇̃θ̃ − D̃∇̃n·∇̃θ̃

) ∣

∣

∣

∣

∂V

= 0,

Ẽ = C
τ1

ΛR

√

µ

ρ
, F̃ = D

τ2

R2

√

µ

ρ
.

(16)

The initial data in dimensionless form are formulated as

θ̃
∣

∣

t̃=0
=

θ0

θ0
,

˙̃
θ
∣

∣

t̃=0
= ϑ0 R

θ0

√

ρ

µ
.

The initial-boundary problems used in the present paper
generate quadratic pencils of the form

Lν = H0 + νH1 + ν2H2.

The operator coefficients are formulated as

H0 =

(

∇̃
2
+ A∇̃⊗ ∇̃· −B∇̃

0 ∇̃
2

)

,

H1 =

(

0 0

−D∇̃· E∇̃
2 − C

)

, H2 =

(

−E 0

−G∇̃· −F

)

.

We recall that the differential operatorsH0, H1, andH2
have a common domain of definitionDH determined by the
boundary condition operatorBH:

BH

(

u
θ

)

=

(

[∇̃u+ (∇̃u)∗] · n+ n(A− 1)∇̃ · u −Bθ

Ẽνθ + C̃θ − F̃ νn · ∇̃θ −Dn · ∇̃θ

)∣

∣

∣

∣

∂V

.

For the initial-boundary problem under study, the adjoint
pencil has the form

L
∗

υ = H
∗

0 + ῡH∗

1 + ῡ2
H

∗

2,

H
∗

1 =

(

0 D∇̃

0 E∇̃
2 − C

)

, H
∗

2 =

(

E G∇̃

0 −F

)

.

The domain of definition of the adjoint pencil

D
∗

H = {y | B∗

H[y] = 0},

B
∗

H

(

u
θ

)

=

(

[∇̃u+ (∇̃u)∗] · n + n(A− 1)∇̃ · u+ ῡDθ

Ẽῡθ + C̃θ − F̃ ῡn · ∇̃θ + B̃n · ∇̃θ

)∣

∣

∣

∣

∂V

.

V. REPRESENTATIONS OF THEEIGENFUNCTIONS

Let us focus on system (4). The representation of functions
of the family {ki} (and respectively, of{k∗

i }) which is
consistent with the boundary conditions (8) has the form

k =





i sin(nx) cos(my) a(z) + j cos(nx) sin(my) b(z)
+k cos(nx) cos(my) c(z)

cos(nx) cos(my) d(z)



 ,

where, for brevity, the following notation is used:n = n′π
a

,
m = m′π

b
, n′, m′ ∈ N, andN is the set of positive integers;

the functionsa(z), b(z), c(z), andd(z) are determined by
solving the system of linear differential equations







1 0 0 0
0 1 0 0
0 0 1 + A 0
0 0 0 1






.~U

′′ +







0 0 −An 0
0 0 −Am 0
An Am 0 −B

0 0 −Dν 0






.~U

′

−







(1 + A)n2 +m2 + ν2 Amn

Amn (1 + A)m2 + n2 + ν2

0 0
Dνn Dνm

0 −Bn

0 −Bm

n2 +m2 + ν2 0
0 n2 +m2 + Cν






.~U = ~0 (17)

Here ~U = (a(z), b(z), c(z), d(z))T is a formal four-
component vector function, and the prime′ denotes the
derivatives with respect to the variablez. Note that sys-
tem (17) is not symmetric, because the initial problem is
not self-adjoint.
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Although the order of the system of Eqs. (17) is rather
high, the fundamental system of its solutions has the simple
form

~U1 =







−m
n
0
0






e
ζz
, ~U2 =
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n
0
0






e
−ζz
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0
n
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e
ζz
,
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ζ
0
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e
−ζz
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−ξ
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P









e
ξz
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e
−ξz

,

~U7 =









m
n
−η
2Dν2

Q









e
ηz
, ~U8 =









m
n
η

2Dν2

Q









e
−ηz

,

ζ =
√

ν2 + n2 +m2, ξ =

√

n2 +m2 + ν
Q+ 2ν

2(A+ 1)
,

η =

√

n2 +m2 + ν
P + 2ν

2(A+ 1)
, P = R+

√

R2 +M,

Q = R−

√

R2 +M, R = AC +BD +C − ν, M = 4νBD.

