
 

 

  
Abstract—This work studies the free convection 

boundary-layer flow over a vertical wavy surface in bidisperse 
porous media with constant wall temperature. The two-velocity 
two-temperature model is used to derive the nonsimilar 
equations. The transformed equations of the boundary layer are 
solved by the cubic spline collocation method. The effects of the 
dimensionless amplitude, the inter-phase heat transfer 
parameter, the modified thermal conductivity ratio, and the 
permeability ratio on the heat transfer and flow characteristics 
have been studied. Results show an increase in the modified 
thermal conductivity ratio or the permeability ratio tends to 
increase the free convection heat transfer rate of the vertical 
wavy surface in bidisperse porous media. As the dimensionless 
amplitude increases, both the fluctuations of the local Nusselt 
number for the f-phase and the p-phase with the streamwise 
coordinate are enhanced. 

Index Terms—free convection, bidisperse porous 
medium, vertical wavy surface, boundary layer flow.   
 

I. INTRODUCTION 

HE applications of bidisperse porous media can be found 
in bidisperse absorbent for enhancing absorption 
performance, or in bidisperse capillary wicks within a 

heat pipe for enhancing heat pipe heat transfer rate. There are 
many papers on the heat transfer of free convection or mixed 
convection in bidisperse porous media. Nield and Kuznetsov 
[1] studied the conjugate forced heat transfer in bi-disperse 
porous medium channel. Nield and Kuznetsov [2] used a 
two-velocity two-temperature model to study the forced 
convection in a channel for a bi-disperse porous medium. 
Nield and Kuznetsov [3] examined the onset of convection in 
a bidisperse porous medium. Nield and Kuznetsov [4] studied 
the effect of combined vertical and horizontal heterogeneity 
on the onset of convection in a bidisperse porous medium. 
Nield and Kuznetsov [5] examined the free convection about 
a vertical plate embedded in a bidisperse porous medium.  
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Rees et al. [6] studied the vertical free convective 
boundary-layer flow in bidisperse porous media. Straughan 
[7] examined the Nield-Kuznetsiv theory for convection in a 
bidisperse porous medium. Kumari and Pop [8] studied the 
mixed convection boundary layer flow over a horizontal 
circular cylinder embedded in a bidisperse porous medium. 
Grosan et al. [9] studied the free convection heat transfer in a 
square cavity filled with a bidisperse porous medium. 
Narasimhan and Reddy [10] studied the free convection 
inside a bidisperse porous medium enclosure. Narasimhan 
and Reddy [11] examined the resonance of free convection 
inside a bidisperse porous medium enclosure. Nield and 
Kuznetsov [12] studied the forced convection in a channel 
partly occupied in a bidisperse porous medium. 

This work studies the free convection boundary-layer flow 
over a vertical wavy surface in bidisperse porous media with 
constant wall temperature. The two-velocity two-temperature 
formulation is used to derive the nonsimilar governing 
differential equations. The transformed equations of the 
boundary layer are solved by the cubic spline collocation 
method. The effects of the dimensionless amplitude, the 
inter-phase heat transfer parameter, the modified thermal 
conductivity ratio, and the permeability ratio on the free 
convection heat transfer characteristics are studied. . 

 

II. ANALYSIS 

Consider the free convection boundary layer flow from a 
vertical wavy surface in bidisperse porous media, as shown in 
Fig.1. The wavy surface profile is given by 

( )l/xsina)x(y πσ ==  (1) 

where a  is the amplitude of the wavy surface, and l2  is the 
characteristic length of the wavy surface. The surface of the 
wavy surface is maintained at a constant temperature wT , 
which is different from the porous medium temperature 
sufficiently far from the surface of the wavy surface.  

A bidisperse porous medium is a porous medium in which 
the solid phase is replaced by another porous medium. There 
are two phases, as shown in Fig. 2. One is the f-phase and the 
other is the p-phase. In a bidisperse porous medium, the fluid 
occupies all of the f-phase and a fraction of the p-phase. We 
denote the volume fraction of the f-phase by φ  and the 
porosity within the p-phase by ε . Thus φ−1  is the volume 
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fraction of the p-phase, and the volume fraction of the 
bidisperse porous medium by the fluid is ( )εφφ −+ 1 . Here 
we denote fT  and pT as the volume-averaged temperature of 
the f-phase and the p-phase respectively. The volume average 
of the temperature over the fluid is given by  

( )
( )εφφ

εφφ

−+

−+
=

1
1 pf
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TT
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Fig. 1. Physical model and coordinates for a vertical wavy 
surface. 

