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Abstract — Spherical iron balls are used every day in the 

drilling and completion of oil wells. They can be used to 

operate downhole tools, set well packers, perform acid 

diversion and fracture wells. This is often achieved by 

dropping one or several balls into the well tubular from 

surface. Under gravity, the dropped ball travels kilometers 

down hole until it reaches the expected position or “seat”. It is 

important to know the duration of the descent because time is 

money; the daily cost of the drillship must be monitored. 

Another reason is that one must know the time the ball reaches 

its final depth so the next operational step can be carried out. 

Modern wells are becoming more complex, horizontal, deeper 

and multi-lateral. In many cases, the empirical experience 

alone will not be reliable. Therefore, the following calculation 

methods could be helpful. 

 
Index Terms — Abel’s Integral Equation, Calculus of 

Variation, Lagrange Equation with Constraints, Wellbore. 

 

I. INTRODUCTION 

HIS paper presents a rigorous approach to calculate the 

time a ball spends travelling through a well tubular, 

from surface to the expected depth. 

 

The paper is divided in three main parts.  

 

The first part is an overview of calculus of variations, 

summarized from reference [1], chap 2. The part recalls 

Lagrange and Euler equations with constraints. 

 

The second part presents some types of integral equations, 

namely Fredholm, Volterra and singular; details can be 

found in reference [1], chap 3. 

 

In the third and last part, we show how to use concepts of 

part I and II to evaluate the travel time of the dropped ball. 

 

To that end, three methods are compared. The first one is an 

intuitive approach that uses speed and distance in classical 

mechanics. The second method is based on singular integral 

equation, namely Abel’s integral equation, presented in part 

II. In the last one, we use Lagrange equations with 

constraints, reviewed in part I. 
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II. CALCULUS OF VARIATION 

A. Maxima and Minima, Lagrange Multipliers 

Let 𝑦(𝑥) be a function of 𝑥. A necessary condition for the 

existence of a maximum or minimum at a point 𝑥0 inside 

(𝑎, 𝑏) is that 
𝑑𝑦

𝑑𝑥
= 0 at 𝑥0; in addition, a sufficient condition 

that y be a maximum (resp. minimum) is that ([1], p119-

122) 
𝑑2𝑦

𝑑𝑥2
< 0 (resp. 

𝑑2𝑦

𝑑𝑥2
> 0) 

Let 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛)  be a continuously differentiable 

function of n variables. Generally, a necessary condition for 

𝑓 to have a relative maximum or minimum value at an 

interior point of a region is that  

𝑑𝑓 =
𝜕𝑦

𝜕𝑥1
𝑑𝑥1 +

𝜕𝑦

𝜕𝑥2
𝑑𝑥2 +⋯+

𝜕𝑦

𝜕𝑥𝑛
𝑑𝑥𝑛 = 0 

for all permissible values of 𝑑𝑥1, 𝑑𝑥2, … , 𝑑𝑥𝑛. At such an 

interior point, the function 𝑓 is said to be stationary. 

If the n variables are independent, a sufficient condition that 

y be a maximum or minimum is: 
𝜕𝑦

𝜕𝑥1
=
𝜕𝑦

𝜕𝑥2
= ⋯ =

𝜕𝑦

𝜕𝑥𝑛
= 0 

Let’s assume that the n variables are not independent but 

related by N conditions ∅𝑘(𝑥1, 𝑥2, … , 𝑥𝑛)=0 so that N 

variables are expressed in terms of the 𝑛 − 𝑁 remaining 

variables. It can be shown that the values of 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) 
with N constraints (N<n) ∅1(𝑥1, 𝑥2, … , 𝑥𝑛)=0, 

∅2(𝑥1, 𝑥2, … , 𝑥𝑛)=0,…, ∅𝑁(𝑥1, 𝑥2, … , 𝑥𝑛)=0 can be expressed by 

 
𝜕𝑓

𝜕𝑥1
+ 1

𝜕∅1
𝜕𝑥1

+2
𝜕∅2
𝜕𝑥1

+⋯+𝑁
𝜕∅𝑁
𝜕𝑥1

= 0

𝜕𝑓

𝜕𝑥2
+ 1

𝜕∅1
𝜕𝑥2

+2
𝜕∅2
𝜕𝑥2

…+𝑁
𝜕∅𝑁
𝜕𝑥2

= 0

………………………………
𝜕𝑓

𝜕𝑥𝑛
+ 1

𝜕∅1
𝜕𝑥𝑛

+2
𝜕∅2
𝜕𝑥𝑛

…+𝑁
𝜕∅𝑁
𝜕𝑥𝑛

= 0
}
  
 

  
 

 

 

Where 1, 2, … , 𝑁 are arbitrary values known as Lagrange 

multipliers. These conditions are the conditions that 

𝑓 + 1∅1+2∅2 +⋯+𝑁∅𝑁 be stationary when no constraints 

are present. 

