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Abstract—We consider numerical solutions of a class of
nonlinear (nonstandard) Volterra integral equations. We first
prove the existence and uniqueness of the solution of the
Volterra integral equation in the context of the space of
continuous funtions over a closed interval. We then use one
point collocation methods and quadrature methods with a
uniform mesh to construct solutions of the nonlinear VIE. We
conclude that the repeated Simpson’s rule gives better solutions
when a reasonably large value of the stepsize is used.

Index Terms—Nonstandard Volterra integral equations, col-
location methods, quadrature methods.

I. INTRODUCTION

IN this paper we study the nonlinear (nonstandard)
Volterra integral equation of the second kind of the form

u(t) =
r∑

j=1

bj

(
gj(t) +

∫ t

0

kj(t, s)u(s) ds

)j

, t ∈ [0, T ],

(1)
where (r ∈ N, r ≥ 2), with bj ∈ R and gj , kj are continuous
functions.

In its closed form u = V u, (1) is nonstandard in that the
defining operator V has the structure

V u =
r∑

j=1

bj(gj + Vju)j ,

where Vju is the standard linear Volterra operator.
Our primary interest is in the numerical solutions of (1).

These are Collocation methods and quadrature methods. To
this end, we make thefollowing fundamaental considerations:

1) Well-posedness of the problem;
2) Construction of the algorithms;
3) Study of accuracy and convergence.
Volterra integral equations play an important part in scien-

tific and engineering problems such as population dynamics,
spread of epidemics, semi-conductor devices, wave progra-
tion, superfluidity and travelling wave analysis, Saveljeva [1].
In cases where the kernel is of convolution type (K(t, s) =
K(t− s)) the solutions to (1) include elliptic functions and
natural generalizations of these functions which also have
wide applications in the fields of science and engineering [2].
This class of Volterra integral equations was considered by
Sloss and Blyth [2] who proved the existence and uniqueness
of the solution in the Banach space L2 and applied the
Corrington’s Walsh function method to (1).
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Much work has been done in the study of numerical
solutions to Volterra integral equations using collocation
methods [1], [3], [4], [5], [6], [7]. Benitez and Bolos [8]
pointed out that collocation methods have proven to be a very
suitable technique for approximating solutions to nonlinear
integral equations because of their stability and accuracy.
Other authors such as [9], [11], [12], [10] used quadrature
rules like repeated trapezoidal and repeated Simpson’s rule
to solve linear Volterra integral equations. However, collo-
cation methods and quadrature rules have not been used to
approximate solutions to (1).

II. WELL-POSEDNESS OF THE PROBLEM

The following theorem shows that when r = 2 and b1 = 0
the integral equation (1) has a unique solution in the space
C[0, d]. Theorem 2 gives sufficient conditions for the solution
to (1) for general r to exist.

Theorem 1 The integral equation

z(t) = b

(
g(t) +

∫ t

0

k(t, s)z(s) ds

)2

(2)

with g ∈ C[0, 1], b ∈ R, and k(t, s) ∈ C([0, 1]× [0, 1]), has a
unique solution u and the solution belongs to Id = [0, d], 0 <
d ≤ 1, with

0 < d <
1

K

[
1

2K | b |
− ‖ g ‖∞

]
− ‖ u ‖∞ (3)

where
K = sup

[0,1]×[0,1]
| k(t, s) | .

Theorem 2 There exists a solution u of (1), where u ∈
C[0, d] provided that

Nb

r∑
j=1

j | bj | (‖ gj ‖∞ +Kjd)j−1Kj < 1

and
r∑

j=1

| bj | (‖ gj ‖∞ +Kjd) < d

where Nb is the number of nonzero bj .

III. NUMERICAL METHODS

A. Collocation methods

In our work we focus on one point collocation methods
(see [13]).

Let tn := nh (n = 0, 1, ..., N − 1) define a uniform par-
tition for I = [0, T ] and set ZN := t0, ..., tN , I0 := [t0, t1]
In := (tn, tn+1] (1 ≤ n ≤ N−1). The solution to (1) will be
approximated by using collocation in the piecewise constant
polynomial space S−10 (ZN )
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For a given real number c1, define the set XN := tn,1 of
collocation points by

tn,1 = tn + c1h (0 ≤ c1 ≤ 1, n = 0, ..., N − 1). (4)

The collocation solution un ∈ S−10 (ZN ) is defined by the
collocation equation

un(t) =
r∑

j=1

bj

(
gj(t) +

∫ t

0

kj(t, s)u(s) ds

)j

, t ∈ XN .

