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Abstract—Manual sorting of objects in an industrial 

environment is time consuming, labour intensive, 
unreliable and often impractical. This paper discusses 
the design and implementation of a decision making 
system that uses a support vector machine (SVM) as the 
main inference engine. The SVM driven sorting system 
is applied in an industrial environment for object 
classification and object placement.  Object image 
vectors are compressed in order to reduce data 
dimensionality and only the pertinent feature vectors are 
extracted using the principle component algorithm. The 
SVM is trained with the feature vectors to classify the 
images. The performance of the SVM decision engine is 
evaluated with regards to its robustness and 
generalisation ability. 
 

Index Terms—Support vector machine, separating 
hyperplane, image texture, sorting sytem  
 

I. INTRODUCTION 

ONE  and texture are two important aspects of an image 
[1]. Image texture depends on its brightness and pixel 
locations [2] and its characteristics are displayed in the 

form of pixels. Pixel values and images can be identified by 
their texture [3]. Pixels are the basic elements of an image 
and contain its brightness value (color feature) and its shape 
and size information [2]. Techniques such as artificial 
intelligence are popular for image identification and yield 
good results. This paper discusses an alternate statistical 
approach, such as the support vector machine (SVM) to 
perform image identification. Image identification and 
classification with SVM’s is achieved by extracting key 
textural elements  with image pre-processing methods such 
as wavelet compression (WC) and principle component  
analysis (PCA), and then training the classifier to 
identify these salient characteristics. Supervised 
learning is used to train the SVM classifier to recognise 
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the prescribed data. In this paper we will focus on the 
design  
 
and the performance of the SVM for image identification 
under varying degrees of operational challenges. The paper 
is arranged as follows: Section 2 discusses the basic theory 
of SVM systems; Section 3 describes the steps followed to 
pre-process the data and create the target vectors. Section 4 
discusses the steps followed to design the SVM decision 
engine. 

II. BASIC THEORY OF THE SVM 

SVM’s have been widely used for image identification [1]. 
A SVM is a statistical based pattern binary classification 
technique introduced by [4] and is based on the concept of 
structural risk minimization (SRM).  A learning machine’s 
risk (R) is bound within the sum of the empirical risk (Rmp) 

and a confidence interval ψ i.e.  RmpR [4]. A 

kernel function forms the main building block of a SVM 
and can be used with a wide range of different learning 
theories. The kernel function is used by the SVM to map a 
nonlinearly separable vector into a higher dimension space 
so as to make it linearly separable.  A single SVM is a 
binary classifier for classifying two classes of data at any 
given time.  The functionality of the SVM is extended by 
integrating several together to find solutions for multiclass 
data problems [5].   

 

A. The optimal separating hyperplane  

  The SVM algorithm is used to determine the optimal 
separating hyperplane between two classes of data. Assume 
dataset T has two separable classes and a total of k samples, 
where these samples are represented as (x1, y1), (x2, y2),…, 

(xk, yk). The class label is represented as  1,1y  and is 

the binary value of two classes; nRx where nR is an n- 
dimensional space.  
  Consider the SVM in Fig. 1: Dataset T is separated into 
two classes by two parallel hyper-planes H1 and H2. 
Hyperplane H3 is the optimal separating hyperplane that lies 

parallel with 1H and 2H and is equidistant between these 

two hyperplanes. H3 is defined as 0 bxw , where   
denotes matrice multiplication, w is the normal vector to 

1H , 2H  and b represents the bias.  
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B. The Kernel function 

The kernel function is the key component of the SVM 
classifier. Commonly used kernel functions include the 
polynomial function and the Gaussian and exponential 
radial basis functions. A kernel function locates the decision 
boundaries between different classes of data, making them 
linearly separable [6]. Binary class data being classified 
must meet the following condition:  
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From Fig. 1, the margin 
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distance between hyperplanes H1 and H2 [4]. This sets the 
restriction condition of the optimal separating hyperplane to 
ensure that m obtains its maximum value. We subject m to 
(1) and replaced it with its equivalent minimization of 
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where ia  is the Lagrangian multiplier. To minimise 

L(w,b,a) we minimize w and b (3) : 
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and maximise  ai (4): 
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for any i =1,….,n . The kernel (k) is defined by 
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The construction of the optimal separating hyperplane 
depends on solving the quadratic programming problem 
with (4) and (5). The SVM classifier is defined in (6):  
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III. IMAGE PRE-PROCESSING AND TARGET VECTORS 

A. Image Pre-processing 

Image pre-processing involves image capture, image 
compression and feature extraction. The images considered 
for this study are given in Fig. 2. The identification of these 
images is performed with the SVM, and its ability to 
generalize and remain robust in spite of noise was also 
assessed. 

