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Tan-Cot Function Method to Solve New
Coupled ZK and mKdV Systems
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Abstract—In this paper, traveling wave solutions by using
the Tan-Cot function algorithm were established for solving
nonlinear partial differential equations. The method was used
to obtain new solitary wave solutions for two systems of
various types of nonlinear partial differential equations such
as a new coupled ZK equation as new hierarchy of nonlinear
evolution equations, and the second coupled mKdV system
with constant coefficients. The method has been successfully
implemented to establish new solitary wave solutions for the
nonlinear PDEs.

Index Terms: Nonlinear PDEs, Exact Solutions, Tan-Cot
function method, coupled ZK equation, the second coupled
mKdV system with constant coefficients.

L INTRODUCTION

I n recent years, quite a few methods for obtaining explicit
traveling and solitary wave solutions of nonlinear
evolution equations have been proposed. A variety of
powerful methods, such as, tanh - sech method [1, 2],
extended tanh method [3, 4], hyperbolic function method
[5], Jacobi elliptic function expansion method [6], F-
expansion method [7], and the First Integral method [8, 9].
The sine-cosine method [10-12], Tan-Cot function
algorithm [13-17] has been used to solve different types of
nonlinear systems of PDEs.

In this paper, the Tan-Cot function algorithm were
established for solving nonlinear partial differential
equations for two systems of various types of nonlinear
partial differential equations such as a new coupled ZK
equation[18] as new hierarchy of nonlinear evolution
equations, and the second coupled mKdV system [19] with
constant coefficients given respectively:

Uy — 8(uv)y — y(vw)y — p(uyy + uyy)x =0
Ve — AWy — p(Vix + Vyy)x =0 (H
Wi — Auv)y — p(Wyx + Wyy)x =0
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and

Ug + Uyyy + 6u?uy + 3uvw, = 0
Vi + Vygx + 6V2Uy + 3vwu, = 0 2)
Wi + Wyyx + 6W2Wy + 3wuv, = 0

II. THE TAN-COT FUNCTION METHOD

The Tan-Cot method which is a direct and effective
algebraic method for the solitons, solitary patterns and
periodic solutions, was first proposed by Anwar [13]. This
method was further developed by many authors in [14-17].

We now summarize the Tan-Cot method, established by
Anwar [13], the details of which can be found in [14-17]
among many others.

Consider the nonlinear partial differential equation in the
form
)=0 A3)

F(u, Up,y Uy Uy, Upey Ugy) Uy Uyyy oe ee ven s

where u(x, y, t) is a traveling wave solution of nonlinear

partial differential equation Eq. (3). We wuse the
transformations,

u(x,y,t) = f(§) “4)
Where

E=x+y—At (5)

This enables us to use the following changes:

a
> ox

d

a
7O=250 . 2O=50.70=52() ©

Using Eq. (6) to transfer the nonlinear partial differential
equation Eq. (4) to nonlinear ordinary differential equation

QU f " " o) = O 7

The ordinary differential equation (7) is then integrated as
long as all terms contain derivatives, where we neglect the
integration constants. The solutions of many nonlinear
equations can be expressed in the form [13]:

f&) = atanf ) ,

€] S§
fr=apu [tanf ~1@ue) + tanf H1we))  ©®
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f'=aBur[(B—1) tanf ~2ue) + 28 tanf (ug) +
(B + 1) tanf T 2(ug )]

= Budal(B — (B - 2) tanP ~3(ue) +
(Bp2=38+2)tan ~ 1 WO+ B+ DB+
2)tanf (ug) + 282 tanf 1 (o) + B+ (B +
2) tanf 2 (ug )]

and their derivative. Or use

f& = acotfus) ,

T
< —
HES

fr=—aBp [ cotP o)+ cotP+1ue)

f = aBu2[ (B—1) cotP = 2(ue) + 2B cotP(ue) +
B+1) cotP+2(up)] ©)

and so on.

