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Abstract—The great object of this paper is to furnish, in
a concise and plain manner, new insights into that mysterious
constant whose arithmetic nature was shrouded in obscurity
for over 250 years, the famous Euler’s constant. The cardinal
instrument which generates these new insights is the unwonted
infinite number, the minus one factorial, which in this paper is
discussed in detail.

Index Terms—Euler’s constant, infinity, harmonic number,
harmonic series, natural logarithm, minus one factorial

I. INTRODUCTION

ONE of the most enchanting mathematical discoveries of
the 18th century was the mysterious and celebrated

constant, the Euler’s constant γ, discovered by the immor-
tal Swiss professor in mathematics in Berlin and St Peters-
burg, Leonhard Euler (1707-1783) [23], who, in his ad-
mirable paper titled De progressionibus harmonics observa-
tiones (1734/5) [10], defined the constant in a fascinating
manner as

γ = lim
n→∞

(
1 +

1

2
+

1

3
+

1

4
+ · · ·+ 1

n
− ln(n+ 1)

)
and computed its numerical value to 6 decimal places as

γ = 0.577218.

In the 1st section of another paper entirely devoted to the in-
vestigation of γ and intriguingly entitled De numero memo-
rabili in summatione progressionis harmonicae naturalis oc-
currente [11] [20], Euler painstakingly computed the value of
the constant to 16 decimal places as

γ = 0.5772156649015325.

The constant is sometimes called Euler–Mascheroni
constant [22] to honour together with Euler the Italian
mathematician Lorenzo Mascheroni (1750–1800) [6], prob-
ably the second to intensively investigate the constant. In
1790 Mascheroni published his Adnotationes ad calculum
integralem Euleri [6], [14] and there computed γ up to 32
decimal places, denoting it with the letter A. A few years
later, in 1809, a German mathematician, Johann Georg von
Soldner (1766–1833) found a value of the constant which
was in harmony with only the first 19 decimal places of
Mascheroni’s computed value. It was in 1812 that a young
prodigious mathematician Friedrich Bernhard Gottfried
Nicolai (1793–1846), under the supervision of the famous
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German mathematician Johann Carl Friedrich Gauss (1777–
1855), evaluated γ up to 40 correct decimal places in accor-
dance with Soldner’s value [6], [15], [32].

The constant whose numerical value is γ =
0.577215664 . . . [14], [23], a real number, forms a triple
constant with two famous and important real constants,
π = 3.141592653 . . . and e = 2.718281828 . . . as it is often
ranked the third most important real constant after π and e
[6], [14], not based on its position in respect of magnitude,
for example, π > e > γ, but depending on its position with
regard to its ubiquity in mathematics, revealed by its frequent
appearance in equations. Of the triple constant it is only γ
whose arithmetic nature was an enigma to mathematicians
as its irrationality and transcendence were unfathomable for
many years [14] . The irrationality of π and ewas proved by a
Swiss mathematician Johann Heinrich Lambert (1728–1777)
in 1761 and that of eπ by a Soviet mathematician Alexander
Osipovich Gelfond (1906–1968) in 1929 [16].

The main aim of this paper is to provide new insights into
the character of γ by means of the minus one factorial (−1)!
together with other relevant results which we shall also con-
sider in this paper. We shall here employ (−1)! to derive, in a
systematic manner, a new and beautiful expression for γ.

The rest of the paper is structured into seven sections. Sec-
tion II provides, for the reader to evince enthusiastic interest
in the paper, a brief review of Euler’s quest for the arithmetic
nature of γ. Section III introduces the new and unfamiliar
constant (−1)! while Section IV elegantly treats its arithmetic
nature. Section V discusses precise details of the harmonic
number and the natural logarithm, the two concomitants re-
sponsible for the creation of the Euler’s constant. Section VI
introduces for the first time the natural logarithm of (−1)!
as the sum of the divergent harmonic series. That the reader
may see the great beauty and force of the new constant (−1)!,
Section VII treats the use of the natural logarithm of (−1)! for
deriving a familiar formula that links the Euler’s constant with
the famous Riemann zeta constants. Finally, Section VIII pro-
vides for the first time a new and interesting identity that for-
ever links γ with (−1)!.

II. EULER’S QUEST FOR THE ARITHMETIC
NATURE OF γ

The discovery of the Euler’s constant, γ, originated from a
famous problem, the Basel problem, posed in the 17th century
in a 1650 book Novae Quadraturea Arithmeticae by a profes-
sor of mechanics in Bologna, Pietro Mengoli (1625− 1686),
an Italian mathematician and clergyman [1]. The Basel prob-
lem asked for the exact sum of the series

∞∑
n=1

1

n2
= lim
n→∞

(
1 +

1

22
+

1

32
+ · · ·+ 1

n2

)
together with a proof that the sum was precise [1], [14].
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The eminent English mathematician and professor at Ox-
ford John Wallis (1616–1703) had communicated in his 1655
book Arithmetica Infinitorum that he had got the sum to three
decimal places as 1.645, but he was unable to say anything
more concrete [1]. The problem became notable because it
was also raised by one of the eight prominent mathematicians
produced by a remarkable Swiss family in three generations,
Jakob Bernoulli (1654 − 1705), a professor of mathematics
at the University in Basel. He attempted the problem with-
out success, and in his posthumous book, the illustrious Ars
Conjectandi, published in 1713, he appealed [4], [20]:

. . . it is more difficult than one would have ex-
pected, which is noteworthy. If someone should
succeed in finding what till now withstood our ef-
forts and communicate it to us, we would be much
obliged to them.