Image compression: Image compression is achieved with 
the Haar wavelet (HW). HW decomposes a signal into a 
summation of a series of baby wavelets that are generated 
through dilating and shifting operations from a mother 
wavelet [7]. HW compression is chosen over other 
traditional compression methods because it provides a 
multi-resolution representation of an image and also yields a 
higher compression ratio [1], [8].   
Principal component analysis (PCA): The HW compressed 
data is subjected to PCA in order to reduce the dataset for 
easing computation burden [9]. PCA retains the unique 
characteristic feature vectors which contribute most to the 
variance of the image under consideration by determining 
the eigenvectors and the eigenvalues of the covariance 
matrix. Each column of the eigenvector matrix with the 
highest eigenvalues consists of the principal components 
and forms the feature vector set.  
 
B. Creating Training Vectors 

A comprehensive set of image vectors for object is 
determined as follows:  
i) 3 images of each box from 1200, 2400 and 3600 

orientations are captured of each box when the box is in 

 
 

 
Fig. 2.  Images of 3 cigarette brands in various orientations 

 

 
 
Fig. 1.  Optimal separating hyperplane for a 2D and 2 class problem. 
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a first pose. The 3 images of the respective box in its 
first pose are clustered together to form a group. 

ii) The pose of each box is adjusted 5 times and 3 images are 
taken of the box in each respective pose. From this we 
will have 5 groups of images, with each group having 
three images of the same box positioned in a 1200, 2400 
and 3600 pose.  

iii) Repeat (i) and (ii) for each box. This results in a total of  
15 groups of vectors (5 for each box), with each group 
having three images of each object occupying a specific 
pose. These image vectors have different position 
orientations and poses to ensure that accurate recognition 
will always take place even within an environment 
experiencing varying conditions. Following HWT 
compression of the object image in each of its poses, PCA is 
applied to the compressed image in order to extract the 
feature vectors, a sample of which is given in Table 1. 
These vectors are used to train the SVM. 
   The above procedure was heuristically developed and 
yielded a comprehensive collection of image vectors for 
each box. These vectors captured the tone and textural 
characteristics for each box in different positional 
orientations and poses, and ensured that accurate 
recognition always occurred even under dynamic 
environmental conditions. 

IV. SVM DECISION ENGINE 

SVM’s are binary classifiers and are extensively applied to 
empirical classification operations [10]. For this study, the 
SVM was taught to discriminate between different brands of 
cigarette boxes.   A SVM was trained to utilise a hyperplane 
to separate one set of similar data features from another 
[11]. The subsets of data vectors within each grouping of 
similar data are known as the support vectors [12]. The 
images in Fig. 2 are used to create the three data classes for 
this study. Because the SVM classifier can only classify two 
different data samples at a time, we converted our multi-
class classification problem into two binary class problems 
and designed and trained a multi-level two SVM system to 
classify the three image types. Fig. 3 illustrates the multi-
level SVM decision making tree system used in the study. 
The test sample on Level 1 has three data classes which 
correspond to the Aspen, Lucky-Strike and Winfield carton 
images, respectively. At Level 1 the SVM is trained to 
recognize the Aspen-Lucky-Strike vector combination as 
the one group and the Winfield vectors as the other group. 
At  
Level 2 the SVM is trained to separate the Lucky-Strike 
carton from the Aspen carton.  
   SVM performance depends largely on the selected kernel 
function, which is one of the main weaknesses of this 
technique [13]. Proper selection of the kernel function 
determines how well the SVM generalizes [6]. Since there is 
no rigid technique for choosing a specific kernel function, 
we followed an iterative process to select an appropriate  
function. A linear kernel function was chosen based on its 
performance for the Level 1 and Level 2 SVM classifiers. 
 

A. Layout and Operation 

Fig. 4 shows the SVM based classification and sorting 
system. The work environment consists of three 0.3 
megapixel cameras situated 1200 apart that capture up to 30 
frames per second, a robot controller (slave) and 
manipulator arm, plus a robot control computer (master). 
The 3 cameras simultaneously capture each box image from 
3 different angles for the creation of a comprehensive image 
matrix. Communication between each camera and the robot 
control computer is done via the 3 universal serial bus ports, 
and occurs at a maximum data transfer rate of 480 Mega-
bytes per second. 
  
