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Abstract—In this paper, The IMplicit Pressure Explicit Sat-
uration (IMPES) scheme has been developed to treating the
model of the iwo-phase flow in a porous medium including a
dynamic capillary pressure. The pressure equation is treated
implicitly with the saturation equation. Stability condition of
the scheme is determined. The results show that the IMPES
scheme with dynamic capillary pressure is more stable than it
with static capillary pressure, Moreover, unlike the case of static
capillary pressure, the IMPES scheme with dynamic capillary
pressure is stable with larger time steps.

Index Terms—dynamic capillary pressure, two-phase flow,
porous media, implicit method.

I. INTRODUCTION

LL standard empirical relationships between capillary

pressure and saturation (namely, the static capillary
pressure) were correlated from laboratory experiments under
equilibrivm conditions. These formulas of the static cap-
illary pressure (see e.g. [1], [2]) have been used in most
of the mathematical models of immiscible two—phase flow
in porous media. However, it was found experimentally
and theoretically that under non—equilibrium conditions the
capillary pressure does not correspond to the static capillary
pressure. The dynamic capillary pressure—saturation relation-
ship has been obtained in the framework of a macroscopic
theory of porous media flow by Hassanizadeh and Gray [3].
Moreover, many of experiments reported in the literature
include evidence of dynamic effects, such as Stauffer [4].
So, no longer to use the static capillary pressure-saturation
relationship in the modeling of capillarity when the fluid
content is in motion. An alternative model of the capillary
pressure-saturation relationship was proposed and referred
to as the dvnamic capillary pressure is more suitable. When
gradients of fluids pressure and fluids velocities are large,
non-equilibrivm effects in capillary pressure can be signif-
icant such as flow in some industrial porous media, such
as paper pulp drying process (Lewalle et al. [5]). Recently,
many experimental studies on dynamics capillary pressure
have been introduced (see e.g. [6], [7], [8], [9], [10], [11],
[12], [13]. A comprehensive review by [14] surveved the
experimental works in which non—equilibrium effects have
been observed. Moreover, other computational studies on
dynamics capillary pressure using Darcy-scale models have
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been also done (see e.g. [15], [16]). Pore-scale models are
also considered (see e.g. [17], [18], [19]).

The model of two-phase fluid flow in porous media is a
coupled system of nonlinear time-dependent partial differ-
ential equations. Two different types of time discretization
schemes are often used to solve this coupled system. The first
one is the fully implicit scheme [23], [24], [25], [26], [27]
that implicitly treats with all terms including capillary pres-
sure. This scheme results in a system of nonlinear equations
and has unconditional stability and maintains the inherent
coupling of two-phase flow model. The second scheme is the
IMplicit-EXplicit (IMEX) [28], [29], [30], [31], [32] which
generally treats the linear terms implicitly and evaluates the
others explicitly, and consequently. This scheme is condi-
tionally stable, however, it has advantage that is to eliminate
the nonlinearity of original equations. The IMplicit Pressure
Explicit Saturation (IMPES) approach is viewed as an IMEX
method, solves the pressure equation implicitly and updates
the saturation explicitly. The IMPES method is conditionally
stable, and hence it must take very small time step size,
especially for highly heterogeneous permeable media where
the capillary pressure affects substantially on the path of
fluid flow. The instability of the IMPES method [33] results
from the decoupling between the pressure equation and the
saturation equation as well as the explicit treatment of the
capillary pressure. The IMPES for two-phase flow has been
improved in several versions (e.g. [34], [35], [36]). Iterative
IMPES splits the equation system into a pressure and a
saturation equation that are solved sequentially as IMPES
[37], [38], [39]. As an iterative method, the computational
cost and memory required by iterative IMPES method is
smaller than the fully coupled approach at each iterative step,
which is more pronounced for very large size computational
problems. The main disadvantage of iterative IMPES method
is the decoupling of pressure and saturation equations, which
results from the explicit treatment for capillary pressure. A
linear approximation of capillary function is introduced to
couple the implicit saturation equation into pressure equation
[40]. Kou and Sun [22] presented an iterative version of their
previous scheme proposed in [40]. Unlike iterative IMPES,
capillary pressure is not computed by the saturations at the
previous iteration, but the linear approximation of capillary
function at the current iteration is used, which is constructed
by the saturations at the current and previous iterations.

In this work, we develop the IMPES scheme introduced
in [22], [40] to solve the flow equation of the model with
dvnamic capillary pressure.
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II. MODELING AND MATHEMATICAL FORMULATION
A. Two-phase flow Model

In this section, a mathematical model is developed to de-
scribe the two-phase flow in porous media including dynamic
capillary pressure. Consider two-phase immiscible incom-
pressible flow in a porous medium domain that governed
by the Darcys law and the equations of mass conservation
for each phase as,

20%) Y = oy a=win )
k?‘ﬂ!

