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Abstract—A validated simulation model primarily requires 
performing an appropriate input analysis mainly by 
determining the behavior of real-world processes using 
probability distributions. In many practical cases, probability 
distributions of the random inputs vary over time in such a 
way that the functional forms of the distributions and/or their 
parameters depend on time. This paper answers the question 
whether a sequence of observations from a process follows the 
same statistical distribution, and if not, where the exact change 
points are. We propose a Likelihood Ratio Test (LRT) based 
method to detect multiple change points when observations 
follow non-stationary Poisson process with diverse occurrence 
rates over time. Results from a comprehensive Monte Carlo 
study indicate satisfactory performance for the proposed 
methods. 

 
Index Terms—Simulation input data analysis, Non-stationary 
Poisson process, Cluster analysis, Change point detection. 

 

I. INTRODUCTION 

IMULATION input data analysis is often considered as a 
vital step in most simulation experiments enabling 

analysts to drive reasonable models from real world systems. 
The ultimate goal of input data analysis is selection of valid 
input models, mainly the statistical distributions that 
appropriately represent the behavior of the system under 
consideration. In the simplest case, an input parameter is 
assumed to be independent and identical random variable 
(i.i.d), which follows a known and standard distribution. 
However, in many real-world cases, there is no guarantee 
that such assumptions are always met. [1] Noted that there 
are many alternatives to these assumptions that can be 
addressed in different applications. For instance, the input 
data may be correlated which means the consecutive 
observations depend on each other. In fact, the observation t 
can be modeled with a linear or nonlinear combination of the 
last observations t − 1, t − 2, . . . together with an 
independent white noise. 

A general model frequently used to represent non-
stationary processes, especially arrival times, is 
Nonhomogeneous Poisson Processes (NHPP), which has 
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successfully been performed to model complex time-
dependent arrival processes in many simulation studies [2]. 
In a NHPP, it is assumed that the arrival rate λ depends on 
time. Hence, N(t), the number of arrivals during the time 
interval (0,t], varies over time and time-dependent arrival 
rate denoted by λ(t) is a nonnegative, integral function 
satisfying the usual Poisson assumptions. 

In case that the arrival rate exhibits a strong dependence or 
a specific and complex pattern i.e. cyclic, nested cyclic, or 
trend patterns, researchers often estimate the mean-value 
function E[N(t)] over time using different parametric and 
nonparametric methods. [3], [4], and [5] addressed the 
estimation of mean- value function using parametric 
methods. [6], [7], [8], [9], [10], [11], [12], [14], and [13] 
proposed different nonparametric or semi-parametric 
methods to estimate the mean-value of a NHPP as a function 
of t. Alternatively, another method used to model such a 
process is to divide the time interval (0, t] to a finite number 
of disjoint subintervals and estimate λi for the ith subinterval. 
[15] Discussed that this method is a heuristic but practical 
approach; however, there is still an important unanswered 
question on how one decides on the length of subintervals. 
Although a graphical method for approximately 
determination of the subinterval bounds is proposed, but the 
performance of the suggested method is not investigated 
through the use of statistical measures. In this paper, we 
propose an approach, based on LRT, capable of detecting the 
cluster patterns in a given data set and estimating the change 
points (the subintervals of length) for each cluster. We 
examine our proposed method using a comprehensive 
simulation study and different performance measures, i.e. 
change point locations and dispersions and number of 
detected changes. The rest of this paper is organized as 
follows. In Section II, the problem is discussed in details and 
a basis for applying change point detection techniques in 
simulation input analysis is provided. The LRT method is 
briefly presented in Section III. In Section IV, the 
performance of the proposed method based on accuracy and 
precision measures are evaluated. Lastly, our concluding 
remarks are presented in the final section. 

