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New lterative Method for Variational Inclusion
and Fixed Point Problems

Yaowaluck Khongtham

Abstract—We introduce an iterative method for finding a
common element of the set solutions of equilibrium problems,
the set of solutions of a variational inclusion problems for an
inverse-strongly monotone mapping and set-valued maximal
monotone mapping, and the set of fixed points of a
nonexpansive mapping in a real Hilbert space. Then, we prove
a strong convergence theorem of the proposed method with
suitable control conditions.

Index Terms—Fixed point, variational
optimization problem, nonexpansive mapping

inequality,

I. INTRODUCTION

THROUGHOUT this paper, we always assume that H be a
real Hilbert space with inner product and norm, are

denoted by (--) and |{, respectively and let K be a

nonempty closed convex subset of H. Let G be a bifunction
of KxK—R,where R is the set of real numbers. The
equilibrium problem for a bifunction G:KxK-—>R s to
find u e Ksuch that

G(u,v)>20,VveK. (1.2)
The set of solutions of (1.1) is denoted by EP(G). Numerous
problems in Physics, optimization, and economics reduce to
find a solution of (1.1). let A:K—H be a nonlinear map.
The classical variational inequality which is denoted by
VI(K,A) is to find u e Ksuch that (Au,v—u)>0,vveK.

We have known from Blum and Oettli [1] that the
equilibrium problem contains the fixed point problem,
optimization problem, saddle point problem, variational
inequality problem and Nash equilibrium problem as its
special case. Given a mapping T: K —H, Let G(u,v) =

(Tu,v—u),Vu,veK.Then zeEP(G) if and only if (Tz,
V—Z>20,VV€K, i.e., z is a solution of the variational

inequality. A mapping S of K into itself is called
nonexpansive if [Su—Sv|<[u-v|,vu,veK. We denoted

by F(S) the set of fixed points of S (see [4], [5]). A mapping
A of Kinto H is called a— inverse-strongly monotone (see
[3], [8]) if there exists a positive real numbero such
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that <Au—Av>2oc||Au—Av||2,VU, ve K. Recall that a
mapping f: K — K is said to be contractive with coefficient
Be(0,1),if |[f(u)—f(v)|<B[u-v|,VuveK. LetB bea
strongly positive bounded linear operator on H: that is, there
is a constant 7 >0 with property (BX,X) 27||x||2 ,Vx e H.
Let A:H — Hbe a single-valued nonlinear mapping and let
M:H—>2" be a set-valued mapping. We consider the
variational inclusion, which is to find u e H such that

0 A(u)+M(u), (1.2)
where 6 is the zero vector in H. The set of solution of
problem (1.2) is denote by I(A,M). It is known that (1.2)
provides a convenient in the framework for the unified study
of optimal solutions in many optimization related areas
including mathematical programming, complementarity,
variational inequalities, optimal control, mathematical
economics, equilibria, and game theory (see [8] and the
reference therein). If M=05,,where K is a nonempty
closed convex subset of H and §,:H—[0,x]is the
indicator function of K, then the variational inclusion
problem (1.2) is equivalent to variational inequality problem.
Recall the resolvent operator J,, . associated with M and e

as Jy,(u) =(1+eM)™(u),vueH,where M is maximal

monotone mapping and ¢ is a positive number. The
resolvent operator J,, . is single-valued, monotone and 1-
inverse-strongly monotone, and that a solution of problem
(1.2) is a fixed point of the operator J,, .(I—-¢A)for all
€>0,see for example [8]. Some methods have been
proposed to solve the equilibrium problem, variational
inequality and fixed point problem of nonexpansive mapping
(see [2]-[4], [7], [9], [10], and the reference therein). Very
recently, Jung [3] introduced a new general composite
iterative scheme for finding a common point of the set of
solutions of the variational inequality problem and the set of
fixed point of a nonexpansive mapping in Hilbert space.
Starting with X, =xeK,

Y = 0 (U 7F (X)) + (1= 0, (14 HB)SP (X, =2, AX,), (7 )
Xpia = (@=B,)Y, +B,SPc (Y, —A,AY,),n>1.

They proved that under certain appropriate conditions
imposed on {o,}.{A.}, and {B.}of parameters, then the

sequence {X, } converges strongly to g € F(S) ~VI(K, A),
which is a solution of the optimization problem:
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xep(sr)pm(K‘A)yBx, X)+4[x— u||2 —h(x),

(1.4)

where h is a potential function for +f.

In this paper motivated by the iterative scheme that
proposed by Jung [3]. We will introduce a new iterative
method for a common element of the set solution of
equilibrium problem, variational inclusion and the set of fixed
point of a nonexpansive mapping which will present in the
main result section.