This problem prompted Euler’s research and he spent
much effort evaluating the sum of reciprocals of powers
which in modern notation is written as

ζ(k) =
∞∑
n=1

1

nk
, k ≥ 1

where ζ(k) is a zeta constant. In 1735 he obtained the exact
sum

ζ(2) =
π2

6

and announced his noteworthy solution to the Basel problem
[1], [14]. He also procured the exact values for higher even
zeta constants ζ(2m), but did not succeed in finding the exact
value for any odd zeta constant ζ(2m − 1). In a letter to his
tutor, the notable Johann Bernoulli (1667– 1748), the younger
brother of Jakob, he wrote, “. . . the odd powers I cannot sum,
and I don’t believe that their sums depend on the quadrature
of the circle [π] ”[14].

In an attempt to assign a value to the odd zeta constant
ζ(1), also called the harmonic series, he discovered his fa-
vorite constant which we now call the Euler’s constant γ,
computed it to six decimal places and published his results in
the paper [10], and there denoted his constant with the letter
C, stating that it was “worthy of serious consideration”[17].

Now the birth of Euler’s constant as Euler presented it in
his paper [10] is as follows: We start with the Taylor series
expansion of ln(1 + x),

ln(1 + x) = x− x2

2
+
x3

3
− x4

4
+
x5

5
− · · · ,

which was discovered by a 17th-century German mathemati-
cian Nicholas Mercator (c.1620–1687). We rearrange this se-
ries as

x = ln(1 + x) +
x2

2
− x3

3
+
x4

4
− x5

5
+ · · · ,

substitute consecutively 1, 1
2 ,

1
3 , . . . ,

1
n in place of x, and ob-

tain the following tabular form:

1 = ln (2) +
1

2
− 1

3
+

1

4
− 1

5
+ · · ·

1

2
= ln

(
3

2

)
+

1

2 · 4
− 1

3 · 8
+

1

4 · 16
− 1

5 · 32
+ · · ·

1

3
= ln

(
4

3

)
+

1

2 · 9
− 1

3 · 27
+

1

4 · 81
− 1

5 · 243
+ · · ·

...

1

n
= ln

(
n+ 1

n

)
+

1

2 · n2
− 1

3 · n3
+

1

4 · n4
− 1

5 · n5
+ · · · .

Adding by columns the first n terms, we get

1 +
1

2
+

1

3
+ · · ·+ 1

n
= ln(n+ 1)

+
1

2

(
1 +

1

4
+

1

9
+ · · ·+ 1

n2

)
− 1

3

(
1 +

1

8
+

1

27
+ · · ·+ 1

n3

)
+

1

4

(
1 +

1

16
+

1

81
+ · · ·+ 1

n4

)
− 1

5

(
1 +

1

32
+

1

243
+ · · ·+ 1

n5

)
+ · · · .

If n tends to the infinitely large integer Ω so that 1 + 1
2 + 1

3 +
· · ·+ 1

n becomes the harmonic series, we have

1 +
1

2
+

1

3
+ · · ·+ 1

Ω
= ln(Ω + 1) + γ

where

γ =
1

2

(
1 +

1

4
+

1

9
+ · · ·+ 1

Ω2

)
− 1

3

(
1 +

1

8
+

1

27
+ · · ·+ 1

Ω3

)
+

1

4

(
1 +

1

16
+

1

81
+ · · ·+ 1

Ω4

)
− 1

5

(
1 +

1

32
+

1

243
+ · · ·+ 1

Ω5

)
+ · · ·

=
1

2
ζ(2)− 1

3
ζ(3) +

1

4
ζ(4)− 1

5
ζ(5) + · · ·

=
1

2

(
π2

6

)
− 1

3
(1.202056903 . . .) +

1

4

(
π4

90

)
− · · ·

= 0.577215664 . . . .

Euler, as was his custom, would never give up the search
for anything he thought deserves serious consideration. He
engaged himself with great ardor in a long search for the arith-
metic nature of γ, desiring to know the sort of number it is,
whether or not it is irrational, incapable of being written as
a ratio or quotient of two integers, and transcendental, inca-
pable of being expressed as a polynomial.

In the 1768 paper [8], mainly devoted to zeta constants
and Bernoulli numbers, Euler obtained formulas for γ and
used the letter O to denote the constant. In the 24th section
he gave the following remark, touching γ [20]:
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This number seems also the more noteworthy be-
cause even though I have spent much effort in in-
vestigating it, I have not been able to reduce it to a
known kind of quantity.

and in the 29th section he concluded:

Therefore the question remains of great moment, of
what character the number O is and among what
species of quantities it can be classified.

In the 1776 paper [11] presented in 1781 and posthu-
mously published in 1785, Euler intensively investigated γ
and conjectured that γ was the logarithm of some other num-
ber N = eγ of significance but was unable to identify the
character of any such number. In the 2nd section we read
Euler, the master of us all [20]:

And therefore, if x is taken to be an infinitely large
number it will then be

1 +
1

2
+

1

3
+ · · ·+ 1

x
= C + lnx.