Uy = — KVp,, a=w,n. 2)
Pa

where 5, is the saturation, u,, is the velocity of the phase
a. w stands for the wetting phase, and n stands for the
nonwetting phase. ¢ is the porosity of the medium, g, is the
external mass flow rate. K is the absolute permeability tensor
is chosen as K = kI, where 1 is the identity matrix and % is
a positive real number. k., is the relative permeability, pq
is the density, and p,, is the pressure of the phase a. p, is
the viscosity and %k, = koK is the effective permeability.
The fluid saturations for the wetting and non-wetting are
interrelated by,

Bl il =2 1. 3)

Now, we describe the governing equations used in [20], [21]
and [22] as,

Veolu, +u.) =V - AKVpy — V- M KVp: = gy + gn.
)
and

3 ($S,)
ot )

where fi, = Ap/As is the flow fraction, Ay = kro/pia
is the mobility, p,, is the wetting fluid pressure, and p, is
the capillary pressure. The total velocity u, = u, + 1, =
1, + u, is defined as the sum of the two velocity variables
u, = —KVp, and u, = —A,KVp,.. The wetting-phase
velocity may be expressed by, uy, = fuU,. The two-phase
capillary pressure is discussed below.

gy ==V (fuls) = =V - A KVpy.

B. Dynamic Capillary Pressure

The classical capillary pressure—saturation relationship
based on the thermodynamic equilibrivm assumption, is
commonly written as,

©)

One of the major assumptions is that fluids pressure differ-
ence is equal to capillary pressure under all conditions at all
times. However, according to Entov [41], capillary pressure—
saturation relationship is not unique and, even though it is
obtained under equilibrivm conditions, it is a function of the
history of fluids movements. Moreover, it was theoretically
established fact that p, — p,, is equal to capillary pressure
but only under equilibrivm conditions (see Hassanizadeh
et al. [14]). For non-equilibrium conditions, the following
equation for the fluids pressure difference as been suggested
{(Hassanizadeh and Gray [3]),

a8,
Pn— Pw — Ps (Sw) -7 (Sw) W

Prn— Pw = Ps (Sw)

)
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where 7 is a non-equilibrium capillarity coefficient (material
property) that may be a function of saturation and other fluid-
fluid properties.

On the other hand, in the model of Barenblatt [46],
the capillary pressure relationship under non—equilibrium
conditions is determined using future water saturation that
is may be a lower water saturation on drainage or a larger
water saturation on imbibition for a given capillary pressure.
The difference between the current and future saturations
is a function of the desaturation rate and is related to a
redistribution time. Juanes [47] has presented a relationship
of the dynamic coefficient and a characteristic redistribution

time as,
dps
dS.

where 7p is the redistribution (or relaxation) time. There is a
great deal of uncertainty regarding the appropriate magnitude
and functional form of the phenomenological coefficients
[14].

From now on we will write the dynamic capillary pressure
as pa(Su, S'w) = P — Payy Sy = %, = ggi. Substitute
from (8) into (7), one can get,

7 (Sw) = 78 (Sw)

(8)

; a5,
pd(Sﬂh Sw) = Ds (Sw) — 7B (Sw)pgw 9)

The relationship of dynamic capillary pressure suggest
that the dynamic capillary pressure defined as the capil-
lary pressure measured under non-equilibrivm conditions,
is larger than the static capillary pressure measured under
equilibrivm conditions, on water drainage and smaller on
water imbibition.

C. Initial and Boundary Conditions

The saturation of the wetting phase in the computational
domain £ at the beginning of the flow displacing process is
initially defined by,

Se=58% in @ at t=0. (10)

The boundary & of the computational domain € is
subjected to both Dirichlet and Neumann conditions such
that 8 = I'p Uy and I'p M T'xy = @, where I'p is the
Dirichlet boundary and I'p is the Neumann boundary. The
boundary conditions considered in this study are summarized
as follow,

(1)
(12)

pwlor pu) =pP on Tp,
u,-n=¢g" on Iu,

where n is the outward unit normal vector to 9, p” is
the pressure on I'p and ™ the imposed inflow rate on 'y,
respectively. The saturations on the boundary are subject to,

Splor 8)=8Y on Iy, (13)

