
A New Kind of Complexity
Rade Vuckovac

Abstract—A new class of functions is presented. The structure
of the algorithm, particularly the selection criteria (branching),
is used to define the fundamental property of the new class.
The most interesting property of the new functions is that
instances are easy to compute but if input to the function is
vague the description of a function is exponentially complex.
This property puts a new light on randomness especially on
the random oracle model with a couple of practical examples
of random oracle implementation. Consequently, there is a new
interesting viewpoint on computational complexity in general.

I. INTRODUCTION

THE structured program theorem, also known as Böhm-
Jacopini theorem is one of the premises for this paper.

The theorem shows an ability of the algorithm or a program
implementing that algorithm to compute any computable
function combining only the three algorithmic structures.
These structures are:
• The tasks in the program are done one after another

(sequential order of execution)
• The program can branch to a different path of execution

depending on some statement evaluation result (selec-
tion criteria)

• Repeating some task until an evaluation of some state-
ment is satisfied (iteration)

The branching or selection criteria structure and its usage
defines the new proposed class of functions. It is assumed
that structured program theorem holds and that usage of
the three structures is Turing complete. More precisely, it
is assumed that further reduction from three structures to
two structures (excluding branching) is impossible. In other
words the selection criteria cannot be effectively replaced
with a combination of the other two structures.

The second premise is the analysis of the branching
structure in software metrics done by McCabe [1]. The
main result of McCabe’s work is the notion of Cyclomatic
Complexity (CC). The flow chart of the above mentioned
structures is used to count the individual execution paths
that the program can take. The CC is mainly used as software
testing metric. It evaluates a requirement of how many testing
cases are needed for a piece of software. In the majority of
cases the relation between branching and individual paths is
exponential, meaning that if the number of branching in a
program increases then the number of individual paths which
the program can execute doubles for every added branching.

The combination of the two above notions can lead to an
extraordinary case. The program can be written with a non
restricted number of branching (n) implying an exponential
growth of the number of paths that the program can take
through execution (2n). Additionally, the theory of algo-
rithms demands that the formal description of an algorithm

Rade Vuckovac is with AURIZON Operations Australia email
Rade.Vuckovac@Aurizon.com.au

shall include every possible case it can take through execu-
tion.

“For some such computational process, the algo-
rithm must be rigorously defined: specified in the
way it applies in all possible circumstances that
could arise. That is, any conditional steps must be
systematically dealt with, case-by-case; the criteria
for each case must be clear (and computable)
[emphasis added].” [2]

That means that an algorithm with a high CC cannot be
practically described because the number of execution paths
increases exponentially. On the other hand, the instances
of such an algorithm can be easily computed because the
increase of the number of branching in the program incurs
only polynomial cost. This extraordinary case needs more
thorough clarifications:
• It is not clear what the irreducible number of branch-

ing means. There is still a possibility that individual
execution paths of an algorithm are actually identical
transformations.

• Although CC shows exponential dependency between
the number of branching and the number of execution
paths, a possibility remains that the relationship between
the selection criteria and the paths doubling numbers
can be reduced to an acceptable level. Indeed, there is
a suggestion to avoid high CC software metric: the first
is to rewrite a program in question with reduced use
of branching, and the second is to split the program in
more manageable pieces [4].

These concerns and other relevant discussions are explored
through 3n+1 problem (section II) and Wolfram’s rule 30
(section III). Section IV summarises the new function fea-
tures and speculates on the impacts on randomness and P/NP
classes.

II. PROGRAMMING TAKE ON 3N+1 PROBLEM

A. 3n+1 problem

The 3n+1 problem is ideal for exploring the relationship
between the algorithm’s selection criteria and the CC. One
reason for this is that the 3n+1 problem is extensively studied
and a lot of details about the problem are well established.
Another reason is that the selection criteria are an essential
part of the problem description. The problem is very simple
to state: take any positive integer, if the integer is even divide
that integer with 2, if the integer is odd multiply the integer
by 3 and add 1. Repeat the procedure until the result is 1.
The problem is to decide if all positive integers reach 1 [3].
It is possible to skip the evaluation if the integer is even after
3n+1 operation and proceed with the operation n/2 because
3 times odd integer plus one is even. That is also an example
of how CC of an algorithm can be reduced. The optimised
version will be used throughout the rest of the paper.

