

Abstract—In the paper, an autonomous recovery mechanism

based on VxWorks operating system was introduced so as to
improve the reliability of embedded software. The mechanism
uses software bus technique to manage the software
components in VxWorks. A component is defined as a software
module, which is usually a process. All software components are
mounted on the software bus. And the components are divided
into two types according to the way that they influence the
system, namely, cold backup components and hot backup
components. The autonomous recovery mechanism assures that
at least one component is in work state. The software bus
architecture and the reusable component technology can
improve the reliability, scalability, and maintainability of
embedded systems.

Index Terms—VxWorks, autonomous recovery, software bus,
signal mechanisms.

I. INTRODUCTION

ITH the development of computer technology and the
expansion of its applications, the reliability

requirements of computer systems are increasing. In the
aerospace, aviation, finance and other important areas, the
huge economic losses and the disastrous consequences
maybe occur since the work cannot be achieved in specified
time [1]. Therefore, in order to ensure the work (or the
program) of embedded systems to be done normally, the
reliability of the systems should be improved. Software
method is usually introduced in embedded systems to tolerate
the hardware faults and the software faults, which may break
the systems’ work down [2][3].

VxWorks is a high-performance, real-time, reliable
embedded operating system, which has become widely used
as the operating system for embedded systems. However, the
applications in operating system maybe introduce errors
because of the bugs in the programs. Therefore, it is
important to use some special methods to maintain the
reliability of the VxWorks based embedded systems in a
complex application environment.

This paper puts forward a software bus based method to
improve the embedded systems. On studying the common
faults of embedded systems [4][5], the paper introduces an

Manuscript received February 15, 2014.
Xing Weiyan is with the Equipment Academy, Beijing, 101416 China

(e-mail: xingweiyanld@163.com).
Liu Dong is with the Equipment Academy, Beijing, 101416 China (e-mail:

LD5M@163.com).
Li Ming is with the Military Economics Academy, Wuhan, Hubei

Province, 430035 China (email: 13007143832@163.com).
Jin Pengfei is with the Equipment Academy, Beijing, 101416 China

(e-mail: 18700401381@163.com).

autonomous recovery management mechanism, where the
application programs, or components, are especially
designed and can be autonomously recovered. The
mechanism ensures the embedded systems to work normally
by shielding the failures when fault occurs in the systems.

In this paper, the redundancy scheme, the
component-based software bus architecture, the autonomous
recovery technology based on software bus and some other
technologies are designed.

Section 2 and section 3 introduce the design and the
implementation of the software bus respectively. In section 4,
the paper tells how to develop the components using
autonomous recovery management. And the conclusion is
made in section 5.

II. THE ARCHITECTURE OF THE

COMPONENT-BASED SOFTWARE BUS

The fault-tolerant technology is one of the ways to provide
the autonomous recovery ability of the embedded systems [6].
It often means that the embedded systems can provide the
continuous services when a fault occurs by using redundant
resources. In this paper, two kinds of redundancy schemes
are taken into account, namely cold backup and hot backup.
The two redundancy schemes are managed by autonomous
recovery management software.

The autonomous recovery management software monitors
the faults in the system and assigns redundant resources
according to the different requirements of applications. The
management software takes the appropriate strategy
according to the type of the faults monitored to ensure the
applications to be recovered.

Usually, some principles for the design of embedded
systems should be taken into account. Firstly, the general
important specification should be recognized so as to help
understanding the advanced relationships in the system,
which is useful to establish new system on the basis of the old
system. Secondly, the right architecture is the key element
that ensures the success of software design, and it also can be
used as a framework which meets the demand of analyzing
and managing the system. Thirdly, the architecture can be
used as the medium for different developers in the system
development process. Finally, the architecture can help
overcome the obstacles of software reuse, which means that it
provides a road to reuse software based on software
architecture.

