
UAV Path Planning with Parallel Genetic
Algorithms on CUDA Architecture

Ugur CEKMEZ, Mustafa OZSIGINAN, Musa AYDIN and Ozgur Koray SAHINGOZ

Abstract——In recent years, Unmanned Aerial Vehicles
(UAVs) have been emerged as an attractive technology for
different types of military and civil applications, which have
gained importance in academic researches. In these emerging
research areas, UAV autonomy gets a great part of the study,
and mainly it refers the ability for automatic take-off, landing
and path planning of UAVs. In this paper, we focused of the
path planning of UAVs for controlling a number of waypoints
in the mission area. If the area is large and the number
of points that must be checked is greater, then it is not
possible to check all possible solutions, therefore, we have to
use some efficient algorithms, like genetic algorithms (GAs),
to calculate an acceptable path. However, if the number of
waypoints exceeds a certain number, then we have to use some
additional accelerating mechanisms to speed up the calculation
time. Typically two techniques are used for speeding up:
parallelization and distribution of calculation. In this paper
genetic algorithm is parallelized on CUDA architecture by
using Graphical Processing Units (GPUs). Experimental results
showed that this approach produces efficient solutions in a short
time.

Index Terms—Parallel Genetic Algorithm, CUDA, GPU, High
Performance, 1T1P, Local Search

I. INTRODUCTION

IN the last few decades, Unmanned Aircraft Systems
(UASs) represent one of the most interesting technologies

due to the advantages of Unmanned Aerial Vehicles (UAVs),
such as high mobility, light weight, stealth and zero emission
properties, etc. As a result of these advantages, UAVs are
very useful tools not only in military but also in civilian
missions such as surveillance, reconnaissance, targeting, etc.
A UAV is mainly a remotely controlled or autonomously
controlled aircraft, which can carry a specific payload such
as cameras; Electro Optical, Infrared, and Synthetic Aperture
Radar (SAR); some communication equipment and weapons
for combat vehicles.

UAVs can vary in terms of their usage areas, ranges, sizes,
and capabilities. Mini and lightweight UAVs have limited en-
durance and flying range, therefore, they are used for close-
range missions. However, the larger and heavier ones have
higher endurance, therefore, they can have a longer range and
can be used in specific missions, which need operational level
intelligence. At the same time, UAVs can also be divided into
three main classes in terms of their design. Two of them are
with heavier-than-air technology: rotary-wing aircrafts (e.g.

Manuscript received March 14, 2014 revised April 10, 2014
U. Cekmez, Department of Computer Engineering, Yildiz Technical

University, Istanbul, Turkey, ucekmez@yildiz.edu.tr
M. Ozsiginan, Aeronautics and Space Technologies Institute, Turkish Air

Force Academy, Istanbul, Turkey, mustafaozsiginan@gmail.com
M. Aydin, Department of Computer Engineering, Fatih Sultan Mehmet

Vakif University, Istanbul, Turkey, maydin@fsm.edu.tr
O.K. Sahingoz, Department of Computer Engineering, Turkish Air Force

Academy, Istanbul, Turkey, sahingoz@hho.edu.tr

helicopters) and fixed-wing aircrafts (e.g. airplanes). One of
them is aerostatic aircraft (e.g. hot air balloons).

With their different type of evolution, UAVs have been used
in lots of different application areas. By increasing the au-
tonomous structure of the system, diversity of the application
areas are increased. UAVs have increasingly become more
autonomous and intelligent by its enhanced decision-making
capability, which is programmed and loaded previously.
Therefore, in the mission of a UAV, autonomous flying plays
an important role by using path planning algorithms, which
represent a prominent technology for highly independent
operations.

In general path planning operation, it is aimed to find the
optimal path from the starting point to the ending point sub-
ject to go over some waypoints by taking into consideration
of some operational constraints. In this operation, several
factors should be considered, such as UAV kinematics, terrain
information (e.g. mountains) and threat information (e.g.
radars). In case of large mission area and large number
of waypoints, it is hard to find best path due to the expo-
nentially increased search domain. Evolutionary Algorithms
(e.g. genetic algorithms) are optimization tools for NP-hard
problems, such as the path-planning problem. Although they
do not guarantee the best solution, it is possible to find near
optimal solution in an acceptable time in a robust structure
with compared to existing directed search methods. They
are also easy to implementation both in serial and parallel
architecture [1]. Therefore, GA is preferred for solving path
planning problem of a UAV.

