
 

 
Abstract— The congestion control problem in data networks 

is analyzed here from the point of view of control systems, and 
some solutions are compared. By analyzing in detail their 
linearized transfer functions, it is discussed why TCP 
Westwood and TCP NewReno present different behavior when 
dealing with the same network conditions, showing why 
TCPWestwood gives better performance. Moreover it is shown 
that adequate stability and performance can be obtained, even 
in the presence of the wide variations in the parameters of the 
networks, as long as the controller is properly designed.  

 
 
Index Terms— congestion control, control systems, robust 

performance, TCP Westwood, TCP NewReno, transfer 
function.  

I. INTRODUCTION 

outers are central components in modern data 
networks, as they simplify the connection of several 
networks, directing data to the final destination. 
When the router receives more data than the 
maximum limit it can process then congestion 

happens, causing excessive transmission delays, blocking of 
new connections, and losses of packets (see, for example, 
[1], [3], and references therein). If this congestion is not 
properly treated congestive collapse occurs, with the router 
providing very low throughput.  
 

To correct this problem modern routers implement 
protocols that include some congestion control techniques, 
which provide feedback to the previous nodes in the 
network, in order for them to adapt the traffic to the 
maximum capacity of the congested router (see, for 
example, [4], [5]). This feedback is frequently provided by 
dropping packets: when the loss of some packets in a data 
link is detected, the protocols implemented in previous 
nodes reduce the traffic. Many congestion control 
algorithms have been proposed: this paper concentrates on 
those implemented in two of the most popular protocols: We 
assume that the protocol implemented at the transport layer 
is the Transmission Control Protocol (TCP), with an Active 
Queue Management (AQM) algorithm implemented in the 
network scheduler within the routers. These AQM 
algorithms implement the congestion control algorithm: a 
queue is implemented at the interface with each link, that 
holds the packets that have being scheduled (by TCP) to go 
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out in that link; before the queue is full, in order for the 
sender to detect the congestion problem as soon as possible 
some packets are dropped (or marked, depending on the 
specific algorithm) [5,6]. Compared with other congestion 
control algorithms (such as the drop-tail implemented in 
many routers), AQM marks the packets probabilistically to 
improve sharing the bandwidth between different links, the 
improving the processing of bursty flows and avoiding 
synchronized oscillations between the links.  

 
Many AQM algorithms have been proposed and tested 

(see, for example, [5]). Moreover, even if the same AQM 
technique is implemented results are different depending on 
the TCP protocol used. This paper concentrates on 
discussing the advantages of using algorithms derived from 
techniques that are standard in control systems and have 
being extensively tested in application areas other than data 
networks (see [7,8] for some general reference of control 
systems in general) considering two different TCP variants: 
Westwood and New Reno. These control system techniques 
normally require an approximate model of the system to be 
controlled, expressed as linear dynamic transfer function; 
some dynamical models of data congestion were already 
proposed in [10], and its linearization was discussed in [10]. 

From the many controller design methodologies proposed 
in control systems, PID control is probably the most widely 
used to develop AQM algorithms. We can cite [12], [13], 
[14], [15] and references therein.  
 

In order to make these studies the methodologies 
described will be applied to a specific communication 
problem: using simulation would make possible to make a 
fair comparison, by reproducing the same traffic conditions 
when testing each algorithm.  

 
This paper will present a comparison between Westwood 

TCP and NewReno TCP. The non linear fluid models are 
linearized and the transfer function models are then 
obtained. These transfer functions will be compared using 
the step response, the frequency response, the location of 
poles and zeros under different network configurations. 
These studies will help to understand why TCP Westwood 
behaves better when there are changes in the traffic 
conditions, number of users or delay in the network, 
regardless of the type of communication (wired or wireless). 

 
The organization of the paper is the following: Sections 2 

and 3 describe the TCP Westwood and TCP NewReno 
protocol and their fluid models. Section 4 presents a 
comparison between TCP Westwood and TCP NewReno. 
Section 5 briefly describes the controller to be implemented 
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and finally Section 6 discusses some experiments. A 
discussion concludes the paper. 