The 3n+1 problem flow chart is shown in figure 1.

Proceedings of the World Congress on Engineering 2014 Vol I,
WCE 2014, July 2 - 4, 2014, London, U.K.

ISBN: 978-988-19252-7-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2014

Fig. 1. 3n+1 flow chart with optimised (3n+1)/2 step

B. 3n+1 and Cyclomatic Complexity
In this section the CC of 3n+1 algorithm is explored.

As mentioned in section I CC is software metric. That
software metric measures how many paths the program can
take through the execution. It uses graph theory to count
individual execution paths. The formula for CC is as follows:
ν(G) = e− n+ 2 where e and n are amounts of edges and
nodes contained in the algorithm flow graph. ν is cyclomatic
number and G means that the complexity is the function
of algorithm flow graph [4]. Applying this formula to a
particular algorithm is not a straight forward exercise. One
of simpler ways is counting the binary decision predicates
p . The formula for this approach is ν(G) = p + 1. The
figure 2 shows the 3n+1 algorithm doing two steps. Using a
simpler method the three binary branching can be identified,
therefore ν(G) = 3+ 1 and indeed there are four individual
paths the 3n+1 algorithm can take in two steps. It is evident
from figure 2 that every 3n+1 step will double CC. That
means after doing several 3x+1 steps the system starts to be
very complex from the software testing perspective.

C. 3n+1 Preliminaries
A few details about 3n+1 problem are well known and

mentioned here [3], some are listed for further discussion:
• The experimental data confirms that numbers up to ≈

260are reaching one[5].
• The lower bound of how many natural numbers reach

one is shown by [6]. For any sequence of natural
numbers in the interval [1.x] the number of naturals
reaching one in corresponding interval is > x0.84.

• A parity sequence for each natural number as an input
is unique and that is true even if not all natural numbers
are reaching one. The parity sequence is formed by
putting 1 or 0 in the sequence, depending on what
operation is performed in the particular step. In other
words if the branching in figure 1 “is n odd?” is NO
put 0 in the parity sequence and if it is YES put 1.

Fig. 2. Cyclomatic Complexity; two steps in 3n+1 algorithm (binary tree
resemblance)

D. 3n+1 as composite function

The composite function nature of 3n+1 problem comes
from the parity sequence. For example if n = 13 the parity
sequence for that input will be 1, 0, 0, 1, 0, 0, 0. In the same
manner a composite function h(n) can be composed, for
example h(13) = f ◦ g ◦ g ◦ f ◦ g ◦ g ◦ g = 1 where
f(n) = (3n + 1)/2 and g(n) = n/2. It is obvious that the
parity sequence pattern and the composite function pattern
are identical. That should be expected because the parity
sequence is the description of how a natural number is
transformed under the 3n+1 rule.

If the natural numbers and their corresponding parity
sequences have the bijective relationship (and that appears
to be true even the number 1 is not periodicity revolving
point [3]), then the natural numbers and their corresponding
composite function are bijective as well. That is based on
the fact that the pattern of the parity sequence is identical
to the pattern of the composite function for the same natural
number. Therefore every natural number has a unique com-
posite function h(n) to map a natural number to a number
where a period occurs under rule 3n+1.

E. 3n+1 as encoding system

A parity sequence or h(n) pattern can be considered
as binary encoding for every natural number reaching 1
under 3n+1 rule. For example for the number 13 its binary
representation is 1101. In 3n+1 binary world encoding for
13 is FG string fggfggg. The decoding is done by applying
the rule 3n+1 backwards without the need for evaluating “if
odd or even”. Just start from one and read the FG string
backwards. If the character is g apply function g(n) = 2n
and go to next character. If the character is f apply function
f(n) = (2n − 1)/3 and go to the next character. When all
characters are read the final number is the decoded number.
From traditional binary and parity encodings two languages
can be defined:

Proceedings of the World Congress on Engineering 2014 Vol I,
WCE 2014, July 2 - 4, 2014, London, U.K.