Although, GA finds a near optimal solution, if the number
of constraints is increased, it gets a long time to find a
solution. To solve these type problems in real time some
additional mechanism must be taken into consideration to
speed up the calculation time. In many research parallel
solution is preferred by using multi processors, multi-cores,
or Graphic Processing Units (GPUs).

GPUs have emerged recently as an exciting new hardware
which enables a highly parallel and fully programmable
implementation and execution environment. They have ex-
cellent performance/price ratio, and they can reach a perfor-
mance of thousands of giga-FLOPS (floating point opera-
tions) per second. Due to the inherently parallel nature of
Genetic Algorithm, it is relatively easy way to implement on
GPUs. However, it also brings some significant challenges
due to its synchronization points and memory access patterns.

The aim of this paper was to propose efficient paral-
lelization strategies of UAV Path planning system, which is
implemented with Genetic Algorithms on CUDA architecture
with Graphics Processing Units. The experimental results
showed that, in case of large and complex problem domain,
the proposed approach produces a near optimal solution in
an acceptable time.

Proceedings of the World Congress on Engineering 2014 Vol I,
WCE 2014, July 2 - 4, 2014, London, U.K.

ISBN: 978-988-19252-7-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2014

The rest of the paper is organized as follows: Section
2 presents the background information about UAV Path
Planning, CUDA Architecture and Genetic Algorithms. Then
Implementation details of the Parallel structure of the pro-
posed algorithms are depicted in Section 3. Section 4. Gives
the experimental result of the parallel approach and finally
conclusion and future works are explained in Section 5.

II. RELATED WORKS

The path planning problem is similar to the traveling
salesman problem that is one of the well-known and practiced
combinatorial optimization problems in computer science.
Many researchers planning to study on the UAV path plan-
ning starts to solve the TSP first, then adapts it to solve the
path planning by considering the limitations of the UAV as
well as the environment.

Sanci and Isler suggest an approach to solve the path
planning problem by using parallel genetic algorithm on
GPU architecture. The approach is converted to TSP in
order to simulate it easily and it is compared to the CPU
version and the experimental results show that the parallel
version has a promising speedup rates. Although the CPU
and the GPU versions of the algorithm are almost same,
some hardware-dependent limitations make minor changes
in the either codes [2].

In the survey that Knysh ve Kureichik has studied, the par-
allel approaches for the genetic algorithm are examined. The
study shows that many of the works take the synchronization
and the interaction between the populations into account so
that it affects the distributed structure of the parallel GA.
As a result, the problem-specific criteria is touched upon to
see whether the parallelization of the GA speeds the process
up[3].

Another study on implementing the GA to solve the TSP
tries to develop order crossover with 2-opt mutation. The
approach is to parallelize some of the individual operators in
addition to computing the consecutive parts. The individual
parallelization is made for the crossover and for the mutation.
In order to parallelize the crossover, the approach here is to
produce only one child from two parents, as our proposed
approach will also suggest. The experiments in this study
show that the results reach up to 24 times speedup comparing
to the CPU version of the algorithm [4].

III. CUDA ARCHITECTURE

NVIDIA announced CUDA architecture in 2006 to en-
able parallel computations on GPUs, in preference to using
graphics-purpose. CUDA is one of the parallel computing
platform providing both high computation power and com-
paratively low cost.

Inside of the CUDA architecture, organization of the
threads is located as a group in blocks and every block is
located as a group in a grid.

Every thread is liable for copy of their functions and data
part. In the runtime, each thread is created and executed
concurrently as warps those are groups of 32 threads in a
grid in the GPU. If the thread is in the same block with
others, then it is able to communicate with each other by
using their shared memory in the block they are assigned
and they can be synchronized in the same block, too. In

the CUDA architecture, each thread has control its own
register and read/write data to its local memory. The thread-
memory organisation is seen in Figure 1 as well as the CUDA
hardware and the software model in Figure 2.

Fig. 1. GPU thread-memory organisation

In this study, the algorithm is developed on NVIDIAs
GeForce GTX 680 graphics card that has Kepler GK104
architecture with 3.54 billion transistors, 1536 CUDA Cores
and 3090 GFLOPs. The Graphics Clock speed is 1006 MHz,
Memory Clock is 6008 MHz, Memory Bandwidth is 192.26
GB/sec and TDP is 195W.