II. TCP WESTWOOD  

TCP Westwood (TCPW) [16] is a popular congestion 
control algorithm that has shown to provide robust 
selections for the congestion control parameters (in fact, it is 
implemented with minor modifications as part of the Linux 
kernel). It is particularly relevant when packet losses are not 
only generated by congestion control algorithms (for 
example in wireless networks).  

TCPW relies on studying the stream of returning 
acknowledgment packets (ACKs) to adapt some parameters 
of the congestion control algorithm [16], in particular the 
size of the so-called congestion window (cwnd) that fixes 
the maximum number of bytes that can be accepted at each 
link: this window is slowly increased until some 
acknowledgements are not received or a timeout expires.  

 

A. Fluid-flow Model  

The nonlinear dynamical model of TCPW ([15], [16], 
[17], [18]) is now presented, as it will be the base of the 
models used for controller design and comparison. If W(t) 
denotes the size of the TCPW window at a given link in 
packets, the number of packets at the corresponding queue 
(q(t):queue length) can be derived from the following 
equations as follows:  
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Where Tp is the propagation delay (in seconds), C(t) is the 
link capacity (in packets/s), N(t) is the number of TCPW 
sessions (load factor) and R(t) is the round-trip time (equal 
to q(t)/C(t)+Tp) and p(t) is the variable that is modified by 
the AQM algorithm: the probability of discarding a packet 
(or marking it in some AQM implementations). 

B. Model for controller design 

As it has been mentioned, a linear model with constant 
parameters is frequently used to design control systems, as it 
simplifies the analysis and design of controllers. This kind 
of models can be easily derived by linearization: in our case, 
temporarily assuming that the number of active TCPW 
sessions, the link capacity and the round-trip time do not 
change, and discarding high-frequency components, a 
Taylor approximation of (1) and (2) at a given set of 
operating parameters  gives the following transfer-function 
description of our system (see [11]or [15] for details): 
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Or equivalently: 

)(

1
Q

CR

CR

N

CR

N2

R

1
NR
CQ

)(

32
2

R

sp

ss

e
sq

s
















 







         (4) 

Where C, N, R and Q are the values of C(t), N(t), R(t) and 
q(t) at the current working point.  

Figure 1: Block diagram of the AQM feedback control system 

 
The static gain of this linearized system would be: 
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With the system responding as a stable second-order 

system with delay R, underdamped if Tp>2NR. 

III. TCP NEWRENO 

 
TCP NewReno (TCPNR) is still probably the most 

widely used congestion control technique (with several 
variants), although TCPW provides better performance 
when the link includes large paths or might generate 
unexpected packet losses (like wireless networks). This 
simpler algorithm can be modelled as follows: 
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The corresponding transfer function model is then 
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Or equivalently: 
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Thus, it can be seen that the TCPNewReno static gain is 
 

                                
and the dynamic response corresponds to a second order 
overdamped system with delay R, and real poles placed at  
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Where the dominant pole is given by -2N/(CR2). Please, 
take into account that only if 2N/C is bigger than 1/R the 
dominant pole would be -1/R. 
 

IV. COMPARISON BETWEEN TCPW AND TCPNR 

Research has shown ([16]) that TCPW is a good 
approach when there are wireless links in the network. This 
section presents a comparison using the transfer function 
models of TCPW and TCPNR in order to achieve some 
conclusions regarding the static gain, the open loops and the 
frequency response of each system. This analysis will allow 
designing adequate controllers. The number of users (N) 
and the RTT (R) should have coherent values. 

In [20] and [21] some guidelines on how to choose these 
values were given. The best scenario is to have many users 
and a small delay. The worst situation is to have few users 
and a big delay. This conclusion is true for both TCP 
approaches under study. 

First, let’s compare the static gain of both systems: 

- TCPW static gain (5):   2
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- TCPNR static gain (10): 
2
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Which one is bigger? It depends on the parameters’ 
values, but (usually) (5) will be bigger than (10), i.e., the 
input will be amplified: 
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Practical examples will show this. This is a very 
important inference for the designing controllers: when the 
number of users or the delay change in the network, TCPW 
will be more robust than TCPNR.  