II. PROBLEM STATEMENT 

Change point detection techniques have successfully been 
used in numerous statistical methods including regression 
analysis, statistical process control, signal processing, and 
pattern recognition. These techniques typically deal with 
identifying the time that a change occurs in the observations 
of a data set collected over time. If a data set has one or more 
change points, at least a part of observations has different 
moment(s) and/or different distribution(s) from the rest of 
observations. In this section, we present the general problem 
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of change point detection for simulation input variables when 
observations are clustered. A random input variable can be 
considered as a stochastic process, so data set S can be 
defined as a collection of random variables S={Xt; 1,2,…,m} 
over time. Note that the index t represents the order of 
variables (discrete event variables) and S is a finite set. In 
order to fit a specific probability distribution to data set S, we 
must check whether the observations are independent and 
identical. The second assumption indicates that xt’s should 
follow the same probability distribution ܨ௧ሺ⋅ሻ ൌ ;ሺ⋅ሻܨ ݐ ൌ
1,… ,݉.  

Now assume that xt’s are not identical but they are 
clustered in R+1 different populations. In this situation, data 
set S can be divided into R+1 disjoint subgroups, S1, 
S2…SR+1 whose union is S. Besides, it is assumed that 
observations within Si are independent and identically 
distributed; however, observations from two successive sets 
are unlike. Let τj be the jth change point in data set S where τj 
; j=1,2,…,R is subjected to 0 < τ1 < …< τR < m. In this paper, 
it is assumed that τj is the location of the first element of set 
Sj, it is of interest to estimate locations of change points τj′s 
in a statistical array of data obtained (or being augmented) 
as a result of some industrial, simulation, or other types of 
exper- iments. Several approaches have been proposed for 
the case when there are multiple changes in the location 
parameters of random variables. Some researchers studied 
nonparametric change point detection methods which do not 
require any distributional assumptions (See for example 
[20],[16] and [17]. Using single change point detection 
methods is another approach that can be used for the 
identification of multiple change points. [18] pointed out 
that a method for detecting and estimating a single change 
point may be able to apply for multiple changes by binary 
segmentation. Regarding this issue [19] stated that for the 
data sets which need not to follow any single pattern or 
regime, the presence of multiple change point estimators 
may be inaccurate. In the next section, we present a binary 
segmentation method, which is based on the likelihood ratio 
test for exponential random variables. 

III. PROPOSED METHOD 

Likelihood Ratio Test (LRT) has been considered as one of 
the most powerful tools for detecting one or more changes 
in a set of observations in applied statistics literature. This 
procedure consists of calculation of the likelihood function 
for all possible partitions of the data set into typically two 
groups. When LRT statistic exceeds a threshold value, a 
change point is detected and the most likely location of the 
change is determined by the partition corresponding to the 
maximum value of the statistic. The LRT method can be 
applied to detect not only the presence of multiple change 
points in an input data set, but also their locations as well. 
As previously stated, once a single change point is detected, 
the data set is divided at the estimated change point and the 
LRT statistic is formed separately for the two new groups. 
Although most researchers asserted that LRT method 
outperforms many competing approaches in identifying 
change points but it has a restrictive assumption, i.e. 
knowing the exact the probability distribution of the random 
inputs before estimating the change points. Since LRT 
method relies upon distributional assumptions, the 
probability distribution of the input data set should be 
specified prior to constructing an appropriate LRT statistic. 
Despite the fact that the probability distribution of some 

input variables like interarrival time can be guessed (Law, 
2007), in most practical cases, it is actually not easy to have 
an accurate insight about the exact distribution of the input 
data. In this situation, one can apply generalized likelihood 
ratio test derived from a general distribution such as 
exponential family distributions, Johnson’s system of 
distributions, Bzier distribution family. In this paper, we 
consider the case that observations simply come from an 
independent univariate exponential distribution with rate 
parameter of λ. Again assume that there is a random data set 
from an input variable including m independent 
observations x′ts such that ݔ௧ ∼ ,௝ሺ⋅ሻܨ ௝߬ିଵ ൏ ݐ ൑ ௝߬; ݆ ൌ
1,… , ܴ ൅ 1 where τj is the jth change point, τ0 =0 and τR+1 