In this paper, we provide a component-based software bus
architecture. The architecture is scalable, maintainable and
reusable. It supports the "plug and play" of components and
the dynamic configuration of service interface, which make

Autonomous Recovery Technique of Software
Bus Based on VxWorks Operating System

Xing Weiyan, Liu Dong, Li Ming, Jin Pengfei, Member, IAENG

W

Proceedings of the World Congress on Engineering 2014 Vol I,
WCE 2014, July 2 - 4, 2014, London, U.K.

ISBN: 978-988-19252-7-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2014

the target system have a good flexibility. At the same time,
due to the reduction of the coupling among the various
components, each component can be independently
developed or modified as long as the interface provided is not
changed. This is especially helpful for parallel development.
Since the problem of component integration is not considered,
it allows developers to focus on business logic
implementation, which improves development efficiency. In
addition, the use of the component-based software bus
architecture makes a clear structure, which is conducive to
system maintenance and modification.

Therefore, on the basis of the above mentioned principles
as well as the advantages of software bus, the
component-based software bus architecture is put forward as
the autonomy recovery management software architecture in
this paper.

A. Component-based development method

Software components have different meanings in different
contexts. For example, it can be functional modules, classes,
objects, or a group of related functions. Other definitions of
software component include standard library, framework,
reusable software products, and so on. Usually, the
component has the following characteristics: 1) component is
self-contained software which has one or more well-defined
interfaces; 2) it is binary reusable, complies with certain
component specification, and can combine with other
components into a system where it is replaceable.

Component-based development method contains two life
cycles which are the development of reusable software
components and the development based on reusing
component. The development process is very different from
the traditional software development. In the various stages of
the life cycle, the development focuses on the software reuse
idea. Based on the reusable software component, the
component production and reusing are interrelated, which
fully implement the idea of software reusing in the various
stages of the software development process. In this paper, the
component based method is used in the process of developing
autonomous recovery management software, which
improves the maintainability of the system.

B. The architecture based on software bus

1. Component design
1) Business component
The business components in the business module are

responsible for the normal working of the business in
embedded systems. The idea of business component
redundancy in this paper is that two copies of the component
perform the same function, thereby increasing the availability
of the business component. In this paper, we provided two
schemes, namely cold backup redundancy scheme and hot
backup redundancy scheme.

In cold backup redundancy scheme, a copy of the business
component is used as the main working copy to perform
business function. The other copy is used as the cold backup
which is not running when the main working copy is working.
When a fault occurs in system, the autonomous recovery
component discovers the fault in time and starts the cold
backup copy that takes over the business of the fault

component, in which the fault occurs. During the process, the
work of the embedded system is not disturbed.

In hot backup redundancy scheme, the two components
copies are running at the same time, one of them is used as the
main working copy to perform business function. The other
copy is used as the hot backup, which is running but not
performs business. When a fault occurs in system, the
autonomous recovery component discovers the fault in time
and makes the hot backup copy take over the business of the
fault component in which the fault occurs. During the process,
the work of the embedded system is not disturbed.

2) The basic fault-tolerance component
In this paper, the basic fault-tolerance components in cold

backup redundancy scheme and hot backup redundancy
scheme are designed. The basic fault-tolerance components
include basic message requesting component, basic request
responding component, basic fault detection component,
basic response detection component and dynamic
reconfiguration component. The business component is
mounted on the software bus by the basic request responding
component. And other basic components are assembled into
the autonomous recovery component.

Usually, the requirements of the embedded system are
ever-changing, so the number of the business components
and the type of redundancy scheme are also changing in the
system, which requires that the system should have a good
scalability. In this paper, the software bus and the
component-based technology are combined in the process of
the development of autonomous recovery management
software, which solves the above problem. The process of
reusing the components being is shown in the Fig. 1.