Fig. 2. Hardware and the programming model of CUDA. Streaming multi
processor is in the above right box, the below is the block of threads. SP:
Streaming Processor, B:Block

IV. PARALLEL IMPLEMENTATION OF GENETIC
ALGORITHM FOR THE UAV PATH PLANNING

The aim of the UAV is designed to collect some necessary
data from sensor nodes in Wireless Sensor Network, or
disseminate them some important information such as public
keys of group keys, as detailed in [5], [6]. Therefore, the
proposed system mainly calculates a feasible path, which
is depicted in Figure 3 over 3D environment. Firstly, the
control points are converted to 2D space and then necessary
calculations are executed accordingly.

The proposed approach for computing the path planning
has three initial computations as well as two main functions

Proceedings of the World Congress on Engineering 2014 Vol I,
WCE 2014, July 2 - 4, 2014, London, U.K.

ISBN: 978-988-19252-7-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2014

Fig. 3. A Sample UAV Path in 3D Environment

that are iterated over times. All the functions run in paral-
lel and have some synchronization points when necessary.
The initial and one-time computations are 1) generating
the random number seeders for further use, 2) calculating
the distances among all the cities in the task and then 3)
preparing an initial random population in order to start the
evolving process after, respectively.

After the initialization part, the population is evolved itera-
tively until the stopping criteria have met. While evolving the
population, the conventional steps of the genetic algorithm
are included in the approach. These steps are 1) choosing two
parents over the current population, then 2) creating a child
by using the crossover method. In this study, the selection
involves the tournament selection method and two parents are
inter-crossed to produce one child instead of two. This way is
more suitable when each thread is responsible for producing
and evolving one individual in the whole population. New
children of the generation are then 3) mutated by a given
probability rate. The threads satisfying the probability use the
swap method of mutation. Each child, including the mutated
ones, is sent to 4) the local optimization function. The 2-opt
local optimization is used to overcome the possible crosses in
the calculated routes, namely chromosomes. It is seen that
applying the local optimization yields promising results in
finding the optimum or near-optimum routes when there is
enough power of calculation. The GPUs are proven to be
very suitable when calculation is needed. So, since there is
the opportunity of having these computation power over the
GPUs, the local optimization is applied all of the children
in the generation. As soon as the local search to optimize
the chromosome is completed, the new fitness values of the
new children are then calculated by the help of the distance
table which have previously been filled in one of the one-time
calculations. One of the evolving processes is thus completed
by the fitness calculation. Before starting to compute the new
generations of the evolution, it must be guaranteed that 5)
the elitism logic is satisfied. In the sense of elitism, here
it means that the number of pre-determined children from
the previously calculated generation remain same without
encountering any operation, thus being transferred to the new
generation of chromosomes. Those elites are the ones having
the best fitness values. In this study, the number of elite
chromosomes is set to be a constant value, 32. Recall that
CUDA sets the threads as a group of warps so that they run
the same kernel code in parallel where the number of threads
in a warp is 32. So this number keeps the threads away of
being divergent from the others when a condition is occurred

in the code, hereby it keeps the parallelism high. Along
the generations are evolved and the results are optimized,
there occurs the need for 6) a stop. In order to terminate
the algorithm, several conditions may be appropriate to be
stipulated. For instance, if the error rate of the best child
from the last generation gives the exact best results or is
sufficient to be the answer for the problem, then there is
no need to continue the process. Other than the error rate
condition, if there is a time limitation for the algorithm to
be able to continue, then bounding the iterations is an option
as a stopping criteria. In this study, the latter option is chosen
to equally compare the time of both CPU and GPU versions
where it takes to finish the algorithm [7].

A. Random Number Generation

The genetic algorithm approach inherently includes prob-
abilistic operations at many parts of it, thus providing a high
quality random numbers keep the output off from the results
of poor quality.