Where a, 1, and P are parameters to be determined, pu and
A are the wave number and the wave speed, respectively.
We substitute (8) or (9) into the reduced equation (6),
balance the terms of the tan functions when (8) are used, or
balance the terms of the cot functions when (9) are used,
and solve the resulting system of algebraic equations by
using computerized symbolic packages. We next collect all

terms with the same power in tank (ué) or Cotk(uf) and
set to zero their coefficients to get a system of algebraic
equations among the unknown's « , u and 3, and solve the
subsequent system.

IlI.  APPLICATIONS
A. Nonlinear Evolution Equations

To study a new coupled ZK equation as new hierarchy of
nonlinear evolution equations that was derived by Yongan
et al [18] by using a finite-dimensional integrable system.
An interesting equation in this hierarchy is a new coupled
KdV equation

Uy — 8(uv)y — y(vw)y — p(uyy + uyy)x =0

Vi — )\(Wu)x - p(vxx + Vyy)x =0 (10)
Wi — Auv)y — p(Wyx + Wyy)x =0

Using the transformation

E=x+y—kt (1D

The system (10) of partial differential equations transform
to the following system of ordinary differential equations
—ku' — §(uv)’ — y(vw)' = 2pu”"’ =0
—kv' = A(wu)' = 2pv"""' =0
—kw' —A(uv)’ — 2pw’"’ =0
Integrating system (12) once with zero constant, to get the
following system
—ku — 8(uv) —y(vw) —2pu”’ =0
—kv — A(wu) — 2pv"' =0
—kw — A(uv) — 2pw’' =0
Seeking the solution in (8), assume:

(12)

(13)
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u = aytanf(uf) , v = aytanfz (ug), w = astanss (ug)

(14)

With the second derivative:

" = ay BBy — 1) tanPt = 2(ug) + 2B, tanPr (ug)
+(B1 + 1) tanfr T2 ()]

v = ay Bop2[(B, — 1) tanP2 T 2(ug) + 28, tanPz (ue)
+(By + 1) tanP2 + 2 (ug )]

w' = as Bap?[(Bs — 1) tanP3 ~2(ug) + 285 tanP3 (ug)
+(Bs + 1) tanPs + 2(ug))

(15)
Substitute (14) and (15) in (13) to get the following system:

—kaytanPr (uE)  — 8oty tanPrtBz (UE) — yor,a; tanPa*Bs ()
—2pay Byr?[(By — 1) tanP1 = 2(ug) + 2B tanPr (uE) +
(B, + D tanP1 ¥ 2(ug)) = 0

—koptanPz(g) — Aay agtanPs*Ps (uE)

—2pay Bop2[(B, — 1) tanPz = 2(ue) + 2B, tanPz (uE)
+(B, + D tanPz +2(ug)) = 0

—kaztanPs () — Aoy aptanPr Pz (uE)

~2pa; Bs2[(Bs — 1) tanP3 = 2(ue) + 2B, tanPs (ue) +
(Bs + 1) tanP3 T 2(ug)) = 0

(16)

Equating the exponents and the coefficients of each pair of
the tan functions

B1+B2=B,+B3 =B +2

Bi+Bs =B, +2

Bi+PB2=P3+2 (17)
we find the following system of algebraic equations:
Bi=PB2=P3=2
k+16pu? =0
k=-16p
(18)

Sa,a; + yoy0z + 12pa; p?2 =0
Aoy as + 12pay 2 =

Aaja, + 12poag p? =0

Solving system (18) to get the following cases:

Case l

-12 8T 62+42
=1, al:/lp , Q= a3 =6p ¥y L,
§2+41y =0
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- 12
w(x,y,t) = p tan?(x + y + 16pt) u(x,y,t) = Tptanz(x +y + 16pt)
A 5F 62+40
5 F /52 + 4dy v(x,y,t) = 6p === tan*(x +y + 16pt)
v(x,y,t) = 6p — tan®(x + vy + 16pt) ) T
) Y w(x,y,t) = —6p +/1—+4y tan?(x + vy + 16pt)
S+yo62+4y Y
w(x,y,t) = 6p — tan*(x +y + 16pt)
4 \ ,|x+y+16ptls—g
T
L lx +y + 16pt| SZ— (22)
(19) Remark. 1. Results in (19)—(22) are compatible to the results
obtained by [18] using the sine-cosine method.
Case 2
A=p=1, ulx,yt)=—-12tan?*(x +1+ 16t)
12 §Fy 82+44
#:1 , al =Tp . a2=6p%’ 3=

—6p ”—V‘?‘W 8%+ 42y >0

12
u(x,y,t) = —ptanz(x +y + 16pt)

A
6F6%2+41
v(x,y,t) = 6p Ty tan®(x +y + 16pt)
1 —
§F.8%2+41
w(x,y,t) = —6p Ty tan?(x +y + 16pt)
I
,lx+y+16pt| SZ—
(20)
Case 3
12p vy Fig.1. The solitary solution u(x, y, t) for
p=-l, o ===, 6= 6G=6p——— , 5 5 5
-5=<x<5,0st<
52+ 40y >0 SXs
( —-12
u(x,y, t) = P tan?(x + y + 16pt)
SFJO2+ 42 B. The second coupled mKdV system
v(x,y,t) = 6p A—V tan?(x + y + 16pt)
J _ )2/ In this section, we will study the second coupled mKdV
w(x,y,t) = 6p 5+— v 6%+ 4y tan?(x +y + 16pt) system with constant coefficients [19], given by
Ay
U; + Uyyy + 6u?uy + 3uvw, = 0
s
Jx+y+16pt] < —=
Y P 2 Vi + Vygx + 6V2uy + 3vwu, = 0
@D Wi + Wyyy + 6W2Wy + 3wuvy, = 0 (23)
Case 4 Wazwaz [2] used the simplified form of the bilinear method
12 ST/ 57Ty anq derived multlple-sollton solutions and multiple singular
p=-1l,a, ===, a =6p — soliton solutions.
5T 8Z+ady Using the transformation
a3=—6pTy L6244y =0
E=kx—At (24)
to transform the system of partial differential equations (23)
to the system of ordinary differential equations
ISBN: 978-988-19253-5-0 WCE 2014
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—Au’ + K3u" + 6ku®u’ + 3kuvw’ =0

AV + K3V + 6kv?u’ + 3kvwu’ = 0

—Aw' + k3w + 6kw?w’ + 3kwuv’' = 0 (25)
Seeking the solution in (8), assume:

u=artanfr (1), v = atan’?(uf)

w = aztan®s (ug) (26)

With the following derivatives:

w=a; By p [tanPr =) + tanfr T 1(ue)]

V' =a, By p [tanPz = 1(ug) + tanf2 +1(ue)]

W' =as By p [tanPs ~1(ue) + tanfs + 1(ue)]

27)

u” = ay By 13[(B; — D(By — 2) tanP1 ~ 3(ug) +
(38,2 — 3By +2) tanPr ~1(ug) + (B, + (B, +
2)tanP1(ug) + 28,2 tanPr 1 () + (B +

1)(B; + 2) tanP1 +2(ug)]

V" =0y By 3 [(Bz -1D(B,—2) tanPz — 3(”5) +
(3B2% — 3B, +2) tanfz = 1(ue) + (B, + DB, +
2)tanP2 () + 28,7 tanP2 + 1 (ue) + (B, +
1)(B, +2) tanPz + 2(u5)]

w'" = a3 B3 W3[(B3 — (B3 —2) tanPs — 3(“5) +
(3B5% — 385 +2) tanP3 ~ 1(ue) + (B; + (B +
2)tanP3(ug) + 2852 tanPs 1 (ue) + (B, +

1)(Bs + 2) tanPs + ()] (28)