  The slave robot controller module receives control signals 
from the master robot control computer. The slave controls 
the gripper, plus the vertical motion and angular rotation of 
the manipulator. The purposes of the slave controller is to 
receive and pre-process image data, transmit PCA data to 
the remote master computer, receive control signals from 
the master and guide the robot arm to a pre-allocated 
position for each work-piece. The main master computer 
was housed in a control room situated 10m from the work 
environment and was used to receive PCA feature vectors 
from the remote slave controller, recognise images using the 
SVM recognition system and transmit the object recognition 
signal to the slave robot controller. The operation of the 
object classification system in Fig. 4 is as follows:  
    At rest the robot arm will idle at its default position. 
During the sorting operation images of the unsorted objects 
are captured and pre-processed by the robot control 
computer using wavelet image compression and PCA. The 

Fig. 3.  Multiclass SVM decision engine. 
  

TABLE I 
SAMPLE OF SVM TRAINING VECTORS FOR ASPEN BOX 
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selected feature vectors are transmitted via the Bluetooth 
link to the master control computer for classification by the 
SVM system. After classification a control signal is 
transmitted via Bluetooth to the remote slave controller. The  
slave controller guides the robot to pick the objects from 
‘unsorted object positions 1, 2 and 3’ and relocate them to 
‘sorted object positions 1, 2 and 3’. This sequence of 
operations continues till all objects have been sorted and 
stacked into their respective locations. The arm returns to its 
default resting position following a ‘pick and place’  
operation. 
 
 
 
 

V. SVM PERFORMANCE 

Table 2 shows the results of the SVM1 classifier. The 0 
denotes the target vectors of the Aspen-Lucky Strike 
combination and 1 denotes the Winfield carton target 
vectors. On Level 2, the SVM2 classifier differentiates 
between the Aspen and Lucky Strike cartons. In Table 3 for 
the SVM2 classifier, the 0 denotes the Aspen carton and the 
1 represents the Lucky Strike carton.   From these results we 
can conclude that the three different boxes were recognized 
successfully with a recognition rate of 100%. 
   Fig. 5 shows the results of the test conducted to assess the 
ability of the SVM to generalise. Image data was used as 
training data for the SVM classifier. We used five SVM 
classifiers to test for generalization. These were trained 
using 3, 6, 9, 12 and 15 samples respectively for each 
cigarette box, and each test sample had 20 images of a 
cigarette box. From Fig. 5, we see an improvement in the 
SVM’s ability to generalise.   
   The SVM was also tested for robustness against  
environmental noise and the results are shown in Fig. 6. 
Artificial ‘salt and pepper’ noise was used to test the 
immunity of the SVM classifiers to noise interferences. 
Varying degrees of noise was applied to 15 test samples to 
assess the robustness of the SVM classifier. From Fig. 6, we 
observe the following: For small quantities of data and low 
noise levels the SVM’s performance is relatively robust, but 
its performance deteriorated when the noise level was 
increased. 
 
 

 
 
 

TABLE 2 
LEVEL 1 BINARY CLASSIFICATION WITH SVM 1 

(0 = ASPEN-LUCKY STRIKE; 1 = WINFIELD) 
 

Test 
Sample 

Target 
Vector 

Test 
Sample 

Target 
Vector 

1 0 9 0 
2 0 10 0 
3 0 11 1 
4 0 12 1 
5 0 13 1 
6 0 14 1 
7 0 15 1 
8 0   

 
Fig. 4.  SVM classifier and sorter system operating environment. 
  TABLE 3 

LEVEL 2 BINARY CLASSIFICATION WITH SVM 2 

(0 = ASPEN; 1=LUCKY STRIKE) 
 

Test 
Sample 

1 2 3 4 5 6 7 8 9 10 

Target 
vector 

0 0 0 0 0 1 1 1 1 1 
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Fig. 6.  SVM classification for varying noise levels. 
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Fig. 5.  SVM generalization ability. 
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VI. SUMMARY AND CONCLUSION 

   The paper has described the design of an image 
classification system that uses SVM to perform image 
classification. The binary classification structure of the 
SVM  
is extended by fusing multiple SVM’s in order to classify 
multiple classes of data. To minimize computation burden, 
the dimensionality of image data is reduced with the HWT 
and PCA. This reduced dataset with the salient feature 
vectors is applied to the SVM classification engine. The 
performance of the SVM was also assessed with respect to 
its ability to generalise and classify within a noisy 
environment. This was done in order to reproduce as closely 
as possible a real world industrial environment where this 
type of classification and sorting system is applied. From 
the results, we observed that the SVM’s ability to generalise 
improved as the data increased (cf. Fig. 5). With regards to 
robustness (cf. Fig.6), SVM performance deteriorates 
significantly as noise level and data increases. The overall 
performance of the SVM is satisfactory, but a better choice 
for a classification system would be the artificial neural 
network as they are simpler and easier to train and generally 
yield excellent results when properly designed and trained 
[14]. 
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