=m. Suppose that the first change point in the mean of 
observations which may be detected is located in the m1th 
observation such that m1 < m and m1 + m2 = m. Log of 
likelihood function for xt is 

                        loge   xt
                                              (1) 

and log of likelihood function for the first m1 observations is 
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which is the maximum likelihood estimator (MLE) for the 
first m1 observations. The maximized value of the LRT 
statistic is then 
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Similarly, the likelihood function for the remaining m2=m-
m1 observations is maximized when   
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Hence, under the alternative hypothesis Ha which state 
that there is at least a change point in the random input data 
set, the maximum log-likelihood function for all 
observations is the sum of the two log-likelihood functions  
 

                            .21 LLLa                                              (7) 
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Conversely, if all m observations in the input data set are 
independently and identically distributed then the likelihood 
function is maximized when 
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If La is considerably larger than L0 we could conclude Ha 
with 100 (1-) percent, i.e. our input data are not 
homogeneous over the whole time span in which they were 
being gathered. This enables us to statistically diagnose the 
presence of nonhomogeneity in random input data set S={Xt; 
1,2,…,m} and also provides a base for estimating the exact 
length of subintervals more accurately. It should be pointed 
out that  
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has asymptotically a chi square distribution with one degree 
of freedom, with large values signaling nonhomogeneous 
input data. For the large sample approximation see Wilks 
(1947, p. 151) or Mood, Graybill, and Boes (1974, p. 441). 
Clearly, the value of m1, the number of observations in the 
first group, which maximizes equation (13) is the maximum 
likelihood estimate for the change point location, provided 
that one exists. Hence, maximum value of equation (13) 
beyond a predefined boundary indicates that input 
observations are not all from an identical distribution. 

At this point, we shall consider the behavior of the 
statistic in equation (13) briefly. Based on 4000 simulation 
runs each with m observations derived from a homogeneous 
exponential distribution, Elrt [m1,m2], the estimated 
expected value of equation (13) is calculated for each value 
of m1 using  

                         1 2 1 2Elrt , lrt , .m m E m m                             (11) 

Without loss of generality, it is assumed that m is 50 and 
the homogeneous distribution has a mean equal to 1/λ. The 
results (not reported here) imply that the homogeneous 
expected value of equation (13) is not the same for all values 
of m1. If m1 or m2 is small, the expected value is always 
larger than when they get close to each other. In fact, 
expected value of likelihood ratio tests is likely to be shaped 
as a bathtub with heavy tails. Therefore, it is desirable to 
improve the statistic in (13) by dividing each statistic by its 
relevant homogeneous expected value, i.e. 
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     In this way the resulting expected value is the same for 
all values of m1. So we apply the improved test statistic in 
(15) instead of equation (13) in our study. In the next 
section, we statistically compare the efficacy of our 
proposed methods using Monte Carlo simulation. 
 

IV. NUMERICAL EXAMPLES 

Researchers often use two different categories of measures 
for comparing the efficiency of change point detection 
techniques namely accuracy performance that shows how 
close a measured value is to the actual value and precision 
performance that rates how close the measured values are to 
each other. To completely investigate the performance of the 
proposed change point estimator, we report measures 
evaluating both categories for the case that there are 
multiple changes in random input data S. It is assumed that 
input observations are univariate exponential random 
variables and there are R changes in the data set. The rate 
parameter in each group is identical but they differ between 
consecutive groups. Presume Λ={μj+1 | μj+1 = μj + δ×(-1)j; 
μj=1/λj;  j=0,1,…,R-1} is the set of change values where λ0 is 
a predefined initial value and δ is the magnitude of change. 
Λ is defined such that the difference in rate parameter for 
two consecutive groups is identical and equal to δ. For 
example, imagine that there are R=4 groups with different 
rate parameter values and let λ0 = 1 and δ = 3. In this case, 
sequence Λ is defined as Λ = {1, 4, 1, 4}. We also consider 
equally spaced changes alternating between two groups. For 
example, a single change would be midway in the data sets, 
and two shifts would be after one-third and two-third of the 
data sets, etc. One could consider an alternative model in 
which the change locations would be specified randomly 
(Turner (2001)). 