Both systems have no zeros and both have two poles. 
However, the TCPNR transfer function always has two real 
poles and the TCPW system’s poles can be real or complex 
conjugate. The denominators of both transfer functions are: 
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on the independent, term and they have very similar: 
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Q, but in real networks the initial queue length will be 
smaller than the R times C. As a result, for a given N, C, R 
and Q, the two poles of TCPW are always placed between 
the two poles of TCPNR. Another conclusion is that TCPW 
will be a bit faster than TCPNR. This also can be justified 
looking at the analytical solution of the poles: 

If we look at the solution of the second order equation of 
TCPNR: 
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On the other hand, the poles of TCPW will be given by: 
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V. CONTROLLER DESIGN 

This section briefly describes how a controller can be 
implemented into an AQM approach. Figure 1 shows the 
basic structure. As it has been mentioned the control action 
in AQM algorithm is probability of dropping (or marking) 
packets p(t) , with is adapted by comparing the current 
queue length q(t) with a desired value qref (a percentage of 
the real capacity of the queue): see Figure 1. 

We have chosen the PID controller [2] as the AQM 
congestion control algorithm, as this controller is widely 
used and gives good results. The structure of the controller 
is: 
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It must be pointed out that this is the ideal equation: 
When the controller is implemented, the derivative term 
should be treated as a first order filter.  

VI. EXAMPLES 

This section compares TCPW and TCPNR under 
different traffic conditions. The basic topology is depicted 
in Figure 2. Different scenarios will be considered. 

 

Figure 2: Dumbbell topology 

A. First experiment: Fixed N, changing R 

The first batch of experiments considers the parameters 
shown in Table I. We consider a fixed N and a changing R. 
The greater the delay, the smaller the initial marking 
probability.  

TABLE I 
NETWORK CONFIGURATIONS 

	 N	 R	 C	 P0	 Q	

Case	1	 50	 0.15	 3750	 0.0158				 200	
Case	2	 50	 0.3	 3750	 0.0040				 200	
Case	3	 50	 0.6	 3750	 0.0010				 200	
Case	4	 50	 0.8	 3750	 0.0006				 200	
Case	5	 50	 1.1	 3750	 0.0003	 200	

 

 

TABLE II. Fixed N, changing R

 Caso 1 Caso 2 Caso 3 Caso 4 Caso 5 

TCPW tf 

06.15852.7

100000
2 


ss

 
272.363.3

50000
2 


ss

 
7562.0741.1

25000
2 


ss

 
4167.0292.1

18750
2 


ss

 
2166.09311.0

13640
2 


ss

 

TCPNR tf 

901.7852.7

140625
2 


ss

 
987.063.3

140625
2 


ss

 
1235.0741.1

140625
2 


ss

 
05208.0292.1

140625
2 


ss

 
02004.09311.0

140625
2 


ss

 

TCPW s  ga -6639 -15283 -33061 -45000 -62948 

TCPNR s ga  -17800 -1412400 -1139100 -27000000 -7018900 

TCPW band. 2.4513 1.1563 0.5578 0.4143 0.2988 

TCPNR band.   1.1475 0.2933 0.738 0.0415 0.0220 

TCPW Poles  -4.5185   -3.3333 -1.9630   -1.6667 -0.9074   -0.8333 -0.6667   -0.6250 -0.4766   -0.4545 

TCPNR Poles  -6.6667   -1.1852 -3.3333   -0.2963 -1.6667   -0.0741 -1.2500   -0.0417 -0.9091   -0.0220 

TCPW Set tim  1.69 sec. 3.55 sec. 7.32 sec. 9.85 sec. 13.6 sec 

TCPNR Se Ti  3.62 sec 13.8 sec 54 sec 95.5 sec 180 sec 
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Figure 3: Case 1 and 5, open loop poles 
Table II shows a comparison between TCPW and 

TCPNR in terms of open loop transfer function, static 
gain, bandwidth and poles and zeros.  

As it was hinted in previous section, the span of 
variation of TCPW’s static gain is smaller than the one of 
TCPNR. In fact, the standard deviation of TCPW static 
gain is 2.3104 and TCPNR standard deviation is 2.9106. 
If a controller is tuned for a certain network parameters 
and then there are changes, TCPW will perform much 
better. 