By substituting the fundamental solutions into the bound-
ary conditions corresponding to the upper and lower faces
of the parallelepiped (z = 0, h), one obtains a system of
eight linear equations for the constants of integration of
system (17). By equating the determinant of the coefficients
of this system with zero, one obtains an equation for the
eigenvaluesνi. This determinant can be written in the very
concise form
[

e2ζh − 1
]

[

P 2ηL2 sinh(ζh) cosh(ξh) sinh(ηh)

+MξL2 sinh(ζh) sinh(ξh) cosh(ηh)

−2ζξη
(

L−ν2
) (

P 2+M
)

cosh(ζh) sinh(ξh) sinh(ηh)
]

=0,

(18)

whereL = ν2 + 2(n2 +m2).
The eigenfunctions can be classified by expanding the

left-hand side of Eq. (18). The first class consists of the
eigenfunctions associated with the zeros of the first factor
on the right-hand side in Eq. (18); i.e.,

e2ζh − 1 = 0 ⇒ 2ζh = 2πik, k = 1, 2, . . . .

The corresponding eigenvalues can be written as

ν
(I)
nmk = i

√

n2 +m2 +

(

kπ

h

)2

, n,m, k ∈ N,

and the corresponding eigenfunctions have the form

k
(I)
nmk=





−im sin(nx) cos(my) cos
(

kπz
h

)

+jn sin(nx) cos(my) cos
(

kπz
h

)

0



 . (19)

The eigenfunctions of the second class determine the
coupled thermoelastic vibrations. The corresponding eigen-
values can be determined as complex-values roots of the
transcendental equation

P 2ηL2 sinh(ζh) cosh(ξh) sinh(ηh)

+MξL2 sinh(ζh) sinh(ξh) cosh(ηh)

−2ζξη
(

L−ν2
)(

P 2+M
)

cosh(ζh) sinh(ξh) sinh(ηh)=0
(20)

and for the initial approximations one can take the real roots
of the equation of uncoupled heat conduction and the pure
imaginary roots of the equation for elastic vibrations, which
are determined by the equations

sinh(ηh) = 0,

L2 sinh(ζh) cosh(ξh)−2ζξ
(

L−ν2
)

cosh(ζh) sinh(ξh)=0.

Note that forn = m = 0 andL = ν2, the right-hand side
of Eq. (20) splits into the factors

sinh(ζh)
[

P 2η cosh(ξh) sinh(ηh)+

+Mξ sinh(ζh) sinh(ξh) cosh(ηh)] = 0 (21)

The roots of Eqs. (20)–(21) are associated with the
complex-valued eigenfunctions, and they can be written in
the following common general form:

k
(II)
nmk=



































in
[

Y ζ cosh(ζz)+W cosh(ξz)

−V cosh(ηz)
]

sin(nx) cos(my)

+jm
[

Y ζ cosh(ζz)+W cosh(ξz)

−V cosh(ηz)
]

cos(nx) sin(my)

+k
[

ηV sinh(ηz)−Y (n2 +m2) sinh(ζz)

−ξW sinh(ξz)
]

cos(nx) cos(my)

2Dν2
[

W
P

cosh(ξz)− V
Q

cosh(ηz)
]

cos(nx) cos(ny)



































,

Y =2L [ξ sinh(hξ)cosh(hη)−η cosh(hξ)sinh(hη)] ,

V =4[n2+m2]ζξ sinh(hξ)cosh(hζ)−L2 cosh(hξ)sinh(hζ),

W =4[n2+m2]ζη sinh(hη)cosh(hζ)−L2 cosh(hη)sinh(hζ).

The representation of the eigenfunctions in the case heat
conduction law (12) has the same structure.