A. Accuracy performances of change point estimator 

It is assumed that there are m=200 observations from a 
simulation input variable and it is of interest to detect any 
changes in random data set S and their locations. The 
number of changes are set equal to R=1, 2, 3, 4 and τj; 
j=1,…,R is the true location of the jth change. Thus, if there 
is a single change in the data set, then R=1, τ1 = 101 and 
there are two different groups. The first group consists of the 
first 100 observations and the second group consists of the 
second 100 observations. Similarly, if there are four changes 
in the data set, R=4 then τ1 to τ4 are namely 40, 80, 120, and 
160. In this case, there are five different groups: the first 
group consisting of the first observation to the 40th 
observation, the second group consisting of the 41st 
observation to the 80th observations and so on. To estimate 
τj’s, 1000 replications are used in each simulation run. Both 
change point estimators can be designed to be capable of 
detecting at most seven potential changes. However, one 
could design both change point detection techniques to be 
capable of detecting and estimating more or less changes. 
Considering at most seven changes in a data set of size 200, 
we can evaluate the first seven dj*’s in clustering method 
and seven consecutive segments in the LRT method.  
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For the clustering method, the threshold values for d1* to 
d7* are set equal to 0.7686, 0.9435, 0.7571, 0.8119, 0.7343, 
0.7369 and 0.6911, respectively leading to probability of 
false detection values (type I error) namely 0.03, 0.02, 0.02 
0.01, 0.01, 0.01, and 0.01. In this case, according to 
Bonferroni inequality, the overall probability of false 
detection (overall) cannot exceed 0.11. The threshold values 
were calculated via Mont Carlo simulation by generating 
100 sets each consisting of 100 values of d1* to d7* and 
estimating the 100(1- α) percentiles of d1* to d7* where 
there is no change in the data sets. It is also worth 
mentioning, we apply the Box-Cox transformation for xt’s as 
shown in equation (3) to stabilize the standard deviation of 
input variables and increase the performance of the 
clustering method. Using 100,000 observations, η was 
estimated to be 0.24. Therefore, all observations transform 
into x0.24. Also we take into account the effects that may 
caused by not using the Box-Cox transformation and also by 
using top-down (divisive) hierarchical clustering algorithm 
instead of bottom-up method. 

Also for the LRT method, we first estimate Elrt array for 
all possible values of m1 using 4,000 simulation runs while 
m=200 and then we utilize the improved statistic in equation 
(15). If lrt1* exceeds its corresponding threshold value, the 
data are separated at the location of lrt1*. Then the method 
is repeated for two new subsets and is continued for at most 
20+21+22=7 segments. The threshold values for lrt1* to lrt7* 
are set equal to 0.7686, 0.9435, 0.7571, 0.8119, 0.7343, 
0.7369, and 0.6911, respectively leading to probability of 
false detection values (type I error)  namely 0.03, 0.02, 0.02 
0.01, 0.01, 0.01, and 0.01. Table 1 shows the estimate of 
change point(s) obtained by clustering method and their 
standard errors (in the parenthesis) where there are R=1, 2,  

3, and 4 changes in the simulation input data. As 
mentioned before, we investigate the seven consecutive dj’s 
and select the last jth which exceeds its threshold value. If dq; 
q < 7, is the last dj’s that is greater than its threshold value, 
Then lj; j=1,2,…,q is considered as the estimate of the jth 
change point location. Because there are R changes in the 
input data set, the value of q > R indicates one or more false 
detections.  