 

 

 

 

 

 

Fig. 2 Sketch of a bidisperse porous medium.  

The fluid properties are assumed to be constant except for 
density variations in the buoyancy force term. The governing 
equations for the flow, heat transfer near the vertical cone can 
be written as [5, 13] 

0=
∂

∂
+

∂

∂

y
v

x
u ff  (3) 

0=
∂

∂
+

∂

∂

y
v

x
u pp    (4)   

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
−

∂

∂
=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
−

∂

∂
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

x
v

y
u

x
v

y
uK

K
ppfff

f
ς

μ

ςμ 1
 

y
T

*g F
TF ∂

∂
+ βρ

 
(5)

 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
−

∂

∂
=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
−

∂

∂
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

x
v

y
u

x
v

y
uK

K
ffppp

p
ς

μ

ςμ 1
 

y
T

*g F
TF ∂

∂
+ βρ

 
(6)

 

( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
+

∂

∂

y
T

v
x

T
uc f

f
f

ffρφ
 

( )fp
ff

f TTh
y
T

x
T

k −+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
+

∂

∂
= 2

2

2

2

φ
 

(7)  

 

   ( )( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
+

∂

∂
−

y
T

v
x

T
uc p

p
p

ppρφ1  

( ) ( )pf
pp

p TTh
y
T

x
T

k −+
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂
+

∂

∂
−= 2

2

2

2

1 φ
 

(8)   

where fu  and fv  are the volume-averaged velocity 
components of the f-phase in the x  and y  directions. pu  
and pv  are the volume-averaged velocity components of the 
p-phase in the the x  and y  directions. fK  and pK are the 
permeabilities of the two phases, and ς  is the coefficient for 
momentum transfer between the two phases. Fρ  is the fluid 
density. Tβ  is the volumetric thermal expansion coefficient 
of the fluid. μ  is the viscosity of the fluid. Moreover, c is the 
specific heat at constant pressure and k  is the thermal 
conductivity. Moreover, h  is the inter-phase heat transfer 
coefficient, and *g  is the gravitational acceleration.  
   The boundary conditions for this problem are 

( )xy σ= : wf TT = , wp TT =  , 0=fv , 0=pv ,        (9)  

∞→y : ∞→ TT f , ∞→ TTp  , 0→fu , 0→pu       (10)  

Here we introduce the stream functions, fψ  and pψ , to 

satisfy the relations: 
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Moreover, we define the nondimensional variables and 
parameters: 
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Eqs. (3)-(8) become the following equations: 
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where the Darcy-Rayleigh number based on the characteristic 
length l and properties in the f-phase is given by 
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Moreover, the modified thermal capacity ratio, the 
f-phase momentum transfer parameter, the porosity 
parameter, permeability ratio, the modified thermal 
conductivity ratio, and the inter-phase heat transfer parameter 
are respectively defined as  
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The associated boundary conditions are given by 

( ) ( )xsinaxy πσ == : 0=fψ , 0=pψ , 1=fθ , 1=pθ  (19) 
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We can transfer the effect of wavy surface from the 
boundary conditions into the governing equations by the 
coordinate transformation given by  

xx~ = , ( )[ ]xyRay~ l σ−= 21 ,  flf Ra~ ψψ 21−= ,  

plp Ra~ ψψ 21−=  (21) 

Substituting Eq. (21) into Eqs. (13)-(16) and using 
boundary- layer approximation, we can obtain the following 
boundary-layer equations: 
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Table 1. Comparison of values of 
0=

′−
η

θmp  for free 

convection heat transfer from a vertical plate with constant 
wall temperature in mono-disperse porous media. 
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Fig. 3 The effect of the permeability ratio on the temperature 
profiles for the f-phase and the p-phase for 30.=ξ , 

60.H = , 1=β , 10.=γ , 010.f =σ , 50.=φ , 40.=ε , and 

75 /=τ .
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We may reduce Eqs. (22)-(25) to a form more convenient 
for numerical solution by the transformation: 

x~=ξ , ( )[ ]2121 ξση ξ+= /y~ , ( )ηξξψ ,g~
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Substituting Eq. (26) into Eqs. (22)-(25), we obtain the 
following equations:  
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where primes denote differentiation with respect to η. Note 
that the momentum equations have been integrated once 
about η to obtain Eqs. (27) and (28).  