In order to calculate the random numbers, the CPU version
of the algorithm uses the C++ rand() function with a time
seeder where the GPU version of the algorithm uses the open
source cuRAND library which is in the CUDA SDK. cuRAND
utilizes all the available cores dynamically in the GPU so that
the throughput is maximized and the process is parallelized
to the utmost as depicted in Figure 4. As the library providers
indicate as well as the results it produces, the cuRAND has
more realistic randomness at hand. The Random Number
Seeds are calculated and kept into a 1-D array for the further
use. The array length is equal to the population size. When
a thread needs a random number in an operation, it uses its
thread ID to produce a random number with the appropriate
seeder from the array and the produced number is of an
uniform distribution. The proposed algorithm here uses N
threads in parallel to produce random number seeders array
of length N.

Fig. 4. Parallel Random Number Generation in RNG array

B. Distance Table Calculation

There exist two basic logical options when calculating the
fitness value of a chromosome. If the fitness value is needed
to be calculated a few times, then it is done each time by
using the coordinates of the points over again. The point-
to-point distances are calculated on GPU with respect to the
euclidean method and the action is iterated among the points
in the route as depicted in Figure 5. Since this is a duplicate
calculated over and over again, the second option arises with
some advantages compared to the first one. Distance table is
used to fetch the point-to-point distances when necessary. In
this case, the euclidean distance function is run N ∗ N times

Proceedings of the World Congress on Engineering 2014 Vol I,
WCE 2014, July 2 - 4, 2014, London, U.K.

ISBN: 978-988-19252-7-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2014

where N is the number of points. Each time the thread is
required to calculate the fitness value of its chromosome, it
only needs to loop over the points in the distance table and
sums them to find the total cost. The proposed algorithm
uses N ∗ N threads to fill in the distance table. Each thread is
responsible for calculating the euclidean distance from one
city to another. As an example of thread and the memory
usage, assume that there are 1002 points in the task. In
this case, there should be (1002 ∗ 1002) 1.004.004 threads
running for the calculation. The table (1-D array) includes
1.004.004 distances. Each distance is of a float data type. The
float has a 4 bytes space in the memory. The total memory
it requires is then approximately 3.82 MB.

Fig. 5. Parallel Distance Table Calculation

C. Initial Population
Creating the initial population is a crucial step. Since it is

the one step behind the GA evolution progress starts, having
the initial population by a computational model (such as
neighborhood metrics) to make a good start is a desired
option in many cases. In this study, the initial population
is created randomly in order to simplify the progress. Since
the fine results can be achieved through the new generations
using the power of many cores in the GPUs, the initialization
step is not a big deal. There are N threads shuffling N chro-
mosomes and putting them into the population as depicted
in Figure 6.

Fig. 6. Creating an initial population. Each thread shuffles a chromosome
and puts it into the 1-D population array.

D. Fitness Function
Determining what kind of problem is going to be solved

through the GA is equal to determine the fitness function.
It is a crucial course in developing the GA to a particular
problem as well as it is a guidance factor of evolving new
solutions. In this study, since the basic problem is a TSP-like
task, the fitness value is the sum of the full path distances
where each point is visited exactly once and the aim is to
traverse the points in the shortest way.

E. Elitism

Elitism simply refers to migrate some of the best chro-
mosomes to the new generation. With the term “best”, those
having the lowest fitness values, thus the shortest path, are
meant to be the elites. Keeping the elites of the previous gen-
eration in the current one guarantees that the solution does
not go much worse through the new generations evolved.
THis approach is implemented as depicted in Figure 7. In this
study there are several pieces of TSP libraries used where the
number of population differs from 1024 to 8192. Although
the population size changes over the experiments, the elitism
number stayed same to provide the simplicity during the
tests. The best 32 chromosomes are chosen to be the elites
and they are kept and transferred to the new generations at
each iteration as they are optimized and updated, too.

Fig. 7. Applying the elitism to the population

F. Parent Selection

The chromosomes that elitism does not apply are passed
through the other conventional GA steps. The first step for a
thread is to choose 2 parents from the previous generation to
process and produce a new child chromosome of the parents.
The selection method of a parent is the tournament model
where the chromosome having the lowest fitness value of
the two randomly chosen chromosomes is set to be one of
the parents of the child, and the other parent is also selected
with the same approach. Considering that all N threads are
responsible for the population index i where i is the ID of
the threads, then it is obvious that the selection is operated
by N threads in parallel at each iteration.

G. Crossover

Crossover is one of the core concepts in the GA approach.
The aim is basically producing a new chromosome while
inheriting its parents’ characteristics. In order to enhance the
throughput, each thread produces one child and puts it into
the relevant index of the population for the later construction
steps. In this approach, the crossover method is 1-point where
the child has the first N elements of the first parent and the
remaining parts are filled by the second parent respectively.
N is a random number between 0 and the number of points
in the task.