In Table 1, we consider the R first change point locations 
lj’s, where q > R and the q first change point locations where 
q< R. It can be observed that the hierarchical clustering 
method performs properly when the magnitude of change in 
the mean is greater than 1 (δ>1). For small changes in the 
mean value, the clustering method has a bias, which 
increases as the magnitude of change decreases. 

However, for larger magnitude of changes in rate 
parameter (δ>1), the estimates of change locations are 
approximately unbiased. It is worth mentioning that 
hierarchical clustering method tends to overestimate the 
locations of the first changes and underestimate the 
locations of the last changes. Table 2 displays the estimates 
of change locations based on the LRT method with their 
related standard error (in the parenthesis) when there are 
R+1 subgroups differing in rate parameter. Note that the 
LRT method performs effectively when there is a single 
change point in the input data set and provides unbiased 
estimates for change location. 

This method performs appropriately as well if there are 
more than one changes and the magnitude of shift is larger 
than one. Although there is a small biasness, particularly in 
intermediate change points, the magnitude of biasness is not 
very large to seriously affect groups. 

 
 

  Number of change points 

 R=1  R=2  R=3  R=4 

 τ1=100  τ1=66 τ2=133  τ1=50 τ2=100 τ3=150  τ1=40 τ2=80 τ3=120 τ3=160 

δ cτ1ˆ   cτ1ˆ  cτ2ˆ   cτ1ˆ  cτ2ˆ  cτ3ˆ   cτ1ˆ  cτ2ˆ  cτ3ˆ  cτ4ˆ  

0.5 
109.5  76.5 104.3  59.0 102.6 126.6  47.3 86.6 110.0 134.7 

(1.20)  (0.94) (1.29)  (0.73) (1.52) (1.31)  (0.57) (1.24) (1.13) (1.27) 

1 
107.3  77.1 116.2  58.5 98.7 139.3  46.7 84.1 115.0 153.1 

(0.72)  (0.71) (0.88)  (0.55) (1.07) (0.97)  (0.47) (1.09) (0.93) (0.83) 

2 
102.5  69.1 129.6  54.0 96.8 150.7  44.0 77.2 121.5 157.4 

(0.25)  (0.28) (0.30)  (0.32) (0.41) (0.48)  (0.29) (0.46) (0.46) (0.47) 

3 
101.7  67.8 131.4  51.9 97.8 152.1  42.0 78.1 121.8 157.7 

(0.14)  (0.14) (0.15)  (0.16) (0.18) (0.18)  (0.17) (0.18) (0.19) (0.19) 

4 
101.3  67.2 131.8  51.4 98.7 151.4  41.5 78.4 121.3 158.4 

(0.11)  (0.10) (0.11)  (0.11) (0.12) (0.11)  (0.12) (0.12) (0.12) (0.12) 

5 
101.1  67.0 131.8  51.1 98.7 151.0  41.2 78.8 121.2 158.8 

(0.09)  (0.08) (0.09)  (0.09) (0.09) (0.09)  (0.09) (0.09) (0.09) (0.10) 

Table I: Accuracy performances for the clustering method when there are R changes in locations τj; j=1,…,R
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B. Precision performances of change point estimator 

Researchers believe an esestimator with good per- 
formances in estimating location of changes may inherently 
have poor performances in terms of dispersion. In this 
situation, the estimator provides estimates that are close to 
the true location in average but far from each other. An 

indication of the precision of two estimators is confidence 
set that is the observed frequency with which the change 
point estimators were within a given number of subgroups 
of the actual change point. Table 2 presents the precision 
performance values given by the LRT method over different 
values of δ. It is shown that although a change of size δ=0.5 
may be far from the true location of change, the method 
totally have an appropriate performance.  