 

B. Euler Equation, Extremals, Stationary Functions 

It can be shown that ([1], p.123-125) the continuous 

differentiable function 𝑦(𝑥), satisfying 𝑦(𝑥1) = 𝑦1 and 

𝑦(𝑥2) = 𝑦2  for which the integral 𝐼 = ∫ 𝐹(𝑥, 𝑦, 𝑦′)𝑑𝑥
𝑥2

𝑥1
 takes 

on a maximum or minimum value, satisfies the Euler 

equation: 
𝑑

𝑑𝑥
(
𝜕𝐹

𝜕𝑦′
) −

𝜕𝐹

𝜕𝑦
= 0 

Solutions to Euler’s equation are called extremals. An 

extremal that satisfies end conditions is called stationary 

function of the variational problem. 
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More generally, for n independent variables x,y,… and m 

dependent variable u,v,… there are m Euler equations of 

n+1 terms of first order and various orders of the form: 

𝐹𝑢 − (
𝜕

𝜕𝑥
𝐹𝑢𝑥 +

𝜕

𝜕𝑥
𝐹𝑢𝑦 +⋯) + (

𝜕2

𝜕𝑥2
𝐹𝑢𝑥𝑥 +

𝜕2

𝜕𝑥𝜕𝑦
𝐹𝑢𝑥𝑦 +

𝜕2

𝜕𝑦2
𝐹𝑢𝑦𝑦 +⋯) −

(
𝜕3

𝜕𝑥3
𝐹𝑢𝑥𝑥𝑥 +⋯) + (

𝜕4

𝜕𝑥4
𝐹𝑢𝑥𝑥𝑥𝑥 +⋯) −⋯=0 

 

C. Constraints and Lagrange Multipliers 

Assuming that we have two dependent variables 𝑢 and 𝑣, 

one independent variables 𝑥 and the Lagrange multiplier . 

Then, for 𝛿 ∫ 𝐹(𝑥, 𝑢, 𝑣, 𝑢𝑥 , 𝑣𝑥)𝑑𝑥 = 0
𝑥2

𝑥1
 with the constraint 

(𝑢, 𝑣) = 0, we must have (refer to [1], p139-143): 
𝑑

𝑑𝑥
(
𝜕𝐹

𝜕𝑢𝑥
) −

𝜕𝐹

𝜕𝑢
− 

𝑢
= 0

𝑑

𝑑𝑥
(
𝜕𝐹

𝜕𝑣𝑥
) −

𝜕𝐹

𝜕𝑣
− 

𝑣
= 0

} with   

or  


𝑣
[
𝑑

𝑑𝑥
(
𝜕𝐹

𝜕𝑢𝑥
) −

𝜕𝐹

𝜕𝑢
] − 

𝑢
[
𝑑

𝑑𝑥
(
𝜕𝐹

𝜕𝑣𝑥
) −

𝜕𝐹

𝜕𝑣
] = 0 after  is eliminated. 

 

Let 𝑦(𝑥) be prescribed at end points 𝑦(𝑥1) = 𝑦1 and 

𝑦(𝑥2) = 𝑦2 and determined such that  

∫ 𝐹(𝑥, 𝑦, 𝑦′)𝑑𝑥 = min  𝑜𝑟 𝑚𝑎𝑥
𝑥2

𝑥1

 

Let assume a single constraint of the form of a definite 

integral  

∫ 𝐺(𝑥, 𝑦, 𝑦′)𝑑𝑥 = 𝑘
𝑥2

𝑥1

 

where 𝑘 is a constant. Given the above two assumptions,  

the Euler equation becomes  
𝑑

𝑑𝑥
[
𝜕

𝜕𝑦′
(𝐹 + 𝐺)] −

𝜕

𝜕𝑦
(𝐹 + 𝐺) = 0 

This result will be used in part IV, paragraph E. 

 

D. Hamilton’s Principal 

The Hamilton’s principle, detailed in reference ([1], p.148-

150), is one of the most basic and important principles of 

mathematical physics. It is of the general form  

∫ (𝑇 + 𝑓. 𝑟)𝑑𝑡 = 0
𝑡2

𝑡1

 

where T is the kinetic energy, f the force acting on a 

particle and r is the vector from a fixed origin at time t. 