One may suspect from this that the number C is
the hyperbolic logarithm of some notable number,
which we put = N , so that C = lnN and the sum
of the infinite series is equal to the logarithm of the
number N ·x. Thus it will be worthwhile to inquire
into the value of this number N , which indeed it
suffices to have defined to five or six decimal fig-
ures, since then one will be able to judge without
difficulty whether this agrees with any known num-
ber or not.

Here the hyperbolic logarithm is the natural logarithm or the
Napierian logarithm named after the inventor of logarithm
John Napier (1550—1617), the Baron of Merchiston in Scot-
land, who gave it to the world.

In another 1776 paper [12], not published until 1789, Eu-
ler employed the letter n to denote his constant and gave the
following comment [20]:

. . . whose value I have been able in no way to
reduce to already known transcendental measures;
therefore, it will hardly be useless to try to resolve
the formula in many different ways.

One remark on Euler’s work is appropriate before we wind
up this brief discussion of Euler’s quest for the nature of γ.
Euler, craving for the sort of number γ is, derived many for-
mulas involving γ, among which are the familiar identities
[10], [15], [29]:

γ =
∞∑
n=2

(n− 1)(ζ(n)− 1)

n
and γ = 1−

∞∑
n=2

ζ(n)− 1

n
.

We conclude this section by saying that Euler did not give
up his quest for the nature of his beloved, γ. He investigated
it over and over again until his demise in 1783 and abandoned
the search for the solution to the later renowned problem of
finding the nature of his darling constant, which had drilled
his mind.

III. THE FACTORIAL OF MINUS ONE
The idea we will deal with in this section is that which

has to do with the product of decreasing counting numbers,

the factorial, a concept which occurs quite often in myriad
branches of mathematics, especially in combinatorics and al-
gebra. All such expressions as

1

2 · 1
3 · 2 · 1
4 · 3 · 2 · 1

and so on, are factorials since they are the product of decreas-
ing consecutive natural or counting numbers. We find that
some useful space in paper can be wasted by continuing this
multiplication and we overcome this by adopting a shorthand
[7], the symbol n!, introduced in 1808 by the French math-
ematician Christian Kramp (1760 - 1826) who investigated
mainly factorial; the letter n standing for any given natural
number. Employing Kramp’s symbol for the factorial of n,
we write the first few factorial values:

1! = 1

2! = 2 · 1
3! = 3 · 2 · 1
4! = 4 · 3 · 2 · 1

and in general

n! = n · (n− 1) · (n− 2) · · · 2 · 1.

We thus give the definition of the factorial n! as the product
of all counting numbers from n down through 1.

It is wise to extend the factorial to zero, since, in many
applications of the factorial, the zero factorial, with symbol
0!, occurs frequently in calculations. Zero factorial cannot be
defined by the rule used in the preceding examples because
zero is not a counting number. To investigate zero factorial,
we introduce the familiar recurrence relation,

n! = n · (n− 1)! (1)

which, upon putting 1, a counting number, in place of n, gives

1! = 1 · 0!

∴ 0! = 1.

So we define 0! as being equal to unity. Thus we redefine, for
every nonnegative integer n, the factorial of n by means of
the repeated application of the recurrence relation (1) as

n! = n · (n− 1) · (n− 2) · · · · · 2 · 1 · 0!

where 0! = 1, as was remarked upon.
If we attempt to perform the operation already named–

factorial–on any of the real numbers thus recognized, we find
that there is one case in which the result of the operation can-
not be expressed without the introduction of yet another type
of numbers. The case referred to is that in which the opera-
tion of factorial, is applied to a negative integer, e.g. to find
the factorial of −2, i.e. (−2)!. To express the results of this ,
we make use of a new number, the minus one factorial, (−1)!
and to find (−1)! we need to extend the idea of the factorial
one step further. This is accomplished by the recurrence rela-
tion which has just been introduced; that is n! = n · (n− 1)!.
If we, as we did for 0, put 0 in place of n, we get an intriguing
result

1 = 0 · (−1)!
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or
0 · (−1)! = 1. (2)

What is (−1)!? It is the infinite product of all negative inte-
gers from −1 down to a minus infinity, that is

(−1)! = (−1) · (−2) · (−3) · · · .

We shall call the relation (2), in which (−1)! has for its mul-
tiplication with zero the positive number 1, the fundamental
property of (−1)! because it forms a basis for the investiga-
tions of other properties of (−1)!, though we will not refer to
these properties in this paper.

It is often asserted that zero, the neutral integer, has no in-
verse, that is to say, the reciprocal of zero is undefined, but
this would be true only when finite integers were considered.
If, therefore, we considered all manner of integers, positive
and negative, finite and infinite, then we can unquestionably
say that the multiplicative inverse of zero is minus one facto-
rial, so that we can properly write

1

0
= (−1)!

or
1

(−1)!
= 0.

This result will provide inspiration throughout this paper, as
in calculations where it is impossible to work with zero such
as in division by zero or the logarithm of zero, we will employ
the property 1

0 = (−1)! which links nothing with infinity.
It is needful to discuss two mathematical concepts usually

embodied in the number series—zero with the symbol 0 and
infinity with the symbol∞. For these concepts unique rules
of operation are required.