3) The autonomous recovery component
The interaction between the autonomous recovery

component and the business components in cold backup
redundancy scheme and hot backup redundancy scheme
make the business component have the ability of recovery. In
autonomous recovery component, the invocation process to
basic tolerant component is described as follows:

(a) Send the request message to the business component by
the message requesting component;

(b) Business component responds by request responding
component, and the response message is sent to the fault
detection component;

(c) After the fault detection component get the response
message from the business component, it invokes the
response detection component to detect the message.

(d) If the business component is found bad, the fault
detection component invokes the dynamic reconfiguration
component to recovery the bad component by autonomous

Fig. 1 The process of reusing components

Proceedings of the World Congress on Engineering 2014 Vol I,
WCE 2014, July 2 - 4, 2014, London, U.K.

ISBN: 978-988-19252-7-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2014

recovery.
4) Communication component
In this paper, there are two types of communication

components, one is responsible for the interaction between
business components and the autonomous recovery
component, the other is responsible for the interaction
between the business components.

2. The design of software bus architecture
As shown in Fig. 2, any business components in redundant

resource repository (such as A or B) is regardless of what
kind of the function that they have, as long as they follow the
interface standard provided by the software bus. And the
business components can be directly plugged into the
software bus, by which they can interact with the autonomous
recovery component so as to have the ability of autonomous
recovery. Similarly as long as the business components
follow the communication interface, which the software bus
provided, they can be integrated directly into the system
environment and have the ability of communication between
the components by the service provided by data
communications components in software bus. Autonomous
recovery component and autonomous recovery backup
component can be independently developed. As long as they
follow the interface standard provided by the software bus,
they can provided the autonomous recovery service for the
business components. Autonomous recovery backup
component is responsible for monitoring the autonomous
recovery component and taking over the autonomous
recovery component when a fault is found in the latter.

The software bus provides some necessary functions such

as component management, data management, component
register management, message management, and so on.

Component management: providing the dynamic
reconfiguration management for the business components
and the autonomous recovery component in the form of the
task in VxWorks.

Data management: providing the management for the
communication among the business component and the
communication between the business component and the
autonomous recovery component.

Component register management: the information about
the business component and the auxiliary information about
the autonomous recovery function are registered with the
software bus. The register information contain the scheme
that includes the cold backup and the hot backup the business
component adopts, the number of the business component in
the corresponding redundant scheme, the autonomous
recovery strategy and so on. The above information is written

in the file, which is loaded when the system is started, and the
signal and memory resources are allotted.

Message management: providing management for signal
mechanism in VxWorks.

III. THE IMPLEMENT OF THE AUTONOMOUS

RECOVERY TECHNOLOGY BASED ON THE

SOFTWARE BUS

A. The type of fault

In “no response” failure, a request is sent from the business
component to the autonomous recovery component (see Fig.
3). If the business component doesn't response, the “No
Response” fault happens in the business component.

B. Resource Allocation

At the beginning of the system, the system provides some
resources that are signal and the shared memory for the
business component, which can accept the service of the
autonomous recovery component. The interaction between
the business component and the autonomous recovery
component by the method, which the software bus provides
in the form of the interface, makes that the autonomous
recovery component can monitor the business component.

1. Response structure
The software bus provides a response structure for the

business component which is plugged into the software bus
by the interface provided by the bus. The structure is shared
by the business component and the autonomous recovery
component. The response structure contains the ID of the
business component and the system time named Now_time.

2. Signal resources
Autonomous recovery component sends requests to the

business components through the signal mechanism. The
business components response after they received the
requests. And the response message of the process is written
to the response structure which is checked by the autonomous
recovery component.

C. The autonomous recovery of software bus

Shown in Fig. 4, autonomous recovery component sends a
signal to the business component, the business component
response after receiving the signal and waits for the
autonomous recovery component checking up the
information which is written in the shared structure. If the
time in the shared structure is between t1 and t2, the reaction
of the business component is normal, or the reaction is not
normal. If the reaction of the business component is not
normal, the autonomous recovery component provides
failure recovery service for the business component by
invoking dynamic reconfiguration component. In the cold

Fig. 3 The show of the fault named “no response”

Fig. 2 Software bus architecture

Proceedings of the World Congress on Engineering 2014 Vol I,
WCE 2014, July 2 - 4, 2014, London, U.K.