Looking at the last two rows of Table II and Figure 3, 
we can see that the open loop poles of TCPW lie between 
the poles of TCPNR. Moreover, the greater the delay, the 
closer the poles to the origin, i.e., the slower the system. 

 

Figure 4: Open loop step responses and settling times 

Figure 4 shows the open loop step response of both 
TCP variants considering the delay. Settling times are 
smaller for TCPW (as shown in Table II). The greater the 
delay is, the slower the system and greater the gain are. 
Clearly, TCPNR is slower than TCPW.  

Figures 5 and 6 depict the open loop magnitude Bode 
diagram of each system. Again, TCPNR has a worst 
behavior than TCPW. TCPW’s bandwidth is bigger than 
TCPNR’s one: Westwood is more robust when there are 
perturbations or noise in the system. 

 

Figure 5: Open loop TCPW Magnitude Bode plot 
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Figure 6: Open loop TCPNR Bode diagram 

A. Second experiment: Changing N, fixed R 

The second experiment considers a fixed R and a 
changing number of users:  

TABLE III 
NETWORK CONFIGURATIONS 

	 N	 R	 C	 P0	 Q	

Case	1	 40	 0.3	 3750	 0.0025	 200	
Case	2	 50	 0.3	 3750	 0.0040	 200	
Case	3	 70	 0.3	 3750	 0.0077	 200	
Case	4	 100	 0.3	 3750	 0.0158	 200	
Case	5	 2000	 0.3	 3750	 0.0632	 200	

 
Observing Table IV, it can be concluded that the 

bigger N give smaller the static gain. Again the standard 
deviation of the static gain is smaller for TCPW (9284) 
than for TCPNR (86497). Moreover, the bandwidth 
increases with the number of users. 

As in experiment 1, all the poles are stable (Table IV 
and Figure 7). In fact, TCPW’s poles are always placed 
between TCPNR’s poles. As R is constant, the farthest 
pole is located at -1/R. 
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TABLE IV. CHANGING N, VARYING R 
 Caso 1 Caso 2 Caso 3 Caso 4 Caso 5 

TCPW tf 

6172573

62500
2 .s.s 

  
272.363.3

50000
2 


ss

 
5847483

35710
2 .s.s 

  

54369263

25000
2 .s.s 

  

09135194

12500
2 .s.s 



TCPNR tf 

79010573

175800
2 .s.s 

  

9877.063.3

140625
2 


ss

 
1235.0741.1

140625
2 


ss

 
97519263

70310
2 .s.s 

  
95135194

315160
2 .s.s 



TCPW s  ga -23880 -15283 -7797 -3821 -955 

TCPNR s ga  222470 -1423800 -726400 -35600 -8900 

TCPW band. 0.9044               1.1563 1.6546 2.3382 4.0307 

TCPNR band.   0.2353               0.2933 0.4076 0.5738 1.0666 

TCPW Poles  -2.5399    -1.0305 -1.9630    -1.6667 -1.8741 ± 1.0335i  -1.9630 ±1.6401i   -2.2593 ± 2.8253i   

TCPNR Poles  -3.3333   -0.2370 -3.3333   -0.2963 -3.3333  -0.4148 -3.3333  -0.5926 -3.3333   -1.1852 

TCPW Set tim  4.6 sec 3.55 sec 2.38 sec 2.46 sec 1.95 sec 

TCPNR Set tim  17.1 sec 13.8 sec 10.1 sec 7.23 sec 3.97 sec 
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Figure 7: Experiment 2. Case 1 and 5, open loop poles 
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Figure 8: Experiment 2: Open loop step responses and settling times 

The settling times (Figure 8, Table IV) are not so 
different as in experiment 1. Again TCPW is faster than 
TCPNR and the settling times are more similar. The  

 

magnitude Bode diagrams (Figures 9 and 10) are more 
similar than in experiment 1. 
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Figure 9: TCPW magnitude Bode plot, exp2 
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Figure 10: TCPNR magnitude Bode plot, exp2 

 