ISBN: 978-988-19252-7-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2014

1) The binary language L0,1 is written by {0, 1} alphabet.
The members of L0,1 set are the binary encodings of
all natural numbers reaching 1 under rule 3n+1 (n′).
The ratio size of the set is ≥ n0.84 [6].

2) The parity language Lf,g is written by {f, g} alphabet.
The members of Lf,g set are the parity sequences of
n′. The size of Lf,g is the same as the size of L0,1.

Although the amounts of the words forming languages L0,1

and Lf,g are equal the words explaining the same object
differ in length between languages. For example encodings
for number 13 are:

1) In L0,1language the encoding is 1101; size of the word
is 4.

2) In Lf,glanguage the encoding is fggfggg; size of the
word is 7.

It is obvious that encodings from language Lf,g can be com-
pressed, but compression can not go below complexity of the
language L0,1. This means that the complexity of language
Lf,g (3n+1 encoding) is greater or equal to complexity of
language L0,1 (optimal binary encoding).

A significant implication is that the 3n+1 function descrip-
tion depends on input in an unusual way. The input is not just
an ordinary variable but it is determinant of how a particular
transformation (from input towards one) is composed. If the
if else structure is used in 3n+1 rule then the composite
function description for all natural numbers has at least sub
exponential growth of n0.84.

F. 3n+1 as a random function?

Random oracle is an abstraction used to model security
protocols and schemes. Basically, random oracle is an imag-
inary machine which upon an input to oracle, randomly
draws a function from a set of all functions possible and
with that function an output is calculated and returned. A
simple model can be used as an example: On input 0 flip
fair coin and record the resulting tail/head occurrences as a
truly random binary string; continue with same procedure for
inputs 1, 00, 01, 10, 11, 000 . . . (see table I).

TABLE I
MAPPING USING RANDOM FUNCTION

binary input corresponding string

0 truly random string 1

1 truly random string 2

00 truly random string 3

01 truly random string 4

.

The table I is then used in proving various security systems
(see [7] for details). It is apparent that the table I is not
practical by means of storage and access to intended entry.
In practice random oracle is replaced with cryptographically
secure hash with undefined security consequences. The work
of [8] argues that random oracle modelling is essentially
unsound; a practical implementation of replacing a random
oracle in proven secure scheme results in an insecure scheme.

An interesting property defined in [8] is a notion of
correlation intractability. The correlation intractability is the
resistance to put some relation between inputs and outputs
on some mapping. It is easy to see that random oracle is

resistant to correlation (table I) because of flipping fair coin.
For potential replacement, and that is single functions or
function assemblies, correlation intractability property can
not be guaranteed. The reasoning behind is that mapping
description is shorter than allowed input description used
by adversary, therefore the correlation between input and
output must exist and that can not be expected from efficient
and fully described function or function assembly to behave
randomly [8].

Despite that 3n+1 shall apply for random oracle replace-
ment. One line of argument can go along the fact that 3n+1
is perceived as a hard problem [10]p4 and p17.

One obvious advantage of replacing table I with table
II is that entries in 3n+1 parity table can be produced
deterministically. Finding any pattern or structure in table
II may open a way to attack the 3n+1 problem. A similar
argument is made with hardness of integer factoring and
consequent factoring use in asymmetric encryption.

The second line of replacing random oracle with parity
sequences is complexity of the 3n+1 in terms of CC and
composite function model. If 3n+1 is considered as com-
posite function, the form without specifying input looks like
formula 1 where f♣g means depending on input use function
f or g. That can not be considered as a fully described
function. Only with an input the formula can make sense
(and can be executed).