Il. PRELIMINARIES

Let K be a nonempty closed convex subset of a real
Hilbert space H. It well known that H satisfies the Opial’s
condition (see [6]), that is, for any sequence {x,}with {x }

converges weakly to x (denote by x,—“—>x), the
inequality: liminf ||, —x|| < liminf |x, —y| holds for every
n—oo n—
yeH with y=Xx.
The following lemmas are useful for proving our theorem.

Lemma 2.1 (See [3].) In a real Hilbert space H, there holds
the inequality

[x ey <x” + 2{y. % y) vx,y <H

Lemma 2.2 (See [7].) Assume A is a strongly positive linear
bounded operator on a Hilbert space H with coefficient

7>0and 0<p<|A|". Then I —pA|<1-p7.

Lemma 2.3 (See [4].) Assume {a,} is a sequence of
nonnegative real numbers such that
an <(@-o0,)ap+9,, N=0,
where {o,} is a sequence in (0,1) and {5, } is a sequence in
R such that

(1) X0y =0

2) lim supZ—’:l <00r Y3, <.

n—o0

Then lim,_,,a,=0.

For solving the equilibrium problem for a bifunction
G:KxK—R where R is the set of real numbers, let us
assume that G satisfies the following conditions:

(A1) G(x,x)=0 for all xeK;

(A2) G is monotone, that is, G(X,Y)+G(y,x) <0for all

x,yek;

(A3) for each x,y,z e K, lim;_,oG(tz+(1-t)Xx,y) <

G(x,y);

(A4) for each xeK, yr>G(X,y)is convex and lower

semicontinuous.

Lemma 2.4 (see [8].) Let K be a convex closed subset of a

Hilbert spaces H. Let G: KxK —>R,

is a bifunction satisfying (Al)-(A4).

X € H. Then. There exists z € K such that
G(z.y)++(y-2,2-x)>0,vyeK.

LetA>0 and
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Moreover, let F, : H — K be a mapping defined by
FL(X) = {z eK:G(z,y)++(y-2,2-x)>0,vy e K},
for all x € H. Then, the following hold:
(1) Fy isasingle value;

(2) R is firmly nonexpansive; that is, for any

X,y eH, ||F)‘x—ny||2 < <Fkx—ny,x—y>;

(3) F(R.)=EP(G);
(4) EP(G) is closed and convex.

Lemma 2.5 (See [3].) Let C be a bounded nonempty closed
convex subset of a real Hilbert space H, and let g:C—>R

u{oo}be a proper lower semicontinuous differentiable

convex function. If x"is a solution to the minimization
problem g(x*)=im;g(x), then<g’(x),x—x*> >0,xeC.

Inparticular, if X solves the optimization problem
min’s (Bx, )+ 3 x—uf’ ~h(x)
then (u-+(yf —(I +uB))x*,x—x*> <0,xeC, where h is a

potential function for yf.

Il. MAINREsULT
In this section, we prove a strong convergence theorem.

Theorem 3.1. Let K be a nonempty closed convex subset of
a real Hilbert space H such that KzxzKcK,let

G:KxK—>Ris a bifunction satisfying (Al)-(A4), and

M:H —2" be a maximal monotone mapping. Let A be an
o — inverse-strongly monotone mapping of Kinto Hand S a
nonexpansive mappings of K into itself such that
Q:=F(S)NEP(G)nI(A,M)=J.Let fbe a contractive of

K into itself with constant B (0,1) and let B be a strongly

positive bounded linear operator on K with constant
¥e(0,1). Assume that p>0and O<y<(l+p)y/p. Let

{Xx,} be a sequence generated by x, =x €K,

F(u,, )+ (y—Uu,,u,—x,) 2 0,VyeK, 61
Yo =0, (U+yF (X)) +(1-o, (1 +uB))SIy, . (u,—&,Au,),
Xp1 = 1=B)Yn +B,SIy,, (Yo —€,AY,),n> 1,

whereu, =F_x,, {o,,}<[0,1),{e,} < [0,20].{r,} = (r, ),
r>0,and {B,}<[0,1] satisfy :

) lima, =0, 3o, =0,

i) B, €[0,d) fornglll n>0and for some d (0,1);

iii) €, €[a,b] for all n>0and for some a, b with
O<a<b<2q;

. o0 o0 o0
IV) z|an+l _an| <o, Z|Bn+l _Bn| <o, z|rn+l_rn| <o,
n=1 n=1 n=1

and 3 |€nss —&n| < 0.
n=1
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Then {x,}converges strongly to z € F(S)NEP(G) N
I(A, M), which is a solution of the optimization problem

ﬂ(Bx,x>+%||x—u||2—h(x), (3.2)

m 2
xeF(S)NEP(G)NI(A,M)
where h is a potential function for +f.