Proceedings of the World Congress on Engineering 2014 Vol I,
WCE 2014, July 2 - 4, 2014, London, U.K.

ISBN: 978-988-19252-7-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2014

H. Mutation

Through the generations iterated, not only the inter-
crossing between the parents produces the children in the
population; but, with some probability, there occurs a muta-
tion on some of the children. As the mutation may occur at
any time on any child, it is capable of both making small
differences on the children as well as keeping the individuals
converging to sub optimal results. In this study, the swap
mutation model is used to keep the diversity between children
over the generations. The swap model basically chooses
two random points in the chromosome and swaps them.
Swapping may yield a small changes in the route as it may be
a big change, according to the chosen points to be swapped.
The ratio used in this study is 0.015, meaning that there
may be 15 chromosomes get mutated over one thousand
at each iteration. The ratio is kept same in the process of
experiments.

I. Local Search

The simple GA approach with the steps defined above is
a very promising technique to have the problems optimized.
Because the algorithm, as a basis, keeps the best solutions
and transfers them to the new generations while protecting
the individuals by trying to increase the diversity. But the
experiments suggest that it requires so many generations
evolved to be able to reach high optimality whereas, at some
points, it gets stuck with the sub optimal result because of the
crossed paths that are taking place with a high probability
as the problem domain gets bigger. In order to boost the
performance to get the desired results in a short period of
time, the local search method, namely local optimization,
technique can be used. In this study, the local search tries to
find the crossed paths between the points in the route. The
2-opt local optimization is a BigO(N2) complexity search
technique where it requires a high computational power when
the search space get bigger. In the algorithm, each child is
sent to the 2-opt local optimization function to get rid of
undesired crosses in their route. Hence, fewer iterations are
needed to find the valuable results.

Usage of these GA operator (crossover, mutation and local
search, as depicted in Figure 8

Fig. 8. Applying the GA operators to the population

J. Sorting Individuals

After completing the evolving phase of the GA, the newly
generated population is then required to get ready for the next
iteration. For this reason, the population is sorted according
to the fitness values of the individuals. The sorting mech-
anism is needed where the elitism step takes place. Recall
that the elitism refers to transferring the best individuals to
the next generation to keep the solution quality high. Except
the elite ones, the individuals are changed with the genetic
operators. These new individuals may have better fitness
values comparing the elites so each sorting phase may change
the order of elites or completely discard the previous elites
so that they are joined the non-elite ones to be processed via
the genetic operators. In this study, the Thrust library in the
CUDA SDK is used to keep the population in a vector and
sort it when necessary. The sorting function run in parallel
where the Thrust library handles the sorting algorithm and
maximizes the throughput.

K. Stopping Criteria

The stopping criteria generally varies as the problem to be
solved via the GA changes. It can be limiting the iterations,
stopping the algorithm when a desired result is found or a
stop time is reached. For the comparisons of both CPU and
GPU versions of this study, the same criterion is set as it is
to limit the iteration count. Because it is aimed to present
that the GPU version takes much less time when the similar
conditions occurs comparing to the CPU version. After 100
iterations, the algorithm stops.

According to these parallel operations the algorithm is
executed as depicted in Figure 9

Fig. 9. The overall representation of the proposed algorithm.

V. EXPERIMENTS AND ANALYSIS

To make a realistic comparison with real-world scenarios,
some particular problems from TSPLIB [8] are tested in
the proposed algorithm, which is explained throughout the
paper. This parallel algorithm is implemented by using both
standard C for the serial version and CUDA C for the parallel
version of the algorithm. The parallel version is compiled via
CUDA compiler. Either versions have some minor differences
that are related to the hardware limitations. Other than that,

Proceedings of the World Congress on Engineering 2014 Vol I,
WCE 2014, July 2 - 4, 2014, London, U.K.