(5)
Since

un(t) = un(tn + νh) = L1(ν)Un,1, ν ∈ (0, 1] (6)

where L1(ν) = 1 and is a Lagrange fundamental polynomial.
Thus for t = tn,1 := tn + c1h and 0 < c1 ≤ 1 the

collocation equation (5) assumes the form

un(t) =
r∑

j=1

bj

(
gj(t) +

∫ tn

0

kj(t, s)ui(s)

+ h

∫ c1

0

kj(t, tn + sh)un(tn + sh) ds

)j

Expressing the collocation equation in terms of the stage
values we get

Un,1 =
r∑

j=1

bj

(
gj(tn,1) + Fjn(tn,1)

+ h

(∫ c1

0

kj(tn,1, tn + sh) ds

)
Un,1

)j

. (7)

Let t ∈ In and define

Fjn(t) :=

∫ tn

0

kj(t, s)ui(s) ds (8)

Then

Fjn(tn,1) = h
n−1∑
i=0

(∫ 1

0

kj(tn,1, ti + sh) ds

)
Ui,1 (9)

The term Fjn(tn,1) is called the lag term corresponding to
the collocation solution, [13].

The iterated approximation uI corresponding to u is
defined by

uI(t) =
r∑

j=1

bj

(
gj(t) +

∫ t

0

kj(t, s)u(s) ds

)j

t ∈ I

(10)
(see [14], [4], [5])

Set t = tn ∈ Z̄N and use (6) we may write (10) in the
form

uI(tn) =

r∑
j=1

bj

(
gj(tn)

+ h
n−1∑
i−0

∫ 1

0

kj(tn, ti + sh) dsUi,1

)j

(11)

B. Repeated trapezoidal rule

Using the trapezoidal rule we construct the solution to the
integral equation (1), (see [12]). Let



t0 = a, tn = b

ti = t0 + ih i = 0, 1, 2, ..., n

u(ti) =
r∑

j=1

bj

(
gj(ti) +

i∑
l=1

∫ ti

tl−1

kj(ti, s)u(s) ds

)j

,

i = 1, 2, ..., n
(12)

The approximation of the integral in (12) by repeated
trapezoidal rule will result in a discretized system.

C. Repeated Simpson’s rule

We use repeated Simpson’s rule to construct the solution
to the integral equation (1), (see [9]).

If n is even, Simpson’s rule rule may be applied to each
subinterval [t2i, t2i+1, t2i+2]. The approximation of (1) in the
even nodes t2m is given by

u2m =
r∑

j=1

bj

[
gj(t2m) +

∫ t2m

a

kj(t2m, s)u(s) ds

]j
, (13)

from which a discretized system is obtained.

IV. NUMERICAL COMPUTATIONS

In our work we consider examples of (1) when r = 2. We
use (7) to approximate the solutions considering two special
cases: c1 = 1/2, (implicit midpoint method ) and c1 = 1
(implicit Euler method). We also use the repeated trapezoidal
and repeated Simpson’s rule. Since the methods are implicit
we perform an iterative procedure at each step implementing
a tolerence of 10−4. For each method we used three different
values of h: h = 0.01, h = 0.005 and h = 0.0025.

A. Example 1

Consider the nonlinear VIE

u(t) = 2

(
1 +

∫ t

0

(t− s)u(s) ds

)2

0 ≤ t ≤ 1 (14)

which arises from a nonlinear differential equation in [15]
where b1 = 0 and b2 = 2.

1) Using implicit Euler method: When c1 = 1, and
tn,1 = tn + h, the collocation solution of (14) is given by

Un,1 = 2

(
1 + Fn(tn,1) + Un,1

h2

2

)2

(15)

where

Fn(tn,1) = h
n−1∑
i=0

(
tn − ti +

h

2

)
Ui,1

Figure 1 shows the solution to (14) at h = 0.01, h =
0.005, and h = 0.0025.
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Fig. 1. The collocation solution of (14) when c1 = 1
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Fig. 2. The collocation solution of (14) when c1 = 1
2

2) Using implicit midpoint method: When c1 = 1
2 , and

tn,1 = tn + h
2 , the collocation solution of (14) is given by

Un,1 = 2

(
1 + Fn(tn,1) + Un,1

h2

8

)2

(16)

where

Fn(tn,1) = h
n−1∑
i=0

(tn − ti)Ui,1

Figure 2 shows the solution to (14) at h = 0.01, h =
0.005, and h = 0.0025.