Now zero springs in the first place from subtracting a quan-
tity from an equal quantity; thus, x−x = x ·0 = 0. It implies
in this sense the absence of quantity, nothing. It cannot, then,
either operate upon a quantity or be operated upon ; for all
operations imply the existence of the quantities concerned.
Although the expressions

a× 0,
0

a
,

a

0
,

are meaningless, it is possible to give them conventional
meanings, as follows : Take the three expressions

a× x, x

a
,

a

x
,

and consider what happens when x is decreased constantly to
zero. We need only elementary arithmetic to see that

a× x and
x

a

may each be made as small as we please by taking x infinitely
small, while

a

x

becomes infinitely great as x decreases, and may be made
greater than any quantity we may choose to name. We may
express the first two results concisely by the formulas

a× 0 = 0 and
0

a
= 0.

We can express the last result in a formula, however, only
by introducing the concept of infinity denoted by the symbol
∞ and of which (−1)! is the head. We may express our third
result by the formula

a

0
=∞

which means that when the denominator of a fraction de-
creases constantly to zero, the value of the fraction increases
and becomes greater than any quantity which can be named.

The expressions

a×∞, ∞
a
,

a

∞

are also literally meaningless, but we can give a conventional
meaning to them by writing

a× x, x

a
,

a

x
,

and studying the effect of increasing x indefinitely. We obtain
by elementary arithmetic the results expressed by the formu-
las

a×∞ =∞, ∞
a

=∞, a

∞
= 0.

To cope with certain problems in mathematics, especially
those involving division by zero, we need to make use of
(−1)!, a number at infinity. This number, though infinite and
immeasurable or has no value in the ordinary sense, should
be, in my opinion, admitted, like the imaginary unit i =

√
−1

which at first was thought to be a play of the imagination,
into the great family of numbers. We should overcome any
prejudice against (−1)! and build up a distinct body of math-
ematics around it. As we will see in the rest of the paper, this
number will prove to be very valuable as it will help us to
derive a familiar formula that relates Euler’s constant to zeta
constants, and more importantly, derive a new identity for γ.

To round off this discussion, let me add something which
certainly is more curious than useful. The fundamental prop-
erty of (−1)! asserts that

0 · (−1)! = 1

and this implies that when 0 is added to itself (−1)! times, the
result is unity, that is,

0 + 0 + 0 + 0 + · · ·︸ ︷︷ ︸
(−1)!times

= 1.

From this, it is evident that

0 + 0 + 0 + 0 + · · ·︸ ︷︷ ︸
(−1)!

a times

=
1

a

since

0 · (−1)!

a
=

0 · (−1)!

a
=

1

a
.

Let us use this idea together with the assumption that there
are (−1)! terms in any infinite series consisting of equal terms
to explain why 1

2 could be the sum of the famous Grandi’s
series

1− 1 + 1− 1 + 1− 1 + · · ·︸ ︷︷ ︸
(−1)! ones
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which has caused intense and endless dispute among math-
ematicians and for which Euler’s reputation was badly tar-
nished [19]. Bracketing the series as

(1− 1) + (1− 1) + · · ·

appears to furnish the infinite series with only zeros as its
terms; the number of zeros being half the number of ones
in the Grandi’s series. Thus the sum of the Grandi’s series is

0 + 0 + 0 + 0 + · · ·︸ ︷︷ ︸
(−1)!

2 zeros

= 0 · (−1)!

2
=

1

2
.

Also, bracketing the series as

1− (1− 1)− (1− 1)− · · ·

which is
1− ((1− 1) + (1− 1) + · · · )︸ ︷︷ ︸

(−1)!−1 ones

appears to furnish the infinite series

1− (0 + 0 + 0 + · · · )︸ ︷︷ ︸
(−1)!−1

2 zeros

so that the sum of the Grandi’s series is

1−
(

0 · (−1)!− 1

2

)
= 1−

(
0 · (−1)!− 0 · 1

2

)
= 1− 1

2

=
1

2
.

Let us also use this approach to investigate the series
1 + 0 − 1 + 1 + 0 − 1 + · · · which is often given as a
counter–example as its sum is not 1

2 but 2
3 [19]. If we now fol-

low the method of Gottfried Wilhelm Leibniz (1646–1716),
Germany’s marvelous prodigy, we see that the sequence cor-
responding to this series has, out of every three succeeding
terms, once the value 0 and twice the value 1 [26]. If we
group the series into two as

(1− 1 + 1− · · · ) + (0 + 0 + 0 + · · · ) ,

it will then be found that there are 2(−1)!
3 ones in the first

grouping (1− 1 + 1− · · · ) and (−1)!
3 zeros in the second

grouping (0 + 0 + 0 + · · · ). Bracketing the first grouping as

(1− 1) + (1− 1) + · · ·

appears to furnish the series (0 + 0 + 0 + · · · ) with the num-
ber of zeros being half the number of ones in the first group-
ing, that is there are now (−1)!

3 zeros in the first grouping.
Thus, there is a total of 2(−1)!

3 zeros, combining the two
groupings, and hence the sum of the series 1 + 0 − 1 + 1 +
0− 1 + · · · is

0 · 2(−1)!

3
=

0 · 2(−1)!

3
=

2

3
.

We wish we could further pursue this subject that opens be-
fore us; for we want to show how this new number (−1)! may
be employed in settling all manner of disputes arising from
the investigation of infinite series.

IV. ARITHMETIC NATURE OF (−1)!

It is not difficult to show that (−1)! is an integral and infi-
nite number as it is the product of all negative integers from
−1 to negative infinity, that is,

(−1)! = (−1) · (−2) · (−3) · · · .