Proof. From the condition i), we may assume that
o, <@+u|B|)". Applying Lemma 2.2, we obtain
[1-o, (14 pA))|| < 1-a, (1+p)7. Letv e Q. Sinceu, =F, X,

we havel|u, —Vv||=

Frnx,1 — Frnv

<[x,=v|, V¥neN. Let
z, =y, (U, —gu)andv, =Jy, (Y,—€,Y,), VneN.As
I-¢,A isnonexpansive and veQ, wehave |z,-v|=
||JM£n (U, —g,Au)—Jy, (v—gnAv)" <|u,-v|.v neN.
Similarly, we have
v, =V| <[y, —V|.¥neN. (3.3)
Then we obtain
|z, = V|| <|x,—V|.¥neN. (3.4)
From the condition i) and (3.1), we have
IV —Sz,|| = oty Ju+vF (x,) —®Sz,|| > 0,n — 0. (3.5)

ForveQ, and let @w = (1+uB), we have

1Y = V]| = ot u+ 01, [F (x,) — v+ 1= o, 2, — V]|
< (- (@+ W7 - 1B, X, V]

bf )-oy

+HA+W)Y - B e VN 21
Then we have

X — V] < max{||xn -V %} vn=1. (3.6)

It follows from (3.6) and induction that ||x, —v|| < max

bt ()-wv]+]u] i
{||x1 _V"'W}’ n>1. Hence{x, }is bounded, so are

Wb Yo b 7)1 52,345V, 1 AAY 3 AU, } and {5z, }-

Next we show that lim|x,., —X,||=0. We observe that
n—o0

”un - un—l” = Frnxn - Frn,lxn—l (3 7)
< Hxn _anlu +%‘I’n71 - rn‘ (H“nle +Hxn71H)'

3r > 0,Vvn e N. Moreover, we can note that

”Zn - Zn—1”

= ‘]M,an (un - SnAun) _‘]M,an,l (un—l - 8n—l’b‘unfl)" (38)

s "un - un—l" +|8n _gn—1|"Aun71"'
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Similarly, we have
”Vn - Vn—l” < "yn - yn—l" + |8n - 8n—1|||Ayn—1|| (39)
Using (3.7) and (3.8), we obtain

”Zn —Zn71|| S "Xn _Xn—1"+%|rn - rnfl|("un*1"_’_"Xn’l”) (3-10)

*len —epaf[Au,|
From (3.1) and (3.10), we have
Yo = Yol <o = ots [ (i + [y O] + ] S22 ]D

HA= (@4 )T = 7B)o) X, =X, (3.11)

310 = ol (| +1X0af)) + e = 2ol [ AU,
It follows from (3.3)and (3.11), we obtain

||Xn+1 _Xn" < (1_ ((1+“)7_’Y[3)an)"xn _Xn—1||
+Gl|otn —ocn_l| +Gz|8n —sn_l|
+G3 |Bn _Bn—l| + G4 %|rn - I’.n—1| '

(3.12)

where G, = sup{||u|| +y[[f (x| + ]Sz, : n e N}, G, =sup
{||Aun||+||Byn|| 'n eN}, G, =sup{||Svn||+||yn||: neN}, and

G, =sup{||un|| +||xn||:neN}. Then, from the condition i)
and iv), we have

!Lrg"xm —X,||=0. (3.13)
By using the condition ii), we can show that
o1 = Yall < ey [ X0ea =Xl (1520 = ¥ ] (3.14)
Combining (3.5) and (3.13), we get the following
limx,., —y,[=0. (3.15)
We can also get that

lim|x, —y,[=0. (3.16)

Next, we show  lim|x, —u, | =0. Since |u, —v| =
Jun =V <% =V =[x, —uo*. 327)

It follows from (3.15) and using ||z, —Vv| <|u, —V],¥VneN,
we have

(X2 — v||2 <a, u+vF(x,)- usv||2 +[x, - v||2
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—(A=o, A+p)7)|x, —u, |
(Aot @+ )7) %, =y (3.18)  Moreover, by the condition i) and (3.26), we have
+20, |[u+yF(x,)—wv|||z, -V

lim |y, —Su, | =0. (3.27)
Then we also have Nosoo

It follows from |y, —u,[ <[y, —x,|+|x,—u,]and using

1—o (L+w7y)x. —u |
(= @rp)lp—u| (3.16) and (3.20), we obtain

<o, Ju+vF(x,) - asv||2 +|x, - v||2

Xz = VI + 201, U+ (%)~ oV 2, — V] lim(y, -u,[=0. (3.28)
<o, Ju+vF(x,) —ov|

(o =Vl = VI o =X

+20, |[u+yF(x,) —oV||z, - V|-

(319)  Using (3.27), (3.28), and this inequality [Su, —u,|< [Su,
Yo+ [ys = u, |, we have
lim|Su, —u,|=0. (3.29)