(f♣g) ◦ (f♣g) ◦ (f♣g) . . . (1)

The argumentation can also go along the line input and
function description equality. As is shown in subsection II-E
input language and composite function (parity) language for
3n+1 are of equal complexity. The configuration where input
description and function description are of the same length, is
actually listed as a possible case where random function can
be replaced (see restricted correlation intractability section
[8]). Although that case is considered as inefficient, as is
table I for example (function description is actually in-
put/output description). However table II is practical because
entries can be calculated as is needed (full knowledge of all
mappings are not necessary).

Here is how the 3n+1 implementation of the hash function
(random function replacement) may look: Let the input n be
a word with at least 256 bits in length. Treat n as an unsigned
integer. Process n by the algorithm figure1. Form the binary
sequence (parity) by recording 1 when “yes” and 0 when
“no” is answered to the question “is n odd?”. Stop when
parity is 128 bit long. The game is to find n′ in the way to
produce identical first 128 bits in parity sequence as n does
(a collision). The search for collision is needed for a specific
input, because the powers of two (32, 64, 128 . . .) inputs will
produce parities of zeros (collisions are trivial, see entry 8
in table II for example). Because there is only formula 1
and target parity for someone who wants to find the match
for that parity, the task is impossible excluding exhaustive
search.

G. 3n+1 and reductions

It was tried before to show that the 3n+1 problem is
intractable. One example is here [12]. The main argument
of that work goes on showing that the 3n+1 solution has to

Proceedings of the World Congress on Engineering 2014 Vol I,
WCE 2014, July 2 - 4, 2014, London, U.K.

ISBN: 978-988-19252-7-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2014

TABLE II
3N+1 PARITY MAPPING

n corresponding parity

.

7 111010001000

8 000

9 10111010001000

.

be infinitely complex, using Solomon-Kolgomorov-Chaitin
(SKC) complexity as an argument [13]. It relies on the fact
that every 3n+1 transformation is unique and if we were
to represent all of them, the only remaining option would
be to list them all and consequently that option is obviously
infeasible. It is similar reasoning to the one from section II-E.
The problem with either reasoning is the possibility that 3n+1
inquiries might be calculated by some algorithm other than
algorithm shown in figure 1 and furthermore that the other
algorithm can be fundamentally different. It is impossible
to know how that algorithm may look anyhow a couple of
important properties can be defined:
• low CC; Only algorithms without using branching struc-

ture can be considered as candidates.
• efficiency; There are algorithms with low CC see figure

3 for example. The execution time of that algorithm
depends on the oracle proposing the fg string (as shown
in subsection II-E). One option for getting the answer
from that algorithm is that the oracle goes through an
exhaustive search to match fg string with output 1 (if
3n+1 conjecture holds). To be efficient it is required
from the candidate algorithm to produce a matching fg
string by evaluating input n in P time.

If both above requirements are met by the candidate algo-
rithm, then the apparent CC of 3n+1 can be reduced in P
time. The algorithm on presented input n can predict the
branching fg string without using branching structure. Con-
sequently selection programming structure can be replaced
by a combination of sequence and iteration without signifi-
cant cost (P time). In that case the structural programming
theorem [11] needs revision.

III. ABOUT WOLFRAM’S RULE 30
A. Rule 30 complexity

The Rule 30 is probably one of the most represented rules
in the Wolfram’s NKS book [17]. The definitions of rule 30
are listed below:
• Boolean form is [15] p Xor (q Or r)
• English description [16] :

“Look at each cell and its right-hand neighbor. If
both of these where white on the previous step,
then take the new color of the cell to be whatever
the previous color of its left-hand neighbor was.
Otherwise, take the new color to be opposite of
that”.

• Visual description and example is shown in figure 4.
The main features of the Rule 30 are chaotic behaviour
and randomness. Both features are accomplished by an
apparently simple rule and with an input with only one black
cell - see figure 4 and NKS book [17] pages 27-28.

Fig. 3. 3n+1 flow chart with Do-While structure (looping)

That observation is mentioned numerous times and is not
entirely correct on both accounts (simple rule, one black cell
as input). Let us use figure 4 for example.
• The first row shows the input and it is 43 bits long with

42 white cells and one black. Instead talking of only
one black cell input, emphasis should be on low entropy
of that input. Also it should be explained how entropy
of the input is relevant to the rule 30 process, because
the configuration with one black cell has the same
probability of occurring as any other configuration.