If the infinite product is terminated somewhere so that the nth
partial product Pn is

Pn = (−1) · (−2) · (−3) · · · (−n),

we have the sequence of partial products of (−1)! as follows:

P1 = (−1) = −1!

P2 = (−1) · (−2) = 2!

P3 = (−1) · (−2) · (−3) = −3!

P4 = (−1) · (−2) · (−3) · (−4) = 4!

and in general

Pn = (−1) · (−2) · (−3) · · · (−n) = (−1)nn!.

The limit of Pn as n tends to infinity is thus

lim
n→∞

(Pn) = lim
n→∞

((−1)nn!) = (−1)!.

The above limit clearly shows that the number (−1)! is an
infinite integer.

Therefore, from our above illustrations, if n is made even,
then the product is a positive number, but if, on the other hand,
n is made odd, the product is a negative number. Now if,
therefore, n is taken to infinity and consequently we cannot
assert without proof that the infinite product (−1)! is a posi-
tive or negative number. Thus, a beautiful question concern-
ing the nature of (−1)! as to whether it is positive or negative
arises immediately. If (−1)! is an infinite number, is it a pos-
itive or negative infinite number or a number oscillating be-
tween positive and negative as one may suppose considering
the above limit? The answer to this fundamental question is
found by considering the inequality

ex > 0

which is true for all x [2], whether positive or negative, small
or large. If we find the natural logarithm of both sides of the
inequality and evaluate both sides step by step, we get the
following:

ln ex > ln 0

− ln 0 > − ln ex

ln

(
1

0

)
> −x

ln(−1)! > −x
(−1)! > e−x

∴ (−1)! >
1

ex
.

Since 1
ex is positive for all manner of x it is evident that (−1)!

being greater than 1
ex is a positive number.

Again, we demonstrate, in a simple and naive manner, that
(−1)! is actually positive and never alternating positive and
negative. We start with the inequality with which we all are
familiar,

1 > 0
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which, after employing the property 1
(−1)! = 0, becomes the

inequality

1 >
1

(−1)!
.

Therefore,
(−1)! > 1

which indisputably shows that (−1)! being greater than +1 is
a positive number.

Now that we have shown for the second time that (−1)!
is a positive number, no further investigation is needed con-
cerning this matter and all we need do is to inquire further
whether (−1)! is actually an integer or not, a result necessary
for describing the character of γ.

It is apparent that the algebraic fraction

1

1− x
,

on being expanded by the Taylor series expansion furnishes
the infinite geometric series [26]

1 + x+ x2 + x3 + · · ·+ xn + · · · ,

the general term of which is xn; for this is usually called the
general term, because from that all the numbers on being sub-
stituted in place of n successively give rise to all terms of
the series. If we investigate the behavior of the denominator,
1 − x, of the algebraic fraction at the right hand side of the
equation

1 + x+ x2 + x3 + · · ·+ xn + · · · = 1

1− x

as x becomes closer and closer to 1, we will observe that 1−x
approaches zero. For instance, if we let x = 0.9, 0.99, 0.999,
we have the following respective results:

1 + 0.9 + 0.92 + 0.93 + · · · = 1

1− 0.9
=

1

0.1
,

1 + 0.99 + 0.992 + 0.993 + · · · = 1

1− 0.99
=

1

0.01
,

1 + 0.999 + 0.9992 + 0.9993 + · · · = 1

1− 0.999
=

1

0.001
.

Continuing our computation in this manner, we obtain, for
any value of x with the digit 9 repeated n times, the value of
1 − x as 10−n. If we let x = 0.999 . . . where the ellipsis
“. . . ” indicates that the digit 9 is repeated indefinitely, we get
1 − x = 0 since 10−n tends to zero as n tends to infinity.
This is actually so because the value x = 0.999 . . . can be
expressed as the infinite geometrics series

9

10
+

9

100
+

9

1000
+ · · ·

whose sum, when computed, furnishes exactly unity. Thus,
instead of writing

1 + (0.999 . . .) + (0.999 . . .)2 + · · · = 1

1− (0.999 . . .)

we can boldly write [13]

1 + 1 + 1 + · · · = 1

1− 1
=

1

0
= (−1)!.

This result may be obtained more easily by beginning with the
recurrence relation x! = x (x− 1)! which may be rewritten
as

(x− 1)! =
x!

x
.

Letting x = 1− x, we get

(−x)! =
(1− x)!

(1− x)
, (3)

which, employing the Taylor series expansion of 1
1−x , be-

comes

(−x)! = (1− x)!
(
1 + x+ x2 + x3 + · · ·

)
.

If we set x = 1, we obtain, again,

(−1)! = 1 + 1 + 1 + · · ·

which, for brevity, can also be expressed as

∞∑
k=1

1 = (−1)!.

Now the partial sums of
∑∞
k=1 1 are

S1 =

1∑
k=1

1 = 1

S2 =
2∑
k=1

1 = 1 + 1 = 2

S3 =
3∑
k=1

1 = 1 + 1 + 1 = 3

S4 =
4∑
k=1

1 = 1 + 1 + 1 + 1 = 4

and in general, the mth partial sum is

Sm =
m∑
k=1

1 = m

where m is a natural number or a positive integer. As m →
∞, we have

lim
m→∞

(Sm) = lim
m→∞

(m) = (−1)!.

The limit limm→∞ (m) = (−1)! which can also be written
as

lim
m→(−1)!

(m) = (−1)!

shows that (−1)! is a positive integer. Thus, we have incon-
testably demonstrated that (−1)! is an infinitely large positive
integer.