III. SoLUTION METHOD

Define the time step length At™ = #*+1 _ 7 the total
time interval [0,7] may be divided into Ny time steps as
0=t <t <-.. <Nt =T, The current time step is
represented by the superscript n 4 1, while the current time
step is represented by the superscript n. The backward Euler
time discretization is used for the equations of both pressure
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and saturation. The discretized governing equations can be
given as,

—V- A (S KV =V A, (87) K Vpg (8771) = g2ttt
(14)
n+1 n Y o n S:Lli_._l - 'STU
Pd (Sw ) = DPs (Sw) — TR (Sw) Py (Sw) T (15)
Sn+1 gn
@BM — VA (STHKVEE,  (16)
where ™' = ¢! 4 g7t The function 7g (S7) may

rewritten as 7p- F' (S%), where 7p is constant and F' {S7) is a
function of saturation. The saturation time derivative which
appears in the dynamic capillary pressure is calculated as
difference between the saturation at current time step S7H1
and saturation at the previous time step ST, It is worth
mentioning that the above equation of saturation (15) is
coupled with the pressure equation to be solved implicitly
together, however it is not used to update the saturation. In
order to update the saturation, we use the following explicit
scheme of the saturation equation,
¢'n S$+1 S;r.lv (]c'n n—i—l) - qg—i—l’ (17)

For each current time step (n + 1), the variables Ay, An,
As, T, P, and £, is calculated using the saturation from the
previous time step n. The pressure equation is solved firstly
to obtain the wetting-phase pressure at the current time step
and then the Darcys velocity can be calculated. Therefore,
the saturation at the current time step is computed explicitly
in the current iteration. Finally, the other parameters such as
Aws Ans A TE, Phoand fy, are updated.

Now, let us apply the CCFD scheme to the system of
equations (14) to obtain,

A, (Stnv) P?u+1 + A, (83) Py (83+1) = Q:.j_l

It is noted from above algebraic equations that the matrices
A,, A, and Py depend on the vector 5,. The vector

a (S5, 551 is given by discretizing the approximation of
capillary pressure defined by (15), which may be rewritten
in a matrix-vector form as follows,

(18)

Py (ST, 57) = P, (S2) 1rePy (55) 2 %% (g
where P, depends on the vecter §,,. Py is resulted from
the discretization of the g/, and F' that is a diagonal matrix
defined by,
Py (S7) = diag (F(S3) - gL(S2), k=12, Ne,
(20)
where N, is the total number of all cells. In fact, the
derivative of p, is a function of p, when the saturation at
each spatial point is varies with time. At the same time,
the saturation is smoothly changing along with time at each
spatial point even if it is discontinuously distributed in space.
Moreover, the CCED discretization of the saturation equation
{(15) is,
Su - S5 nt1
M= = Qi

where M is a diagonal matrix replaces the porosity.

A B P (21)
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Now, let us substituting from (19) and (21) into (18) one
may obtain the coupled pressure equation in the following
form,

A (ST PRt = Q. (Sh) (22)
where
A (B2 =K (B — g, (BEVP (8L N LK (52
(23)
and,
Q: = Q' — AL (S) [P. (S3) + 7P (Si) M1 Q|
(24)

The vpwind scheme is used in the advection term of the
discretization of the saturation equation (17) which used for
updating saturation. Thus, the discretized saturation equation
is given by,
Sn+1 |7

Av (53, Pi) fun (ST) =

mHt [25)

IV. STABILITY ANALYSIS

The dynamic capillarity parameter 7, has the main effect
on the stability of this scheme method. In the following anal-
ysis, the effect of saturation error on the matrices A, A, and
A, is neglected and the capillary pressure is concentrated.
From (18), (19) and (21), it follows that

sTH — 8" L ACMTIQET — APMT
[Qg.j_l - Ac (PS(SE)—Q—
™R A
=Py (S5) (S5 —85))|

Now we need to consider the propagation of numerical
errors from time step n to time step (n+1). Local truncation
error is not considered here. For the nth step saturation S
we denote for a perturbed saturation by S = 87 + 683,
where 487, represents the error for 87, Slmllarly, we can
obtain an inexact saturation at the (n 4+ 1)th step that is

' sl 58 and 38 s the (n-1)th

1A,A7!