The boundary conditions are transformed to 

0=η : 0=f , 0=g , 1=fθ , 1=pθ   (31) 

∞→η : 0→′f , 0→′g , 0→fθ , 0→pθ  (32) 

Moreover, the local Nusselt numbers for the f-phase and 
the p-phase can be derived as 
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where fff kxhNu =  and ppp kxhNu = . Note that fh  

and ph  are the convection heat transfer coefficient for the 
f-phase and the p-phase. The Darcy-Rayleigh number based 
on the streamwise coordinate x  and properties in the f-phase 
is given by 
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III. RESULTS AND DISCUSSION 

The transformed governing partial differential equations, 
Eqs. (29) and (30), and the associated boundary conditions, 
Eqs. (31) and (32), can be solved by the cubic spline 
collocation method [14]. The velocities f ′  and g ′  are 
calculated from the momentum equations, Eqs. (27) and (28). 

Moreover, the Simpson’s rule for variable grids is used to 
calculate the values of f and g at every position from the 
boundary conditions, Eqs. (31) and (32). At every position, 
the iteration process continues until the convergence criterion 
for all the variables, 610− , is achieved. Variable grids with 
350 grid points are used in the η -direction. The optimum 
value of boundary layer thickness is used. Moreover, the 
backward finite difference is used to calculate the derivative 
about the streamwise coordinate ξ.  

 

 

 

 

 

 

 

 

 

 

Fig. 4 The effect of the inter-phase heat transfer parameter on 
the temperature profiles for the f-phase and the p-phase for 

30.=ξ , 20.a = , 010.K r = , 1=β , 10.=γ , 010.f =σ , 

50.=φ , 40.=ε , and 75 /=τ . 

 

 

 

 

 

 

 

 

 

 

Fig. 5 The effect of the modified thermal conductivity ratio 
on the temperature profiles for the f-phase and the p-phase for 

30.=ξ , 50.H = , 010.Kr = , 1=β , 010.f =σ , 50.=φ , 

40.=ε , and 75 /=τ . 

To assess the accuracy of the solution, the present 
results are compared with the results obtained by other 
researchers. Table 1 shows the numerical values of 
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smooth plate in mono-disperse porous media with constant 
wall temperature. The present results are in excellent 
agreement with the results reported by Cheng and 
Minkowycz [15] and Rees and Pop [16].  

Fig. 3 shows the effect of the permeability ratio Kr on 
the temperature profiles for the f-phase and the p-phase. As 
the permeability ratio is increased, both the boundary layers 
of the solid phase and the fluid phase become thinner, thus 
increasing the temperature gradients of the f-phase and the 
p-phase. Moreover, a decrease in the permeability ratio tends 
to increase the temperature difference between the f-phase 
and the p-phase, thus enhancing the thermal non-equilibrium 
effect. 

Fig. 4 shows the effect of the inter-phase heat transfer 
parameter H on the temperature profiles for the f-phase and 
the p-phase. Results show that a decrease in the inter-phase 
heat transfer parameter tends to increase the temperature 
difference between the f-phase and the p-phase, thus 
enhancing the thermal non-equilibrium effect. In other words, 
when the inter-phase heat transfer parameter is small, the 
temperature field corresponding to the p-phase occupies a 
much greater region than does the temperature field of the 
f-phase. 

Fig. 5 shows the effect of the modified thermal 
conductivity ratio γ on the temperature profiles for the 
f-phase and the p-phase. As the modified thermal 
conductivity ratio is increased, both the boundary layers of 
the solid phase and the fluid phase become thinner, thus 
increasing the temperature gradients of the f-phase and the 
p-phase. Moreover, decreasing the modified thermal 
conductivity ratio increases the temperature difference 
between the f-phase and p-phase, thus enhancing the thermal 
non-equilibrium effect. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6 The effect of the permeability ratio on the local Nusselt 
numbers for the f-phase and the p-phase for 

20.a = , 50.H = , 1=β , 10.=γ , 010.f =σ , 50.=φ , 

40.=ε , and 75 /=τ . 