ISBN: 978-988-19252-7-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2014

there is no major differences in the approach. The test
libraries include 52, 76, 100, 225, 439, 575, 1002 and 2392
waypoints. Each problem is solved with 1024, 2048, 4096
and 8192 populations. The GPU in this study is the NVIDIA
GeForce GTX 680 which has 1536 graphics cores and each
of them has a 1002 MHz frequency. The serial version is run
on an Intel i5 3.10 GHz CPU. The operating system for this
experiment is Ubuntu 13.10. The compiler for the parallel
version is CUDA SDK 5.0 and the language is CUDA C.
Table I shows the details of the underlying system.

TABLE I
HARDWARE FEATURES FOR THE CPU AND THE GPU USED IN THIS

EXPERIMENT

CPU GPU

Manufacturer Intel NVIDIA

Model i5 Geforce GTX 680

Architecture Sandy Bridge Kepler

Clock Frequency 3100 MHz 1002 MHz

Cores 4 1536

DRAM Memory 4 GB DDR3 4 GB DDR5

The solution quality as well as the execution time of
the GA mainly depends on the parameter decisions. The
parameters of the algorithm chosen in this study are as shown
in Table II.

TABLE II
EXPERIMENTAL PARAMETERS OF GENETIC ALGORITHM

Parameters Values

of visiting points 52 / 76 / 100 / 255 /
439 / 575 / 1002 / 2392

Population Size 1024/ 2048 /4096 / 8192

Elitism First 32 chromosomes
in each generation

Parent Selection Tournament
(select 2 and get the best)

Crossover type 1-point

Mutation type Swap

Mutation rate 0.015

Local Search Type 2-opt

Local Search Rate 1

of Iteration (as ending criteria) 100

The main performance metric of the proposed algorithm
is the speed up of the solution which is calculated according
to Equation 1.

Speedup(solution) =
Texec(serial)

Texec(parallel)
(1)

The proposed parallel algorithms is executed on different
number of waypoints. The speed up performance is more ex-
pressive when the number of chromosome in the population
is increased. Therefore, speed up of two different scenarios
are depicted in Figure 10 according to the population with
8192 chromosomes. A Detailed comparison according to the
population size is listed in Table III and Table IV.

Although, large number of populations result greater error
with respect to less population size, Due to the realistic
comparison with other scenarios we iterate the algorithms
for 100 times. In case of increasing the number of iterations,

Fig. 10. Total speedups of the used libraries. The population size is of
8192.

the proposed algorithm produces better solutions as depicted
in Figure 11.

Fig. 11. The GPU error rates through the iterations of all populations
examined for 1002 points.

To depict a clear distinction between the CPU and GPU
implementation of the proposed algorithm is presented for
comparing both algorithm with 100 waypoints in Figure 12.

Fig. 12. CPU and GPU time comparison of a problem including 100 points.

VI. CONCLUSION

UAVs have many advantages especially about not risking
a human pilot. Therefore, there is an increasing need about
UAVs to become more independent and to have more intel-
ligent decision-making capability especially typical surveil-
lance operations. The path planning is a prominent element

Proceedings of the World Congress on Engineering 2014 Vol I,
WCE 2014, July 2 - 4, 2014, London, U.K.

ISBN: 978-988-19252-7-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2014

TABLE III
OVERALL RESULTS AFTER 100 ITERATIONS.

pop. CPU CPU GPU GPU Speed
error time error time up rate

(sec.) (sec.)
52 1024 0.0361 335.04 0.0003 0.2217 1510.57
52 2048 0.0237 1388.26 0.0003 0.2315 5996.25
52 4096 0.0003 5511.51 0.0003 0.2704 20381.67
52 8192 0.0003 21823.8 0.0003 0.4276 51026.07

76 1024 0.0620 524.07 0.0253 0.7562 692.96
76 2048 0.0637 2127.63 0.0199 0.8157 2608.15
76 4096 0.0562 8246.41 0.0118 1.0902 7563.64
76 8192 0.0527 31869.5 0.0118 1.5468 20603.5

100 1024 0.0123 684.75 0.0001 0.9078 754.27
100 2048 0.0049 2727.37 0.0001 0.9331 2922.71
100 4096 0.0025 10320.4 0.0001 1.2029 8579.39
100 8192 0.0025 39916.1 0.0001 2.1914 18214.88

225 1024 0.1221 1890.76 0.0146 6.9822 270.79
225 2048 0.1128 6758.55 0.0123 5.8850 1148.42
225 4096 0.1024 23796.6 0.0102 7.0600 3370.59
225 8192 0.1069 89000.3 0.0212 19.4173 4583.55