• The English description of the rule already mentioned
is actually the clue to chaotic / random behaviour. The
description is as follows: if something is true do that else
do something different. It is exactly the same structure
already seen in the 3n+1 problem. Considering that,
rule 30 can be considered as composite function in the
same fashion as 3n+1. The difference between 3n+1
and rule 30 is that the rule 30 update of cell depends
on outputs of neighbouring cells as well. Therefore it is
trickier to calculate CC of rule 30 algorithm. A short-cut
to estimating CC is to assume one branching per row
evolution. Since rule 30 (figure 4) is iterated 21 times,
the amount of possible execution paths for one cell is
221. From the software testing perspective anything over
210 is practically non testable [4].

Consequently, it is not correct to brand rule 30 as a simple
program while at the same time it has an inherently high
level of CC.

B. Rule 30 function description

Although the rule 30 algorithm is fairly simple, its function
description is certainly complex. The reason for this is that a
particular input and particular number of iterations actually
define which composite function is going to be executed at
the time. Unlike the 3n+1 case where input alone determines
the number of iterations and consequently CC, the rule 30 CC

Proceedings of the World Congress on Engineering 2014 Vol I,
WCE 2014, July 2 - 4, 2014, London, U.K.

ISBN: 978-988-19252-7-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2014

Fig. 4. rule 30, example of evolution and rules of transformation, as image
from [14]

depends on input and the number of iterations. Quantifying
rule 30 CC is shown below.

Let ln be the length of the input (ln = 43 figure 4) and
li be the number of iterations (li = 21 figure 4). If li ≤ ln
CC depends on li , and the number of paths ν(G) that the
algorithm can take is ν(G) = 2li. In the case li > ln the
number of paths is ν(G) = 2ln. The reason for that is that
the entropy of the number of paths is bounded by entropy of
input.

This means that if input length is smaller than number of
iteration, CC depends on input only as it is the case with
3n+1. Wolfram in his NKS [17] uses empirical methods to
argue on some rule 30 attributes. For example empirical data
shows that the period of rule 30 has an exponential growth
in relation to input, which indicates that above assertion of
exponential growth is true.

C. Rule 30 as hash function
Having the same algorithm structure as 3n+1, rule 30 is

also a candidate for the hash function. There is a proposal
which appeared on sci.crypt [18]

“Let length of constant c be a desired length of
a hash. Constant c can be arbitrary chosen. For
example if 128 bits hash is required the constant c
may easily be 128 zeros. The string s for hashing
is then concatenated to the constant c to form a
starting row r for rule 30; r = c + s. The row r is
then evolved twice row length. For example if c =
128 bits in length and s = 128 bits in length then
evolution is performed 512 times (column length is
512). Now the part (length of c) of last row serves
as a hash. From above example the first 128 bits
of 512th row is the hash h of the string s.”

The two major points raised in the discussion are the
efficiency of algorithm and the choice of c to be string
of zeros. Even though the proposed hash is not practical
(quadratic in nature) it is still in P . Constant c instead of
zeros should employ some pseudo-random string such as π
number sequence to avoid short cycle of rule 30.

IV. CONCLUSION

A. Summary
As is noted in the introduction, the whole discussion is

about three notions:

1) Structured Programming Theorem; particularly treating
branching as basic structure in programming.

2) Cyclomatic Complexity; exponential dependence be-
tween branching and number of execution paths a pro-
gram can take. Basically every branching potentially
doubles number of paths.

3) Formal description of an algorithm; requirement that
every branching in algorithm shall be fully defined.

The first option is: one or more of above do not hold. The
second option is: all above notions hold and there exists a
program without any knowledge of output behaviour before
input is presented. The discussion from this paper sees the
second option as true. The main arguments for this are:
• The 3n+1 parity sequence can be used as encoding

system, see subsection II-E. The argument is that 3n+1
encoding alias function description can not be simpler
than standard binary encoding of an input.