Fig. 6 shows the effect of the permeability ratio rK on 
the local Nusselt numbers for the f-phase and the p-phase. 
Results show that an increase in the permeability ratio tends 

to increase both the local Nusselt numbers for the f-phase and 
the p-phase. In other words, the heat transfer rate for the 
bidisperse porous medium can be effectively increased by 
raising the permeability ratio. Moreover, with smaller 
coordinates, the local Nusselt number for the f-phase is much 
higher than that for the p-phase. The two phases are in the 
state of thermal non-equilibrium. As the streamwise 
coordinate is increased, the local Nusselt number for the 
f-phase approaches that for the p-phase. The bidisperse 
porous medium gradually approaches the state of thermal 
equilibrium far downstream.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 7 The effect of the inter-phase heat transfer parameter on 
the local Nusselt numbers for the f-phase and the p-phase for 

20.a = , 010.Kr = , 1=β , 10.=γ , 010.f =σ , 50.=φ , 

40.=ε , and 75 /=τ . 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8 The effect of the modified thermal conductivity ratio 
on the local Nusselt numbers for the f-phase and the p-phase 
for 20.a = , 50.H = , 010.Kr = , 1=β , 010.f =σ , 50.=φ , 

40.=ε , and 75 /=τ . 

Fig. 7 shows the effect of the inter-phase heat transfer 
parameter H on the local Nusselt numbers for the f-phase and 
the p-phase. For a vertical wavy surface, decreasing the 
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inter-phase heat transfer parameter tends to increase the 
difference between local Nusselt numbers for the f-phase and 
the p-phase. In other words, lower values of the inter-phase 
heat transfer parameter leads to the state of thermal 
non-equilibrium between the p-phase and the f-phase of the 
bidisperse porous medium.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9 The effect of the dimensionless amplitude on the local 
Nusselt numbers for the f-phase and the p-phase for 

50.H = , 010.Kr = , 1=β , 10.=γ , 010.f =σ , 50.=φ , 

40.=ε , and 75 /=τ . 

Fig. 8 shows the effect of the modified thermal 
conductivity ratio γ on the local Nusselt numbers for the 
f-phase and the p-phase. For a vertical wavy surface, 
increasing the modified thermal conductivity ratio γ  tends to 
increase both the local Nusselt number for the f-phase and 
local Nusselt number for the p-phase. In other words, the heat 
transfer rate for the bidisperse porous medium can be 
effectively increased by increasing the modified thermal 
conductivity ratio. 

Fig. 9 shows the effect of the dimensionless amplitude 
a  on the local Nusselt number for the f-phase and the 
p-phase.  As the dimensionless amplitude increases, both the 
fluctuations of the local Nusselt number for the f-phase and 
the p-phase with the streamwise coordinate become larger. 
Moreover, the values of the local Nusselt numbers for the 
f-phase higher than those for the p-phase. 

 

IV. CONCLUSION 

This work has studied the free convection about a 
vertical wavy surface in bidisperse porous media with 
constant wall temperature. This work uses both the 
two-velocity two-temperature model and the coordinate 
transformation to obtain the nonsimilar boundary layer 
differential equations. The cubic spline collocation method is 
used to solve the boundary layer equations. The effects of the 
inter-phase heat transfer parameter, the modified thermal 
conductivity ratio, and the permeability ratio on the free 
convection heat transfer characteristics have been studied. 
Results show an increase in the modified thermal 

conductivity ratio or the permeability ratio tends to increase 
the free convection heat transfer rate of the vertical wavy 
surface in a bidisperse porous medium. Moreover, increasing 
the inter-phase heat transfer parameter tends to enhance the 
thermal non-equilibrium effect between the p-phase and the 
f-phase of the bidisperse porous medium. Increasing the 
dimensionless amplitude increases both the fluctuations of 
the local Nusselt number for the f-phase and the p-phase with 
the streamwise coordinate. 
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