439 1024 0.1111 4895.49 0.0137 17.3561 282.06
439 2048 0.0953 15314.3 0.0150 16.8677 907.9
439 4096 0.0882 50195.7 0.0035 24.1392 2079.42
439 8192 0.0722 178671 0.0024 40.9477 4363.39

575 1024 0.0645 7430.67 0.0669 61.1384 121.53
575 2048 0.0384 22016.2 0.0843 74.5503 295.32
575 4096 0.0595 69633 0.0836 79.4542 876.39
575 8192 0.0510 241785 0.1093 188.47 1282.88

TABLE IV
OVERALL RESULTS AFTER 100 ITERATIONS.

pop. CPU CPU GPU GPU Speed
error time error time up rate

(min.) (min.)
1002 1024 0.0974 308.3 0.0692 2.2 139.85
1002 2048 0.0773 830.9 0.0515 3.1 265.98
1002 4096 0.0692 2397.9 0.0619 5.0 476.73
1002 8192 0.0692 7743.1 0.0516 9.0 859.04

2392 1024 0.4546 1519.4 0.5046 26.4 57.52
2392 2048 0.3217 3516.4 0.3946 36.5 96.19
2392 4096 0.2827 8793.4 0.3127 68.9 127.49
2392 8192 0.2295 22771.7 0.2466 137.7 165.37

in UAVs’ autonomous control module. It allows the UAV
to autonomously compute the best (or near to the best)
trajectory over waypoints in the mission area. However, if
the number of waypoints increases then there is a need to
speed up the computing process by using parallel processing.
There in this paper it is aimed to calculate the path of a
UAV by using highly parallel genetic algorithm on CUDA
platform with GPUs. The experimental results showed that
the proposed approach is very efficient and can also be used
in real time path calculation even in large areas with lots of
waypoints and constraints. As a future work, it is planned to
improve the performance of the parallel genetic algorithm,
and modify the approach to enable the use of multi UAVs,
and decrease the total mission time in an efficient way.

ACKNOWLEDGEMENT

We would like to thank Aeronautics and Space Technolo-
gies Institute, Turkish Air Force Academy for letting us to
use the NVIDIA GPUs in the Parallel Programming Lab.

REFERENCES

[1] I.K. Nikolos, K.P. Valavanis, N.C. Tsourveloudis, and A.N. Kostaras.
Evolutionary algorithm based offline/online path planner for uav nav-
igation. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE
Transactions on, 33(6):898–912, Dec 2003.

[2] Seçkin Sancı and Veysi İşler. A parallel algorithm for uav flight
route planning on gpu. International Journal of Parallel Programming,
39(6):809–837, 2011.

[3] DS Knysh and VM Kureichik. Parallel genetic algorithms: a survey and
problem state of the art. Journal of Computer and Systems Sciences
International, 49(4):579–589, 2010.

[4] Noriyuki Fujimoto and Shigeyoshi Tsutsui. A highly-parallel tsp solver
for a gpu computing platform. In Numerical Methods and Applications,
pages 264–271. Springer, 2011.

[5] Ozgur Koray Sahingoz. Large scale wireless sensor networks with
multi-level dynamic key management scheme. Journal of Systems
Architecture, 59(9):801 – 807, 2013.

[6] Ozgur Koray Sahingoz. Multi-level dynamic key management for
scalable wireless sensor networks with uav. In Youn-Hee Han, Doo-
Soon Park, Weijia Jia, and Sang-Soo Yeo, editors, Ubiquitous Informa-
tion Technologies and Applications, volume 214 of Lecture Notes in
Electrical Engineering, pages 11–19. Springer Netherlands, 2013.

[7] Ugur Cekmez, Mustafa Ozsiginan, and Ozgur Koray Sahingoz. Adapt-
ing the ga approach to solve traveling salesman problems on cuda
architecture. In Computational Intelligence and Informatics (CINTI),
2013 IEEE 14th International Symposium on, pages 423–428. IEEE,
2013.

[8] G. Reinelt. TSPLIB - A t.s.p. library. Technical Report 250, Universität
Augsburg, Institut für Mathematik, Augsburg, 1990.

Proceedings of the World Congress on Engineering 2014 Vol I,
WCE 2014, July 2 - 4, 2014, London, U.K.

ISBN: 978-988-19252-7-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2014