• The 3n+1 algorithm description exponential growth can
be reduced only if branching structure can be reduced
to sequential and iteration programming structure in
polynomial time. See subsection II-G.

• The random oracle framework provides the definition
of correlation intractability and how that requirement
can not be obtained by single function or function
assembly (see subsection II-F). Contrary to that notion
3n+1 algorithm looks like: (select f or g) ◦ (select f or
g) ◦ (select f or g) ◦ It is apparent that function
description without specific input is not present, and
that the input actually defines function composition.
Therefore there is the case when input description and
function description have the same complexity. That
case satisfies the correlation intractability requirement
(subsection II-F).

Other arguments are various empirical findings, for example
rule 30 is used as random number generator in Wolfram’s
Mathematica.

The common features of 3n+1 and rule 30 are:
• Composed from two distinctive functions f and g that

are not commutative f ◦ g 6= g ◦ f .
• Cyclomatic Complexity raise with every branching step

see subsection III-B
• Steps in program execution path are one of the function
f or g

• Probability of executing f or g in next step is 0.5

B. Randomness and simple arithmetic?

As is discussed in subsection II-F the proposition is to
exchange tables I and II without loosing any of the random
oracle properties. The similarity between tables is: Both
tables are impractical if used in tabular form. There is a
storage problem (for example how to store 2128 entries
and seek time costs). It is easy to see that random oracle
table can not be compressed because the second column
is by design true random. On the opposite side of tabular
representation spectrum is binary encoding (table III). If
input is given in the left column of the binary table it is easy
to calculate corresponding entry in the right column and vice
versa. This means that the tabular form is not needed (easily
calculated/compressed) because it is easy to calculate entries
both ways.

Proceedings of the World Congress on Engineering 2014 Vol I,
WCE 2014, July 2 - 4, 2014, London, U.K.

ISBN: 978-988-19252-7-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2014

TABLE III
BINARY ENCODING

n binary encoding

1 1

2 10

3 11

4 100

.

Now it is time to see how the hash function proposition
from subsection II-F reflects on parity and binary encoding
tables:
• Binary table is not affected if only part of the string

in the right hand column is provided. For example, if
the question is to find corresponding entries for binary
string beginning with 10, just appending arbitrary suffix
to 10 and decoding that string will find entry on the left
hand side column..

• The parity table in the case when only a partial string in
the right hand column is provided can not be calculated
or compressed. The simple reason is that entries can be
calculated only with complete input. Anything else faces
the ambiguous prospect of (f♣g) ◦ (f♣g) ◦ (f♣g) . . .
where f♣g means depending on input use function f
or use function g.

The question is: can observation of entries in parity table
(table II) provide any means of compressing that table? The
answer is no, because the branching structure of algorithm
prevents any type of Solomon-Kolgomorov-Chaitin (SKC)
reductions, even though the table is deterministic in nature.
In other words the data in the parity table ought to be random.
Rule 30 sequences are in the same category. It is remarkable
that randomness can be now interpreted as inability of
reducing selection criteria programming structure. Translated
to random oracle vocabulary that is notion of correlation
intractability.

C. P and NP

The 3n+1 proposal for collision resistance (subsection
II-F) can serve as P versus NP discussion as well. The game
is to find input x (natural number) and with that x to produce
the parity string px. Parity px = s||a is the concatenation of
given string s and arbitrary string a. Only one constraint is
lx = 2ls, where lx is the binary length of x and ls is the
binary length of the given string s.

For example the given string in C language notation
is char s = ”DoesPequalsNp?” has the binary length
lx = 14 ∗ 8. The task is to find natural number x with
binary length lx = 2 ∗ 14 ∗ 8 and with sequence char
px = ”DoesPequalsNp?...”.

First of all, nothing guaranties that any of the natural
numbers 224 bit long will produce required parity sequence.

Secondly, because matching parity is not fully defined
calculating x from s is impossible. The reasons are:
• To compose the transformation and do the calculation

full knowledge of input is needed, because only input
defines function composition.

