
 

 
Abstract—This paper is devoted to the mathematical theory of 

the existence and uniqueness of weak solutions for incompressible 
three dimensional Navier-Stokes equations. We presented our 
vision in developing the mathematical concept and the physical 
description for the turbulent fluid motion. Using rotor operator 
and a well-known formula of vector analysis we obtained 
nonlinear Volterra-Fredholm integral equation in a matrix form 
which contained only three components of velocity vector.  Due to 
the theory of Volterra-Fredholm matrix operators and the 
successive approximation method were defined the velocity 
components. Considering the pressure gradient as a potential 
field we determined the distribution pressure. According to the 
defined estimation for the velocity vector we proved the 
uniqueness theorem for the Navier-Stokes problem in a Hilbert 
spaces. 
 

Index Terms— Navier-Stokes equations, fluid motion, swirling 
turbulent flow, potential field, gradient of pressure 
 

I. INTRODUCTION 

HIS paper is presented to ensure effective dissemination 
of mathematical theory for the Navier-Stokes problem and 
deals with common nature phenomena  of turbulence. 

Turbulent fluid flow is a nonlinear multiscale phenomenon 
which poses some difficult and fundamental problems in 
theoretical and mathematical physics. The Navier-Stokes 
equations describe interactions between fluctuations and their 
directions for different wavelengths and have a great interest 
in mathematical modeling of turbulent process. Mathematical 
solution for a practical complex problem requires a 
perspective using some alternative approach which different 
from that is needed for studying the fundamental issues. It is 
worth stressing that turbulence is fundamentally interesting 
and practical importance for engineering models of turbulent 
effects. This importance provides motivation for this research, 
therefore we have presented a new analytic method of solution 
for the Navier-Stoke problem. This result is the first step to 
mathematical understanding of the elusive phenomena of 
turbulence.  
    The Navier-Stokes equations as nonlinear partial 
differential equations in real natural situation were formulated 
in 1821 and appeared to give an accurate description of fluid 
flow including laminar and turbulent features. Concerning the 
large literature on the Navier-Stoke problem we mention only 
some papers which consider particularly relevant for our 
purpose. We have focused on the global existence, uniqueness 
and smoothness. Examples of weak solution were given by  
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Caffarelli [1], Sheffer[2]. A critical analysis for many analytic 
and numerical solutions of Navier-Stokes equations was given 
by Fefferman [3]. We will follow this idea of existence of 
weak solution given in [3] by using the energy conservation 
low for the external force and gradient of pressure. Theoretical 
prediction and analysis of turbulence has been the 
fundamental problem of fluid dynamics. Turbulence is a 
continuous phenomenon that exists on a large range of length 
and time scales. As there exists different scales which energy 
is transferred from the larger scales to the smaller scales where 
energy is dissipated into heat by molecular viscosity. This 
paper has focused on conservative force fields by using the 
energy conversion process. Without here going into details of 
the flow field as producing potential and swirling turbulent 
flows were defined stability conditions for fluid motion. There 
we may get   some fundamental information about behavior of 
potential, kinetic and static energies which are required for the 
description their mechanics of the turbulent fluid motion. 

II. MATHEMATICAL FORMULATION OF THE PROBLEM  

Suppose that infinite spaces 3R  and 
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velocity vector and ),( txp is the fluid pressure field. We 

consider the Navier -Stokes equations in the following form 
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Here, a vector function 
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denotes an external force,   is a kinematic viscosity,   is a 

fluid density, the symbol  denotes the gradient with respect 

to  the function , the symbol   denotes the three dimensional  

Laplace operator. 

   We will construct a weak solution for the Navier-Stokes 

initial value problem (1)-(3). The weak formulation for the 

problem (1)-(3) is based on the introduced technique for an 

incompressible potential and swirling turbulent flow. There 
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The initial value problem (1)-(3) is concerned with the 
fundamental solution for Poisson and heat conduction 
equations. Particular attention is paid to the integral 
representation of solutions with their initial values for the 
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viscous Newtonian fluid which is the basis of hydrodynamics. 
Note, that many problems formally exist for any Reynolds 
numbers and it can have an exact solution, but not all partial 
differential equation can describe real-nature phenomenon, 
therefore we will consider the basic equations of 
hydrodynamics that  correctly can be solved  ( existence, 
uniqueness and stability). The requirement of stability is 
caused by the fact that physical evidence is usually determined 
from experiment and approximately, therefore we must be 
sure that the determined solution is the stability   solution. This 
requirement of stability seems to be important, therefore we 
must construct Lyapunov theory for the Navier-Stokes 
problem which will be a powerful determining method for 
defining the stability or instability domains for nonlinear 
selected systems.   