VI. N UMERICAL SIMULATION

As was already noted, the effects of coupled mechanical
and thermal fields play a significant role for bodies of micron
dimensions. Therefore, it is of special interest to model the
process of thermoelastic accretion for bodies of such scales.

Consider the thermoelastic process of growth of a mi-
croscopic copper crystal which is represented as a growing
parallelepiped with the initial dimensionŝa = R, b̂ = 2R,
andĥ = 4R. HereR is the characteristic dimension equal to
1µm (i.e.,R = 10−6 m). The numerical simulation is based
on the following physical and mechanical characteristics:
λ = 89.4708GPa,µ = 40.9531GPa,ρ = 8960 kg/m3, α =
16.4 · 10−6 1/K, Λ = 385W/(m·K), and c = 385 J/(kg·K).

Consider the “fast” accretion process. It is assumed that
the growth is uniform, i.e.,∆h = hk+1 − hk = const and
∆τ = τk+1 − τk = const. The dimensionless rate of the
material attachment isva = ∆h

∆τ
= 0.1, which corresponds

to the dimensional ratêva = 213m/s. This rate value is
associated with the characteristic time the growing body
height doublinĝτa = 18.71ns. Note thatτa is approximately
five times greater than the period of the fundamental mode of
the body vibrations at the beginning of the accretion process
(3.658ns) and is five times less than the basic relaxation
time (91.27ns), i.e., the value inverse to the real eigenvalue
that is the least in absolute value. The given rate valuev̂a is
associated with different accretion scenarios corresponding
to different∆h. There is an analogy with different partitions
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(a)

(b)

(c)

Fig. 2. The dependence of the temperature for the different rate of growth:
(a) va, (b) 10va, (c) 0.1va

Fig. 3. The temperature on the moving boundary (thin line) and its value
averaged over the step (thick line)

in the theory of integration. A decrease in∆h leads to a
decrease in∆τ = ∆h

va
, and the process of discrete accretion

approaches a continuous process. Therefore, the numerical
simulation of such a limit process is of great interest.

For further computations, it is assumed that the excess
dimensionless temperature of the attached bodyBk+1\Bk is
equal toθ

∣

∣

t=τk
= 1, and the excess temperature of the body

at the beginning of the growthB0 is equal toθ
∣

∣

t=0
= 0.

It is also assumed that there are no mass forcesK̂ and
no internal heat sourceŝω, and at the initial time moment,
the growing body was free from stresses and at rest. The

computational algorithm implementation according to the
solution representation constructed in the paper allows one to
determine the stresses, temperature, and velocities of points
of the discretely built-up body at any time moment.

Figure 2a shows the dependence of the temperatureθ at
the middle points of the parallelepiped cross-sections (x = a

2 ,
y = b

2 ) on the coordinatez and timet, which corresponds
to the accretion scenario with successively attached15
layers (N = 15) of dimensionless thickness∆h = 0.2
(∆ĥ = 0.2µm). For the accepted accretion rateva = 0.1,
one has the quantity∆τ = ∆h

va
= 2 (∆τ̂ = 0.09355ns),

and the parallelepiped height increases fromĥ = 4µm to
ĥ15 = 7µm. For these parameters, the accretion process
has the same typical time parameters as the heat transfer
process. In particular, this is illustrated by the graph; namely,
the temperature on the growth boundary smoothly varies
from the initial temperature of the body to the temperature
of the attached layers. Figure 2b illustrates the temperature
distribution for the rate of growth that is ten times greater
than va. The effective (step-averaged) temperature of the
growing boundary is close to the temperature of the attached
layers. Figure 2c shows the temperature distribution for the
rate of growth that is ten times less thatva. Figure 3 shows
the temperature on the moving boundary (thin line) and its
value averaged over the step (thick line).

An analysis of the temperature behavior on the growth
boundary shows that, depending on the accretion rate, the
boundary can be considered as an isothermal (for high values
of the accretion rate) boundary or a boundary with variable
“effective” temperature determined in the process of solving
the problem.
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