• Trying to observe the mapping of natural numbers to
corresponding parities and hoping to find some pat-

tern/reduction is futile because the selection criteria
programming structure can not be reduced.

TABLE IV
THE COMPLEXITY OF 3N+1 FUNCTION COMPOSITION GROWS

EXPONENTIALLY; EXAMPLE OF FUNCTION 3 STEPS POSSIBLE OUTCOMES

(f♣g) ◦ (f♣g) ◦ (f♣g)

f ◦ f ◦ f
f ◦ f ◦ g
f ◦ g ◦ f
f ◦ g ◦ g
g ◦ f ◦ f
g ◦ f ◦ g
g ◦ g ◦ f
g ◦ g ◦ g

The game has all the main ingredients of P 6= NP . If
complete input (either natural number or parity) is provided
it is easy to do 3n+1 encoding (subsection II-E). If input
is not fully defined the only technique for finding natural
number/parity pair is exhaustive search. That exhaustive
search is exponential in nature (table IV). On the other hand
if match is found it is easy to verify that because complete
input is now known. A full version of work, including the C
code can be found here [19].

REFERENCES

[1] http://www.literateprogramming.com/mccabe.pdf (McCabe’s original
paper in IEEE Transactions on Software Engineering Vol. 2, No. 4,
p. 308 (1976))

[2] http://en.wikipedia.org/wiki/Algorithm (Wikipedia entry for Algorithm)
[3] http://en.wikipedia.org/wiki/Collatz conjecture (Wikipedia entry for

3x+1 problem)
[4] http://www.mccabe.com/pdf/mccabe-nist235r.pdf (McCabe’s extended

paper NIST)
[5] Silva, Toms Oliveira e Silva. Computational verification of the 3x+1

conjecture. http://www.ieeta.pt/tos/3x+1.html. Retrieved 27 November
2011.

[6] Krasikov, Ilia; Lagarias, Jeffrey C. (2003). Bounds for the 3x + 1
problem using difference inequalities. Acta Arithmetica 109 (3): 237-
258. doi:10.4064/aa109-3-4. MR 1980260.

[7] http://en.wikipedia.org/wiki/Random oracle (Wikipedia entry for Ran-
dom Oracle)

[8] Ran Canetti, Oded Goldreich and Shai Halevi, The Random Oracle
Methodology Revisited, STOC 1998, pp. 209–218

[9] O. Goldreich, S. Goldwasser, and S. Micali. How to construct random
functions. Journal of the ACM, 33(4):210{217, 1986.

[10] http://www.ams.org/bookstore/pspdf/mbk-78-prev.pdf (The 3x+1
Problem: An Overview Jeffrey C. Lagarias)

[11] http://en.wikipedia.org/wiki/Structured program theorem (Wikipedia
entry for the Structured Program Theorem)

[12] Feinstein, Craig Alan. ”The Collatz 3x+ 1 Conjecture is Unprovable.”
arXiv preprint math/0312309 (2003).

[13] http://en.wikipedia.org/wiki/Kolmogorov complexity (Wikipedia entry
for Kolgomorov Complexity)

[14] http://en.wikipedia.org/wiki/Rule 30 (Wikipedia entry for Rule 30)
[15] http://www.wolframalpha.com/input/?i=rule+30 (WolframAlpha entry

for Rule 30)
[16] http://www.wolframscience.com/nksonline/page-27?firstview=1 (A

New Kind Of Science Stephen Wolfram page 27)
[17] http://www.wolframscience.com/nksonline/toc.html (Stephen’s Wol-

fram A New Kind Of Science Online Book)
[18] https://groups.google.com/forum/?fromgroups#!searchin

/sci.crypt/rule$2030%7Csort:relevance/sci.crypt/EYtf32YUTWQ
/vwudrfeYCvUJ (Rule 30 as a hash function sci.crypt discussion)

[19] http://arxiv.org/abs/1309.0296 (A New Kind Of Complexity complete
work)

Proceedings of the World Congress on Engineering 2014 Vol I,
WCE 2014, July 2 - 4, 2014, London, U.K.

ISBN: 978-988-19252-7-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2014