Let us describe the used method in the proofs of existence 
and uniqueness for the Navier-Stokes problem (1)-(3). The 
key idea is to exclude the pressure function from the equation 
(1) by using rotor or divergence operators. According to these 
transformations we can give the integral representative for the 
velocity vector and the energy conservation condition for the 
determining pressure distribution. We involve this method to 
show that the velocity vector with respect to the pressure 
function exists and satisfies the energy conservation low. We 
split the construction of the solution for Navier-Stokes 
problem (1)-(3) into two steps. In the first step we claim that 
we may assume  
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Due to this assertion we can find a weak solution for the 
problem (1)-(3). It is proved that under the energy 
conservation low there exists a unique velocity vector given 
by the integral representation. There we get a stable solution 
of the Navier-Stokes problem (1)-(3). In the second step we 
assume that 

                                   0frot


  

Due to this assertion we obtain the second kind nonlinear 
matrix Volterra-Fredholm integral equation which is solved by 
using the method of successive approximation in Hilbert 
space. Under above assumption there exists a unique unstable 
solution with the appropriate properties.  

III. VELOCITY COMPONENTS AND FUNCTION OF PRESSURE 

FOR THE POTENTIAL FIELD  
 

    Turbulent motion is supported by the subjected power from 
some external forces and initial velocity. The shape of 
turbulent       region is determined by the property which has 
shown stability or instability of the velocity motion and the 
pressure distribution. Stabilizing mechanisms have been 
advocated to explain features observed in numerical 
simulations of turbulence.   
       Using well-known formula of vector analysis 
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Considering the function which represents potential energy            
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and using the divergence operator we can get an important 
expression for potential energy 
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Assume that 
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    Using the divergence operator and condition (2) for the 
expression (8)  we obtain  the equation 
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This expression (9) represents the conservation of energy. 
 Applying the expression  
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to the Navier-Stokes equations (1)-(3) we obtain the 
mathematical  problem 
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Following the classical procedure we can get solutions for the 
problem (10)-(13) in the integral sum of the parabolic 
potentials   
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 is the Green's function for the three dimensional infinite space  
3R . Green's function ),,( txG   for their derivations has 

estimations  
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  Notice that assumption (7) is closely related with the 
following conditions 
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   Using properties of the Green’s function ),,( txG  and its 

derivative evaluations we have got a uniqueness and stable 
solution (14) satisfying following estimation 
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    Condition for the scalar pressure function ),( txp  
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predicts a steady feature which introduces a stable turbulent 
motion. This equation links with the energy conservation low 
and characterizes steady behavior for the turbulent motion that 
can be the main property of stability turbulent flows. After 
using the Navier-Stokes equation (1) has been obtained 
following estimation for pressure function ),( txp  with norm     

on Hilbert space )(
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Consequently, we see that a stability of the turbulent flow 
depends on the condition (9).        

IV. VELOCITY COMPONENTS  AND  FUNCTION OF PRESSURE FOR 

TURBULENT SWIRLING MOTION 
 

  Fundamental interest in the study of unsteady features is an 
instable swirling motion which characterizes high Reynolds 
numbers. and new obtained condition of the turbulent motion 
admits solution that can be predicted in terms of the rotation 
function which is concerned instable fluid flow. 
   Assume that 
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then the Navier-Stokes equations (1)-(3) can be written as 
follows:  
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   Considering condition 0frot


 and using rotor operator 

we obtain equation  
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Apply to system (19) three-dimensional Fourier transform 
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Based on the formula for integration 
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and formulas for the Fourier transformation  
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   There symbol   indicates transitions from the 
representation to the original.   
   Using representation   
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  Problem (10)-(13 ) is closely related with the nonlinear 
integral equation satisfying a equation  
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is the Green's function in three dimensional whole space  3R .  
Properties of the Green’s function and its derivative evaluation            
allow to solve the nonlinear matrix Volterra - Fredholm 
integral equation by using successive approximations. Using 
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Due to this fact we have the unique solution of the problem 
(10)-(13) 
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Following the classical procedure we get the uniqueness and 
stability of solution for the problem (1)-(3). Also we obtain 
equation for the pressure function 
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V. RESULTS AND DISCUSSION 

   Let us gather and formulate main results about properties of 
the vector velocity and the scalar function of pressure.  