Here the sceptic may remark that he sees no beauty or sig-
nificance in the introduction of the constant (−1)!. At this
stage of our investigation it would indeed be difficult to con-
vince him that he is wrong. For the moment he is, in fact,
right. But we shall see that just this new and strange concept
leads to important applications in which (−1)! appears to be
essential.

It is, therefore, left for us to suppress any dubiety which
may be entertained at this stage concerning the utility of
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(−1)!, which we have been discussing; for this number whose
value is immeasurable because it is infinite is itself useful. So
at this stage of our inquire, it would not be shocking if (−1)!
was considered entirely useless. This would be a great mis-
take for the computations involving (−1)!, many of which
will not be demonstrated in this paper because they are better
left for a text, are of the greatest importance.

V. HARMONIC SERIES AND γ

In this section we treat, in connection with the Euler’s con-
stant γ, one of the most celebrated series of all – the harmonic
series, a divergent infinite series of the reciprocals of all the
natural numbers or positive integers from 1 up to infinity, that
is to say, the harmonic series is

∞∑
k=1

1

k
= 1 +

1

2
+

1

3
+ · · ·

with the terms of the series forming the harmonic sequence
1, 1/2, 1/3, . . . which continues and matches into infinity.
Any term of the sequence is less than 1 except the first term
which is itself unity, but the further a term is in the sequence,
the closer its value approaches zero. In the terminology of the
German mathematician who with Riemann founded the mod-
ern theory of function, Karl Weierstrass (1815-1897) [23], the
harmonic sequence 1, 1/2, 1/3 . . . , 1/n, . . . where n is a pos-
itive integer, approaches 0 as n tends to infinity, that is,

lim
n→∞

(
1

n

)
= 0.

The earliest recorded appearance of the harmonic series
seems to be in the work of the 14th century French math-
ematician Nicole Oresme (1323-1382) the Bishop of paris,
probably the best mathematician of that century. He knew
how to sum harmonic and arithmetico-geometric progressions
as well as infinite geometric series, and was the first to prove
that the harmonic series diverges by matching off to infin-
ity [1]. His proof which relies on grouping the terms in the
series furnishes the following inequality, sometimes called
Oresme’s inequality:

H2m > 1 +
m

2
, m ≥ 0

which shows that the series is divergent [24].
Later, the divergence of the harmonic series was proved

in the 17th century by Mengoli in his Novae Quadraturea
Arithmeticae [1]. The divergence of the harmonic series
was also proved independently by two of the talented Swiss
mathematicians of the Bernoulli family, Jakob and Johann
Bernoulli.

Let us now consider the nth partial sum of the harmonic
series, called the harmonic number, Hn, and defined as

Hn = 1 +
1

2
+

1

3
+ · · ·+ 1

n
.

A careful analysis of Oresme’s inequality, which requires a
little calculus, shows that the harmonic number Hn increases
at the same rate as the natural logarithm of n; this implies
that the harmonic series has a logarithmic connection. Fur-
ther analysis shows that the difference between the harmonic
number Hn and the natural logarithm ln(n + 1) decreases
gradually as n increases and eventually converges to the Eu-
ler’s constant as n tends to infinity. If we use the symbol γn to

denote the nth difference between the concomitants Hn and
ln(n+ 1) as they grow together, we write

γn = Hn − ln(n+ 1)

which, being computed for n = 1, 2, 3, . . ., gives values of γn
that converge gradually to γ.

Suppose γn = γ when n = Ω, an infinitely large posi-
tive integer for which Hn becomes the harmonic series. We
redefine Euler’s constant as

γ = lim
n→Ω

(
1 +

1

2
+

1

3
+

1

4
+ · · ·+ 1

n
− ln(n+ 1)

)
= 1 +

1

2
+

1

3
+

1

4
+ · · ·+ 1

Ω
− ln(Ω + 1)

or more concisely as

γ = HΩ − ln(Ω + 1)

where HΩ is the harmonic series and ln(Ω + 1) is the natural
logarithm of Ω + 1.

It is essential, in order to understand the existence of the
constant γ, to distinguish between the infinitely large num-
bers, HΩ and ln(Ω + 1). It is evident, since γ is positive, that
HΩ > ln(Ω + 1), but we will demonstrate this fact beginning
with a familiar inequality [21], [28]:

1

2
+

1

3
+· · ·+ 1

n
< lnn < 1+

1

2
+

1

3
+· · ·+ 1

n− 1
, n > 1

which can also be presented as

Hn − 1 < lnn < Hn−1.

If we let n = n+ 1, then the inequality becomes

Hn+1 − 1 < ln(n+ 1) < Hn

which can be split into two inequalities:

Hn+1− ln(n+1) < 1 or Hn− ln(n+1) < 1− 1

n+ 1
(4)

and
Hn > ln(n+ 1) or Hn − ln(n+ 1) > 0. (5)

The first inequality (4) shows that for every integer n >
0, γn = Hn − ln(n + 1) is less than 1, a reason for the ex-
istence of γ < 1. The second inequality (5) shows that for
every integer n > 0, γn = Hn − ln(n + 1) is greater than 0.
It follows from this that the divergent harmonic series HΩ is
greater than the divergent natural logarithm ln(Ω + 1), a rea-
son for the existence of γ > 0. Thus γ exists and is between
0 and 1.