(26)

~n-4
expressed as S,

step saturation error. In this case, gz, satisfies,
s a nagr— 1+l nag—1 -1
S = S, FAIM Q.7 — A"M A LA

{QZ;H - Ac (Ps(§1)
P8, (807 -8))] @)
Subtracting (26) from (27), one gets,
st 8" 1+ At"H {PS(’S?Z,) _P,(8?)
P;§,) ( SR ) -
1_
~ §S" 4+ AH |P { J(80) — Py(8%)
n+1 n
Atn P,(S.) (585t — 48 )} (28)

where H = M_lAwAglAC. Moreover, since we have,

P,(S,) — P,(S7) = P4(8,,)d8"

one may get,
s8ntL ~ Cssn (29)
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where,
¢ = (1 _ TBHPf(”s“Z,))*l (I+ (1— %)At”HPf(§Z))

and I is the identity matrix. Consequently, the scheme (I) is
stable if the following condition holds,

p(C) <1, (30)

where p(C) is the spectral radius of the matrix C, ie. all
of the eigenvalues of this matrix must lie within the unit
circle in the complex plane. Theoretically, this condition is
computable, but practically it is too expensive to compute
for guiding the choice of A#™.

Here, we give a simple and typical example to show the
effect of relaxation factor on stability. One popular capillary
pressure function is given by

pc(Sw) =B, IOg(Sw)a

where B, is a positive parameter. Assume that a square
domain is partitioned into one cell. As the results of the
discretization of CCFD, all the matrices M, A, A, and A,
become positive scalar numbers and so is H. The stability
condition {30) becomes

G

‘1— (1— ZE)At*HB, /5%

<1

(32)
‘1 + 7pHB,/§n

This means that the scheme is stable for all ATfn > 0.5 It is
interesting to note that we can say that this scheme is uncon-
ditionally stable because naturally 7p >> At"™. Moreover,
this scheme attains using a large time step, because 7 is
of arder 10° — 107, For the case of static capillary pressure
(rp = (), a small time step size is often required to attain

the stability of IMPES.

V. RESULTS

Here we introduce an example to test the performance of
the presented scheme. Before presenting the numerical ex-
ample, we need to define the used physical parameters. Con-
sider the following static capillary pressure formula, p, =
—B.log(5), and the normalized wetting phase saturation
are given by, S = %, 0< 8 <1, where B, is
the static capillary pressure parameter, S, is the irreducible
{minimal) water (wetting phase) saturation, and S, is the
residual (minimal) oil (nonwetting phase) saturation after
water flooding. Also, the expressions of the relation between
the relative permeabilities and the normalized wetting phase
saturation § is given as, by, = k2, 5% ke, = B2, (1 — )
where a and b are positive real numbers o km (§=1)
is the endpoint relative permeability to the wetting phase, and
kS, = k. (S =0) is the endpoint relative permeability to
the non-wetting phase.

The capillary pressure function and relative permeabilities
are chosen to be zero for the residual saturations of water and
oil; that is, § = 5. In computation, we take the minimum
of saturation as S min = 10—*. The viscosities of water and
oil are 1 ¢P and 0.45 cP, respectively. The injection rate is
0.1 PViyear and we continue the calculation until 0.5 PVI,
0.7 PVI and 0.9 PVI that has the time steps, 0.01, 0.014
and 0.018 days, respectively. The relative permeabilities are
quadratic, kryo = kreo = 1, @ = b = 2, and the static
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Saturation plot after five days of injection with different values of
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Saturation plot after seven days of injection with different values

capillary pressure parameter is B, = 50 bar. The porosity
is taken as 0.1 while the permeability is 1 md. The domain
dimension is taken as 0.3 m x 0.2 m. The computational
domain is divided into 1200 uniform rectangles.

In this example, we run the simulation for different values
of the dynamic pressure parameter, 7p =0; 1;10; 100; 500,
1,000; 5,000, 10,000, 100,000. Figs. 1 and 2 represent water
saturation after 5 and 7 days, respectively, with various values
of 7p. All these figures show that as the value of 75 tends
to infinity (7p —+ oc), the saturation with dynamic capillary
pressure tends to the saturation with static capillary pressure,
Sw(pg) — Sw(ps). This is very interesting results show that
the IMPES scheme with dynamic capillary pressure is more
stable than it with static capillary pressure. On the other
hand, unlike the case of static capillary pressure, the IMPES
scheme with dynamic capillary pressure is stable with large
time steps.

VI. CONCLUSION

In the current work, the problem of two-phase flow in
porous media including the dynamic capillary pressure has
been studied. The IMPES scheme is considered to solving the
problem under consideration. The saturation equation is used
in two different locations of the scheme. The first location
was when substituting the time derivative of the saturation
in the capillary pressure term in the pressure equation. In the
second location was the saturation equation which explicitly
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solved with the upwinding advection to update the saturation.
Stability of the scheme has been investigated. We found that
the IMPES scheme with dynamic capillary pressure is more
stable than it with static capillary pressure and it is stable
with even larger time steps.
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