A. Third experiment: Mixed situations 

The final experiment will consider mixed situations 
(Table V). The objective is to design a PID controller for 
the scenario considered as a normal situation and to test 
the behavior of this controller in other scenarios. 
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TABLE V 
NETWORK CONFIGURATIONS 

	 N	 R	 C	 P0	 Q	

Case	1	 80	 0.1	 3750	 0.0910	 200	
Case	2	 40	 0.9	 3750	 0.0003	 200	
Case	3	 60	 0.25	 3750	 0.0082	 200	
Case	4	 50	 0.3	 3750	 0.0040	 200	

The open loop step responses are shown in Figure 11. 
The trends and comments regarding static gain, 
bandwidth and poles follow those given for experiments 
1 and 2. It can be seen that the bigger the delay, the 
bigger the gain is. In fact, when the delay is big, TCPNR 
is clearly slower than TCPW (Figure 11). 

 

0 5 10 15 20 25 30
-4000

-3000

-2000

-1000

0
Open loop step Westwood

0 50 100 150 200 250 300
-4

-3

-2

-1

0
x 10

5 Open loop step NewReno

N=40,R=0.9

N=50,R=0.3

N=60,R=0.25

N=80,R=0.1

N=40,R=0.9

N=80,60,50

 

Figure 11: TCPW and TCPNR open loop step response 

Case 4 is the working scenario: 50 users and a delay of 
0.3 seconds. Using the classical method of Ziegler-
Nichols [8] followed by some fine tuning, two controllers 
were tuned, one for TCPW and the other for TCPNR.: 

 TCPW: Kp= -0.000015, Ti=5, Td=0. 

 TCPNR: Kp= -0.00002, Ti=3, Td=0.05 

The TCPW controller is a PI, the derivative term has 
been set to zero because there was no improvement when 
including this term.  

Figure 12 shows the closed loop response of the 
TCPW system for the 4 scenarios under study. It 
represents the evolution of the router’s queue (controlled 
variable) when a step is applied. Figure 13 shows the 
control variable (probability): how it changes to drive the 
queue to the desired value. 

Figures 13 and 14 depict the closed loop behavior of 
the TCPNR system for the four scenarios under study. 
The controlled variable (queue size at the router) 
corresponds to Figure 12 (best settling time 18.2 sec., 
case 2 and the worst time is 867 sec. in Case1) and the 
probability of marking a packet is showed in Figure 13.  
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Figure 12: TCPW closed loop response, queue evolution. 
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Figure 13: TCPW closed loop response, probability 

Observing Figures 12 and 13, we can conclude that the 
step response is stable in all cases. When N and R are 
closer to the nominal scenario, the results are better. But 
what it is really important is that the system is robust to 
changes in the parameters. Looking at Figures 14 and 15 
some conclusions are similar: the most similar the 
scenario to the nominal one (fourth graph) the better the 
results.  

But, now there is a stability problem: when N=40 and 
R=0.9, the closed loop system (plant with the controller) 
is unstable. It is true that the controller has not been tuned 
for this situation. Nevertheless as TCPNR has shown to 
be less robust (see previous sections and experiments 1 
and 2) to changes in the parameters, this is a situation that 
can arise in reality. 
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Figure 14: TCPNR closed loop response, queue evolution. 
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Figure 15: TCPNR closed loop response, probability 

VI. CONCLUSION 

The paper has presented a detailed analysis of TCP 
Westwood and TCP NewReno in terms of poles, static 
gain and frequency response of its linearized transfer 
functions, parametrized in terms of the network 
parameters. This has made possible to compared their 
expected responses for the same traffic conditions: The 
main conclusion is that as variations in the static gain and 
bandwidth are smaller for TCP Westwood and its 
bandwidth is bigger, the controlled system will be more 
robust in the inherent presence of changes in the network 
parameters: it has been shown that it can work properly 
in a wide range of situations as it has been shown through 
examples. Moreover, the TCP Westwood transfer 
function model has damping greater than 0.8. 

Results are encouraging and more work is being done 
to use this information, such as using techniques for 
tuning the controller that takes into account the expected 
parameter variations. 
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