VI. ln(−1)! AS THE SUM OF THE HARMONIC SERIES
In the previous section, we defined the harmonic series,

emphasizing on its nth partial sum, the nth harmonic number
Hn, and its connection with the natural logarithm. We may
now proceed to the logarithm of (−1)! which will be needed
in our treatment of the Euler’s constant in the last two sec-
tions. In this section, however, we treat of the logarithm of
(−1)!, a logarithmic infinity written as ln(−1)! and which, as
we shall see, is the sum of the harmonic series.

We begin with the fundamental property of (−1)!:

0 · (−1)! = 1. (6)
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We then find the natural logarithm of both sides of the equa-
tion and obtain the relation

ln 0 + ln(−1)! = 0 (7)

which, on being rearranged, gives

ln(−1)! = − ln 0. (8)

With the help of the relation (8), we will show that the sum
of the divergent harmonic series HΩ is ln(−1)!, an infinitely
large number less than (−1)!. Our aim at this point is, there-
fore, to demonstrate that ln(−1)! is the sum of the harmonic
series, that is to say,

HΩ = 1 +
1

2
+

1

3
+ · · · = ln(−1)!. (9)

The possibility of such a relation as (9) is suggested by in-
specting the Taylor series expansion of ln(1− x),

ln(1− x) = −
(
x+

x2

2
+
x3

3
+ · · ·

)
,

and letting x = 1. Accomplishing these, we obtain the fol-
lowing:

ln 0 = −
(

1 +
1

2
+

1

3
+ · · ·

)
− ln 0 = 1 +

1

2
+

1

3
+ · · · .

Employing (8), we arrived at the required result

ln(−1)! = 1 +
1

2
+

1

3
+ · · · .

This result can be obtained by another means; for if we start
with the Taylor series expansion familiar to us, the expansion

ln

(
1

1− x

)
= x+

x2

2
+
x3

3
+ · · ·

and let
1

1− x
= (−1)!,

so that
x = 1− 1

(−1)!
,

we get the interesting result:

ln(−1)! =

(
1− 1

(−1)!

)
+

1

2

(
1− 1

(−1)!

)2

+ · · ·

which, upon applying the fundamental property of (−1)!,
gives the result

ln(−1)! = 1 +
1

2
+

1

3
+ · · · .

We now give a most convincing demonstration of the
above result, and we begin with (3), that is

(−x)! =
(1− x)!

(1− x)
.

If we find the natural logarithm of both sides of the above
formula, we shall obtain

ln (−x)! = ln (1− x)! + ln

(
1

1− x

)

which becomes

ln (−x)! = ln (1− x)! + x+
x2

2
+
x3

3
+ · · ·

which, setting x = 1, furnishes

ln(−1)! = 1 +
1

2
+

1

3
+ · · ·

=
∞∑
k=1

1

k

= HΩ.

(10)

Thus we see that the sum of the reciprocals of all the count-
ing numbers or positive integers is equal to the natural loga-
rithm of (−1)!. We can, therefore, explain the harmonic num-
ber in this manner. For all finite integer values of n greater
than 1, the harmonic number is a finite number, but is a frac-
tional type with denominator greater than 1. When n becomes
the infinitely large integer Ω, the harmonic number is the log-
arithmic infinity, ln(−1)!.

Let us take one step farther. If we make (−1)! the subject
of (10), we obtain

(−1)! = eHΩ

= e1+ 1
2 + 1

3 +···

= e1 · e 1
2 · e 1

3 · · ·

=

∞∏
k=1

e
1
k

which clearly and satisfactorily shows that (−1)! is positive
and infinite.

It may seem at first that the natural logarithm of (−1)!,
being the sum of the divergent harmonic series, has no use at
all. As we shall see in the last two sections, ln(−1)! will be
employed to derive a familiar formula for the Euler’s constant
γ and an interesting relation that connects γ to (−1)!.

VII. USE OF ln(−1)! IN DERIVING A FAMOUS
FORMULA FOR γ

One famous and classical formula for γ which relates it to
the Riemann zeta constants, ζ(k), should be mentioned, for
soon we shall, employing the idea of ln(−1)!, derive it:

1− γ =
∞∑
k=2

ζ(k)− 1

k
.

The above formula which can be used to compute γ was first
found in the 1776 paper [11] by Euler and reappeared in sev-
eral subsequent works by great and excellent mathematicians
such as Glaisher [15], Johnson [18], Bromwich [5], Srivastava
[29], Lagarias [20], and Barnes and Kaufman [3].

We now proceed to derive this formula which has fasci-
nated the industry of such a great number of mathematicians
and we shall begin from a familiar Maclaurin series expansion
of the natural logarithm of x!. Euler derived the Maclaurin se-
ries expansion for ln(x!) [9], [30] which in modern notation
reads

ln(x!) = −γx+
∞∑
k=2

(−1)k
ζ(k)

k
xk, |x| < 1.
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We shall here violate the stipulation that |x| < 1; for if we
let x = −1 so that |x| = 1, an infringement of the proviso
|x| < 1, then we obtain the result

ln(−1)! = γ +
∞∑
k=2

ζ(k)

k
.

We have already established in Section VI that the natural log-
arithm of (−1)! is the sum of the harmonic series,

∑∞
k=1

1
k .