3) Using the iterated collocation: For c1 = 1
2 the iterated

collocation solution of (14) is given as

uI(tn) = 2

(
1 + h

n−1∑
i=0

∫ 1

0

(tn − ti − sh) dsUi1

)2

Integrate to obtain

uI(tn) = 2

(
1 + h

n−1∑
i=0

(tn − ti −
h

2
)Ui1

)2

(17)

The iterated collocation solution of (14) with three differ-
ent values of h is shown in Figure 3

4) Using repeated trapezoidal rule: For the VIE (14)
u(0) = 2 and

u(tn) = 2

(
1 +

h

2
tnu(0) + h

n−1∑
i=1

(tn − tn−1)un−1

)2
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Fig. 3. The iterated collocation solution of (14) when c1 = 1
2
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Fig. 4. The solution of (14) by the repeated trapezoidal rule
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Fig. 5. The solution of (14) by the repeated Simpson’s rule

Figure 4 shows the solution to the VIE (14) for the three
values of h used.

5) Using repeated Simpson’s rule: When t = 0, u(0) = 2
for equation (14) and

The solution to (14) using repeated Simpson’s rule is
shown in Figure 5.

h=0.01

h=0.005

h=0.0025

[
u(t2m) = 2 1 +

h
((3t2m − 2t1)u(0)

3

+ (2t2m − 2t2m−1)u(t2m))

+
2h

3

m∑−1
l=0

(3t2m − t2l+1 − tl − t2l−1)u(t2l)

]2
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TABLE I
ABSOLUTE ERRORS IN THE SOLUTION OF (18) WHEN h = 0.01

t Impl.Euler Impl.Midpt Rept. Trpz. Rept Simps.

0.1 0.0028 0.0014 0.0027 -
0.2 0.0057 0.0028 0.0055 -
0.3 0.0089 0.0043 0.0086 -
0.4 0.0127 0.0061 0.0121 0.0001
0.5 0.0171 0.0081 0.0162 0.0001
0.6 0.0226 0.0105 0.0209 0.0001
0.7 0.0295 0.0135 0.0239 -
0.8 0.0385 0.0172 0.0342 0.0001
0.9 0.0501 0.0219 0.0436 0.0001
1.0 0.0659 0.0279 0.0553 0.0002

TABLE II
ABSOLUTE ERRORS IN THE SOLUTION OF (19) WHEN h = 0.01

t Impl.Euler Impl.Midpt Rept. Trpz. Rept Simps.

0.1 0.0116 0.0057 0.0110 -
0.2 0.0239 0.0116 0.0229 0.0001
0.3 0.0389 0.0187 0.0369 -
0.4 0.0586 0.0274 0.0543 0.0002
0.5 0.0857 0.0390 0.0774 0.0003
0.6 0.1247 0.0549 0.1089 0.0005
0.7 0.1829 0.0773 0.1537 0.0009
0.8 0.2727 0.1104 0.2196 0.0016
0.9 0.4163 0.1607 0.3196 0.0028
1.0 0.6541 0.2399 0.4771 0.0049

B. Example 2

u(t) =

(
1 +

∫ t

0

(t− s)u(s) ds

)
+

1

2

(
1 +

∫ t

0

(t− s)u(s) ds

)2

, 0 ≤ t ≤ 1(18)

where b1 = 1 and b2 = 1
2 . The integral equation (18)

arises from a nonlinear differential equations the represent 
conservative systems,(see [16]. We used the four methods 
to approximate the solution to this example and example 3, 
and we present tables for the absolute errors in the solution. 
Table I shows the errors in the solution of (18) when h = 
0.01.

C. Example 3

Consider the integral equation

u(t) = 2

(
1 +

∫ t

0

(t− s)u(s) ds

)
+

(
1 +

∫ t

0

(t− s)u(s) ds

)2

, 0 ≤ t ≤ 1 (19)

where b1 = 2 and b2 = 1. The nonlinear VIE arises from a 
nonlinear differential equation in [17]. Shown in Table II 
are the errors in the solution of (19) when h = 0.01.

V. DISCUSSION

We approximated the solutions to example 1-3 using the
implicit euler method, implicit midpoint method, repeated
trapezoidal and repeated Simpson’s rule using various values

of the stepsize. At h = 0.001 and below we obtained a
similiar solution from all the methods used, hence we take
that as our ’exact’ solution. Therefore, for sufficiently small h
we get a good accuracy of the numerical solutions. When the
stepsize is greater that 0.001 we obtained different numerical
solutions from each of the four methods. We use the ’exact’
solution and absolute error to study the performance of each
method when the stepsize is increased.

From examination of errors, we observe that the Repeated
Simpson’s rule performs better followed by the implicit
midpoint method then the repeated trapezoidal rule. Among
the four methods used the implicit Euler method gives a
larger error as h is increased.We then found an iterated
collocation solution for the implicit midpoint method and
the accuracy of the method improved as shown in Figure
3. According to our numerical results, we conclude that the
repeated Simpson’s rule performs well since it gives better
solutions when a reasonably large value of the stepsize is
used. These observations are consistent for all three examples
used.
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