nN—o0

By the condition i) and using (3.11), we have
Next, we show that limsup(u+(yf —w)X,y,—X) <0, where

lim||x, —u, | =0. 3.20 _ _ " o : ,
n'_m"X” u”" (3:20) X is a solution of (3.2). To show this inequality, we first

show that limsup(u+ (yf —®)X,Su, —X) <0. Since {u,}is
We note from (3.1) and the condition iii) that n—o

bounded, we choose a subsequence {u,, } of {u,}such that

A —p||2 <o, fu +yf(xn)—wvu2 +[x, —V||2 Iimsup<u +(yf —w)%,Su, —>?> =limsup (u+(yf -@)%,S

2 _ _ i i—0
+20, [u+rf ) —ofz, , B2y —x)without loss of generality, we can assume
+(1-a,@+p)y)a(b—2a) ||Aun —AV|| .

thatu, ——z.From (3.24), we have y, ——z It

Hence, we obtain follows by (3.1) and (A2) that <y— Uy, un'r;&> > G(y,u,).
— 2 Unj—up; . .

—(1-a, (1+p)y)a(b—2a)|Au, —Av| Since ———0(asi >) and u, —*—>z,it follows by
<a, ||u+yf(xn)—wv||2 +(||Xn —V|+|ly, —V") (3.22) (Ad) that 0>G(y,2)for all y<H. For t with 0<t<1 and
"Xn —yn||+2<1n ||u ﬂ(f(xn)_ﬁ;\/||||zn —v|| yeH, let y,=ty+(1-t)z. Since yeHand zeH, we
have y, e Hand hence G(y,,z)<0.From (Al) and (A4),

Using (3.16), (3.22), and the condition i), we have we have 0=G(y,,Y,) <tG(Y,,y) +{1-t)G(Y,.z) <t(y,,Y),
. and0<G(y,,y). From (A3), we have 0<G(zy)for all
!EE!"A“n _AVHZO' (3.23) yeHand Lemma 2.4, we have zeEP(G). By the same
_ ) argument as in proof of Theorem 3.1 of Plubtieng and

Furthermore, applying Lemma 2.1, we obtain Sriprad [8], we have z € F(S) N 1(A, M). Then we have z

, ) , eQ. It follows from Lemma 25 and (3.29) that
|z, | <[x0 =Pl —[lun =2, (324)  limsup(u+(yf — )%, Su,~X) = limsup(u+(+f - @) %,Su,

2 U~z Au —AV)—¢ 2| Au — AV . e o
+200 (Un =20 A= AV) =27 [ AU, — A —>~<>=<u+(yf—m)>~<,uni—>~<>=<u+(yf—m)>~<,z—>~<>so.

Then we obtain We can note that limsup (u+(vf —m)X,y,—Su,) +limsup

(Ao, @7y, _Zn"z (u+(+f —@) X, Su, —X) +IinTjup<u+(yf —®)X,Su, —X) <

<a u+yf(x,) -ov|’ + (%0 =V + [y = V)X, = Yal limsup||u+(vf — @) X|[[ly,—Su,| +limsup(u+(vf - )%,
+2(1-a, (1+w)7y)e, (U, —z,,Au,— Av) @325  Su, —X). It follows from (3.27) and (3.29), we obtain that
—(1-a, (1+p)y) c(d-2a) |Au, —Av||2 limsup(u+(yf —(I+pB))X,y,—X) <0.Finally, we show

n—o0

+20t, [u+vF (x,) - V]|z, - v]. that lim|x, —X| =0, where Xis a unique solution of (3.2).

Using (3.16), (3.23), (3.25), and the condition i), we have Using Lemma 2.1, we can note that

limu, -z, =0 (326)  [Psa —X]” < @20 (@107 ~ 1)) o ~ X7

n—oo
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+0‘n2((1+ Hﬁ)z ”Xn - )~("2
+200YB[Xn =X|[[lyn —Xn|
+201, <u+(yf—m))~(,yn—)~(>.

(3.30)

Applying Lemma 2.3 to (3.30), we have lim,_,.||x, —X||=

0, that is, {Xx,} converges strongly to X. This completes the
proof.

IV. CONCLUSION

We proposed an iterative method and proved that the
sequence of the proposed iterative method converges to a
point of solutions of above three sets. This iterative method
and convergence theorem are improved and extended from
Theorem 3.1 of Jung [3].
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