Substituting Equations (26)-(28) in the system of equations
(25) to get:

—AB[tanf i (ug) + tanfiti (ue)] + k3B w2 (B —
1)(B; — 2) tanPr = 3(ug) +
(3B:% — 3By + 2)tanfr=1(ud) + (B + (B, +
2)tanPi(ug) + 28,% tanPr T 1 (ue) + (B, +
DBy +2) tanPr + 2(ug)] + 6k 2B, [ tan 7 (ug) +
tan¥1+1 (uE)] + 3k a, ag Bs[tanfrHhtB1(ug) +
tanfi+F4hs 1 (ug)] = 0

(29)
—AB, [tanﬁz 1) + tanf2t 1(#5)] +

K3 By 12 (B2 — 1)(B, — 2) tanP2 = 3(u) +

(38,2 — 3B, +2) tanPz = 1(ue) + (B, + (B, +
2)tanPz(ug) + 26,7 tanPz T 1 (ug) + (B, +
1)(B, +2) tanf2 + 2 (ue)] +

6ka, a; B 1 [tanﬂl + 20, — 1(#5) +
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tanP1 + 282 +1(ue)) +
Bkayaz By [tanfi+Perba=1(ug) + tanfithatbatt(ug)] =
0 (30)

1By [tanfs = 1) + tanfs 1G] +

K3 Ba u? (B — 1D(Bs — 2) tanPs = 3(up) +
(3852 — 3B + 2) tanPs = 1(ug) + (Bs + D(B; +
2)tanPs (uE) + 2B, tanPs T 1 (ue) + (B +
1)(Bs +2) tanPs T 2(ue)] +

6kBs ag?|tan3Ps ~1(ue) + tan3Fs T1(up)| +

Bkﬁz alaz [tanﬁl+32+ﬁ3_1(”f) + tanB1+BZ+B3+1(ﬂf).| =
0 (1)

Equating the exponents and the coefficients of each pair of
the tan functions of the equations (29), (30), and (31) to get
the following results:

1
31_1',32:1’33=_1,#=5:‘1’1:_“3
Case l

@ =i a,=i 2 g =ik

17 P27 0 g2 > W3 7 2

u(x,y,t) = S coth E (kx — At)J

k3 —2a i
v(x,y,t) = 3k22 tanh B (kx —At)J ) (32)
w(x,y,t) =— g coth lé (kx —At)J
lkx — At| <
Case 2
_ .k L k3-2a Lk
al—l;,az—_l 3K2 ,0.’3——1;
X .
u(x,y,t) = 2 coth lé (kx — At)J
k3 -2 i
vCoyt) = — g tanh fOx-an] g5
w(x,y,t) =— g coth E (kx — At)J
lkx —At| < m
Case 3
_ .k _ L k322 N
a = —ig =i 3k2‘,a3—12
u(x,y, t) = — g coth l% (kx — At)J
k3 —22 j
v(x,y,t) = 3k22 tanh E (kx — At)J ) (34)
w(x,y,t) = % coth E(kx—lt)]
lkx —At| <
Case 4
. _ k3 -22 _ .k
(Xl——l— 0.’2 - 31{2 ,0.’3—1;
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u(x,y,t) = — S coth E (kx — At)J

U(x, y, t) p— k3k22 tanh lé (kx - /’]-t)J ’ (35)
w(x,y,t) = g coth lé (kx — At)J
lkx — At| <
IV. CONCLUSION

In this paper, we used the tan-cot method to study two
systems. These systems are the new coupled ZK equations
and the second coupled mKdV system with constant
coefficients. As a result, we obtained new exact solutions
including solitary waves and periodic waves. The method
provided solitary wave solutions and triangular periodic
wave solutions. Moreover, the obtained results in this work
clearly demonstrate the reliability of the method that was
used. We can say that the new method can be extended to
solve the problems of nonlinear partial differential equations
which arising in the theory of solitons and other areas.
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