Recall the notations 3R  and )0(3  tRT
 we 

look for periodic solution for the problem (1)-(3).We assume 

that   functions ),( txf i and ),(0 txu i  satisfy  
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for the Navier-Stokes problem (1) - (3) and  a unique scalar 
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  In processes dealing with theorem 1 we notice that 
Bernoulli’s equation as a consequence of the formula (9) 
which represents stability criteria. Due to this fact we can 
formulize this simple result. 
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-  a numerical vector, m - a body’s mass, 21 , cc  are 

independent constants which satisfy the condition 021  cc , 

g is the acceleration of gravity, h  is the height. Then   the 

fluid flow can be considered to be an incompressible flow 
which satisfies Bernoulli’s equation  
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Here 


mp  is a binding energy of the mass elements,   

  
2

2mu -  a kinetic energy , mgh  - a potential energy . 

     
   The next theorem provides  the result about unstable motion.  
Theorem 2.  Let )(),( )2(

0 Htxu i
and )(),( )(

2
i

Ti Ltxf   be 

periodic functions and 0frot


. Under this assumption 

there exists a unique unstable periodic solution of the Navier-
Stokes problem (1) - (3) 
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)(z is  Heaviside step function.  

   These mathematical endeavors can serve to enlarge our 

intuitive experiences respect to the nonlinear theories of partial 

differential equations. In this work we concentrate on those 

aspects of partial differential equations that can be represented 

in the terms of operators on a Hilbert spaces. There Navier-

Stokes equations represent the evolution of the governing 

distribution functions, which depend on the velocity vector in 

the position of particles as a result of thermal excitation at any 

finite turbulent energy. In this way some difficulties arise in 

solving of the Navier-Stokes problem which was encountered 

in studying turbulent behavior for unstable motion. The 

fundamentals of our method have shown steady and unsteady 

behavior involving properties of the turbulent flows which 

demonstrate technological and principal importance at the 

forefront of classical approach. Expression of fluid   energy                                    

                           
 



x
fdiv

4

1   

represents a departure from the average energy of the fluid 

known as eddy energy. Due to this fact we formalize the 

relation between components of the velocity vector and the 

pressure function given by the energy conservation low (9). 

VI. CONCLUSION 

   The Navier-Stokes equations have been the basis for 

description and analysis of all turbulent phenomena and 

eexperimental selection of the regime turbulent fluctuation is 

costly and not always realizable process, therefore important 

argument for analytic research of the Navier-Stokes equation 

is to investigate an mathematical conception which is based on 

the Green's function and required a good deal with the 

parabolic and elliptic potential theory.We have presented the 

analytic method for the incompressible eddy turbulent 

problem which is expected to exist for all infinite domains. 

There are two unknown independent thermodynamic 

parameters (the velocity vector and the scalar function of 

pressure) which play a prominent role in the obtained integral 

representation of the velocity distribution and the description 

of the turbulent behavior of fluid motion. In processes dealing 

with governing equations the main point stressed that  the 

velocity vector satisfy and the function of pressure satisfied 

their criteria of stability motion which is the energy 

conservation law. There the mathematical difficulty for 

determining the velocity vector associates with the nonlinear 

of Volterra-Fredholm matrix integral equation. There 

convenient procedure for the incompressible Navier-Stokes 

equations allows to use ‘a priori’ estimates and to prove 

existence and regularity of the weak solution. The weak 

formulation of the Navier-Stokes problem is based on the 

extension of idea to the case where the energy falls in the 

critical domain, due to the pressure transition. Moreover, basic 

concepts of the Navier-Stokes equations have been 

investigated in Hilbert space and weak formulation is based on 

the introduced technique for the turbulent flow. In this paper 

authors take the first step in developing analytic investigation 

which needs in constriction Green's function and the energy 

conservation law for the model initial and boundary tasks. 

Authors hope that this submitted analytic solution would be 

understood and would have been used for visualization of the 

turbulent processes and behavior of the pressure distribution in 

the considered areas.  
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