If we then replace ln(−1)! with the sum
∑∞
k=1

1
k , we procure

for ourselves
∞∑
k=1

1

k
= γ +

∞∑
k=2

ζ(k)

k

which results in

1 +
∞∑
k=2

1

k
−
∞∑
k=2

ζ(k)

k
= γ

which in turn furnishes our required formula

1 +
∞∑
k=2

1− ζ(k)

k
= γ

or

1− γ =
∞∑
k=2

ζ(k)− 1

k
.

Indeed, this application of ln(−1)! in deriving the above
celebrated formula sounds strange to any one seeing it for the
first time, and there is a reason to be particularly proud and
pleased about it. This application of ln(−1)! is certainly sat-
isfactory as the formula just derived is already existing and
well known. From this, if our sum ln(−1)! for the divergent
harmonic series should appear to some as not certain or re-
liable enough, a great confirmation comes to light here; thus
there should not be any doubt about ln(−1)! as a replacement
for the harmonic series HΩ in the relation

γ = HΩ − ln(Ω + 1).

VIII. A NEW FORMULA CONNECTING γ TO (−1)!

We are now ready to discuss one of the most interesting
applications of (−1)!, namely, the derivation of a new formula
that connects γ to (−1)!. If we begin with the mystery of γ, in
which Euler has beautifully mingled the harmonic series with
the natural logarithm, that is the admirable relation

γ = lim
n→Ω

(Hn − ln(n+ 1))

where Ω, as already discussed in Section V, is an infinitely
large positive integer for which the precise value of γ is ob-
tainable, then the constant γ is also expressible as

γ = HΩ − ln(Ω + 1). (11)

We have already seen that HΩ, an infinitely large number less
than Ω, is equal to the natural logarithm of (−1)!, that is

HΩ = ln(−1)!,

but we must take Euler’s relation (11) one step further and
assume a simple relation between (−1)! and Ω + 1. We re-
member how indispensable it was for an understanding of the

existence of Euler’s constant to distinguish between HΩ and
ln(Ω + 1) in Section V. It is equally important to distinguish
between (−1)! and Ω + 1. The difference between these two
infinitely great integers will soon be cleared up.

We have shown in Section V by means of the inequality

Hn − 1 < lnn < Hn−1

thatHΩ > ln(Ω+1), and taking this, that isHΩ > ln(Ω+1),
as our starting point, we have, replacing HΩ with ln(−1)!,

ln(−1)! > ln(Ω + 1)

∴ (−1)! > Ω + 1.

We thus have seen that, though both (−1)! and Ω + 1 are
infinitely great integers, (−1)! is greater than Ω + 1.

We consider another distinction between (−1)! and Ω + 1.
We know that, from the fundamental property of (−1)!,

1
(−1)! = 0. Is 1

Ω+1 = 0, since both (−1)! and Ω + 1 are
infinitely great integers? The answer to this question comes
when we first consider the series expansion

ln

(
1

1− x

)
= x+

x2

2
+
x3

3
+
x4

4
+ · · · (12)

and then let
1

1− x
= Ω + 1,

so that

x = 1− 1

Ω + 1
.

Substituting this into (12) furnishes the interesting result

ln(Ω + 1) =

(
1− 1

Ω + 1

)
+

1

2

(
1− 1

Ω + 1

)2

+ · · · .

If 1
Ω+1 = 0, then

ln(Ω + 1) = 1 +
1

2
+

1

3
+ · · · = HΩ.

This is a great contradiction since we have already shown that
HΩ > ln(Ω + 1). Thus, 1

Ω+1 cannot be equal to 0. It will
rather be infinitely less than 1 but infinitesimally greater than
0, that is

0 <
1

Ω + 1
� 1.

This inequality implies that none of the terms of the harmonic
series

HΩ = 1 +
1

2
+

1

3
+ · · ·+ 1

Ω

is exactly equal to the unit zero, 0 = 1× 0, though each term
approaches it as the series proceed onwards. This appears to
be a reason for the divergence of the harmonic series. More-
over, since Ω is an infinitely great number, 1

Ω+1 , the reciprocal
of Ω + 1, will then be an infinitely small number.

We now come to the derivation of the new formula for the
Euler’s constant. We can now express the constant γ in terms
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of (−1)! and Ω + 1, and the derivation runs thus:

γ = HΩ − ln(Ω + 1)

= ln(−1)!− ln(Ω + 1)

= ln

(
(−1)!

Ω + 1

)
∴ eγ =

(−1)!

Ω + 1

=
limm→(−1)!(m)

limn→Ω(n+ 1)

= lim
m→(−1)!

n→Ω

(
m

n+ 1

)
where m

n+1 is a fraction, the ratio of two positive integers, m
and n + 1. We thus have obtained a most beautiful result;
eγ , being the ratio of the infinitely large integers, (−1)! and
Ω + 1, is a rational number.

It has been proved and is well known that ey is irrational
for every rational y 6= 0 [16], [25], [27]. If, therefore, γ 6= 0
were rational, then eγ would be irrational, a contradiction,
since eγ as we have seen, is rational. Thus γ is an irrational
number, incapable of being written as a ratio of two integers.

Let us conclude this paper by inquiring whether or not γ
is transcendental. It is a well-known fact that all rationals
are algebraic. For this reason eγ , being a rational number, is
algebraic. If γ were algebraic and then by the Lindermann–
Weierstrass theorem [25], [31], eγ would be transcendental, a
contradiction. Thus, we conclude that γ which has just been
proved to be irrational, is also transcendental.
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