ISBN: 978-988-19252-7-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2014

backup scheme, the method of failure recovery is to replace
the main work component by starting the cold backup. In the
hot backup scheme, the method about failure recovery is that
the hot backup takes over the main work component in real
time.

D. The design of the autonomous recovery management
software

Since the autonomous recovery component is central to the
autonomous recovery software, it should be especially
designed so that it can be replace by a spare component if it
fails. The implementation scheme is list below:

1) Start the autonomous recovery component prior to a
spare one, and the time interval between these two
components is t.

2) Update t1 and t2 using the systematic time in the period
of Ta and Tb. If the autonomous recovery component is in
working state, the time space between t1 and t2 should be less
than Tb. Otherwise, the autonomous recovery component
works improperly. The relationship among t1, t2, t, Ta and Tb
is shown in Fig. 5.

IV. THE DEVELOPMENT PROCESS BASED ON

AUTONOMOUS RECOVERY MANAGEMENT

SOFTWARE

The steps of system development based on autonomous

recovery management software in this paper are list below:
1. The determination of demand
1) Determine the number of business component in the

system.
2) Determine the redundancy scheme of various business

components, namely whether the cold backup or the hot
backup scheme is needed to be adopted in the system.

3) Determine the possible fault types of each business
component.

4) Determine the communication relationships among
business components.

2. Component reusing
1) According to requirements, increase or decrease the

number of the resource allocated in software bus such as
sharing structure, signal resource, and so on.

2) According to the requirements, the original basic
fault-tolerant component is modified to make it meet the new
demand.

3) According to the communication relations among the
business components identified in the requirements, modify
the communication components.

3. The assembly of components
1) The basic fault tolerance components are assembled into

autonomous recovery component according to the certain
logic.

2) Various modules are associated by software bus, and
then, it can be downloaded to the target machine after it is
compiled.

V. CONCLUSIONS

In order to improve the reliability of the embedded
software, this paper puts forward the component-based
software bus as the autonomous recovery management
software architecture, where the autonomous recovery
technique is realized by redundant technology.

The software bus, designed in this paper, is more the
underlying communication platform, since is uses the signal
mechanisms and the shared memory mechanism of the
underlying library functions of VxWorks operating system.
Therefore, compared with the communication function
which is designed by common software developer, the
software bus has better security and reliability.

REFERENCES
[1] W. Shuda, “Study and design of the structure of on-board system

software based on software bus,” Computer Engineering, vol. 29, pp.
39-41, 2003.

[2] S. Changai, J. Maozhong, L. Chao, “Overviews on software
architecture research,” Journal of Software, vol. 13, pp. 1228-1235,
July 2002.

[3] H. Huimin, L. Qiurang, Z. Kailong, “Hybrid self fault-tolerant
mechanism of embedded multi-tasks software,” Computer Engineering,
vol. 18, pp.47-49, 2011.

[4] L. Zhengkui, Y. Deli, “Software component reused technology
overview,” Computer Engineering and Design, vol. 25, pp. 877-880,
June 2004.

[5] G. Deconinck, “Software-implemented fault tolerance arid separate
recovery strategies enhance maintainability,” IEEE Trans. on
Reliability, vol. 51, pp. 158-165, Feb. 2002.

[6] M. Oussalah, A. Smeda, and T. Khammaci, “An explicit definition of
connectors for component based software architecture,” in Proceedings
of the 11th IEEE International Conference and Workshop on the
Engineering of Computer-Based Systems, 2004

Fig. 5 The relationship of different time

Fig. 4 The process of autonomous recovery

Proceedings of the World Congress on Engineering 2014 Vol I,
WCE 2014, July 2 - 4, 2014, London, U.K.

ISBN: 978-988-19252-7-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2014