LRT  Method 

δ 0|)ˆ(|ˆ 11 cτP 1|)ˆ(|ˆ 11 cτP 2|)ˆ(|ˆ 11 cτP 5|)ˆ(|ˆ 11 cτP 10|)ˆ(|ˆ
11 cτP 15|)ˆ(|ˆ 11 cτP 25|)ˆ(|ˆ

11 cτP

τ1 

0.5 0.10 0.14 0.17 0.31 0.43 0.57 0.79 

1 0.15 0.32 0.44 0.64 0.76 0.83 0.94 

2 0.26 0.49 0.63 0.80 0.90 0.95 0.99 

3 0.37 0.62 0.76 0.88 0.95 0.98 1.00 

4 0.46 0.73 0.84 0.93 0.97 0.99 1.00 

5 0.49 0.72 0.83 0.94 0.96 0.98 1.00 

        

 0|)ˆ(|ˆ
22 cτP 1|)ˆ(|ˆ 22 cτP 2|)ˆ(|ˆ 22 cτP 5|)ˆ(|ˆ 22 cτP 10|)ˆ(|ˆ

22 cτP 15|)ˆ(|ˆ 22 cτP 25|)ˆ(|ˆ
22 cτP

τ2 

0.5 0.04 0.13 0.18 0.33 0.62 0.73 1.00 

1 0.16 0.27 0.37 0.62 0.80 0.92 1.00 

2 0.22 0.43 0.54 0.70 0.84 0.94 1.00 

3 0.25 0.42 0.54 0.72 0.88 0.95 1.00 

4 0.31 0.46 0.59 0.73 0.87 0.95 1.00 

5 0.25 0.42 0.53 0.70 0.89 0.96 1.00 
 

 0|)ˆ(|ˆ
33 cτP 1|)ˆ(|ˆ 33 cτP 2|)ˆ(|ˆ 33 cτP 5|)ˆ(|ˆ 33 cτP 10|)ˆ(|ˆ

33 cτP 15|)ˆ(|ˆ 33 cτP 25|)ˆ(|ˆ
33 cτP

τ3 

0.5 0.04 0.08 0.27 0.40 0.69 0.90 1.00 

1 0.12 0.26 0.33 0.56 0.77 0.91 1.00 

2 0.22 0.41 0.53 0.72 0.91 0.98 1.00 

3 0.26 0.44 0.56 0.74 0.90 0.96 1.00 

4 0.28 0.45 0.54 0.72 0.87 0.97 1.00 

5 0.26 0.41 0.53 0.72 0.88 0.96 1.00 

        

 0|)ˆ(|ˆ
44 cτP 1|)ˆ(|ˆ 44 cτP 2|)ˆ(|ˆ 44 cτP 5|)ˆ(|ˆ 44 cτP 10|)ˆ(|ˆ

44 cτP 15|)ˆ(|ˆ 44 cτP 25|)ˆ(|ˆ
44 cτP

τ4 

0.5 0.04 0.10 0.21 0.46 0.71 0.85 1.00 

1 0.13 0.32 0.44 0.63 0.85 0.93 1.00 

2 0.24 0.50 0.61 0.80 0.94 0.99 1.00 

3 0.34 0.63 0.76 0.90 0.97 0.99 1.00 

4 0.44 0.69 0.80 0.94 0.99 1.00 1.00 

5 0.48 0.76 0.86 0.95 0.99 1.00 1.00 

        

Table II:  Accuracy performances for the LRT method when there are R changes in locations τj; j=1,...,R 
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V. CONCLUSION 

In this paper, we address a frequently occurring problem in 
simulation input modeling where input data is not stable 
over time but can be clustered in identical groups. The 
methods deal with identifying the locations (groups) in such 
a way that the observations within each group follow the 
same probability distribution but observations in two 
consecutive groups have different distributions. Regardless 
the fact that our method reveals acceptable results in terms 
of accuracy and precision performances, it still relies on 
relatively tight distributional assumptions. Modifications of 
such obstacles can be considered as a good future research. 
Furthermore, the LRT method can be generalized by 
obtaining the LRT statistic for more general distributions i.e. 
Johnson distribution or exponential family distributions. 
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