When a potential function exits, that is, when the forces 

acting are conservative, the Hamilton’s principle takes the 

form ∫ (𝑇 − 𝑉)𝑑𝑡 = 0
𝑡2

𝑡1
, with V being the potential energy. 

The form can be rewritten as ∫ 𝐿𝑑𝑡 = 0
𝑡2

𝑡1
, where the energy 

difference 𝐿 = 𝑇 − 𝑉 is referred to as the kinetic potential or 

Lagrangian function. For non-conservative forces, recourse 

must be to use the element of work "𝑓. 𝑟" done by the 

force f in a small displacement 𝑟. The derivation is 

extended to a summation for a system of N particles and to 

an integration for a continuous system. 

 

E. Lagrange Equations 

 For a dynamical system with n degrees of freedom it is 

usually possible to choose n independent geometrical 

position quantities 𝑞1, 𝑞2, … , 𝑞𝑛 of all components of the 

system known as generalized coordinates. The total kinetic 

energy T may depend upon the 𝑞′𝑠 and their time rates of 

change 𝑞̇1, 𝑞̇2, … , 𝑞̇𝑛 called generalized velocities. For a 

conservative system the total potential energy V is a 

function only of position and does not depend upon the 

generalized velocities.  

The work done by the force system with small 

displacements is 

−𝑉 =  =∑𝑓𝑘𝑟𝑘

𝑛

1

= 𝑄1𝑞1 +𝑄2𝑞2 +⋯+ 𝑄𝑛𝑞𝑛 

with  

𝑄1 = −
𝜕𝑉

𝜕𝑞1
=
𝜕

𝜕𝑞1
;  𝑄2 = −

𝜕𝑉

𝜕𝑞2
=
𝜕

𝜕𝑞2
; … ; 𝑄𝑛 = −

𝜕𝑉

𝜕𝑞𝑛
=
𝜕

𝜕𝑞𝑛
 

Where Q’s are referred to as generalized forces.   

The Hamilton’s principle then leads to n Euler equations, 

known as Lagrangian equations of the following form: 
𝑑

𝑑𝑡
(
𝜕𝐿

𝜕𝑞̇𝑖
) −

𝜕𝐿

𝜕𝑞𝑖
= 0 

whenever the variations of the n q’s are independent.  
Since 𝜕𝑉

𝜕𝑞̇𝑖
≡ 0,   we obtain: 

𝑑

𝑑𝑡
(
𝜕𝑇

𝜕𝑞̇𝑖
) −

𝜕𝑇

𝜕𝑞𝑖
= 𝑄𝑖 , (i=1,2,…,n) 

More details can be found in reference ([1], p.151-164). 

F. Constraints in Dynamical Systems. Nonholomorphic 

Constraints 

Let a system of n coordinates have k restrictive and 

auxiliary independent equations of constraint of the form 

∅𝑗(𝑞1, 𝑞2, … , 𝑞𝑘) = 0, j=1,2…,k. We deduce n equations, 

each having the form  
𝑑

𝑑𝑡
(
𝜕𝑇

𝜕𝑞̇𝑖
) −

𝜕𝑇

𝜕𝑞𝑖
= 𝑄𝑖 + 1

𝜕∅1

𝜕𝑞𝑖
+2

𝜕∅2

𝜕𝑞𝑖
+⋯+𝑘

𝜕∅𝑘

𝜕𝑞𝑖
    (i=1, 2,…, n) 

 

It is apparent that any term 𝑘
𝜕∅𝑘

𝜕𝑞𝑖
 is of the nature of a 

generalized force. However, the work done in any set of 

displacements by the force due to the k
th

 constraint is given 

by  

𝑘
𝜕∅𝑘
𝜕𝑞1

𝑞1+𝑘
𝜕∅𝑘
𝜕𝑞2

𝑞2 +⋯+𝑘
𝜕∅𝑘
𝜕𝑞𝑛

𝑞𝑛 

and therefore vanishes if the displacements satisfy the 

constraint conditions as 
𝜕∅𝑘

𝜕𝑞1
𝑞1 +

𝜕∅𝑘

𝜕𝑞2
𝑞2 +⋯+

𝜕∅

𝜕𝑞𝑛
𝑞𝑛 = 0. 

In certain cases, the constraint conditions are only 

expressible in the form 𝐶1𝑞1 + 𝐶2𝑞2 +⋯+ 𝐶𝑛𝑞𝑛 = 0 

where the left hand member is not proportional to the 

variation of any function. In such a case, the constraint is 

said to be nonholonomic and the 
𝜕∅𝑘

𝜕𝑞1
, … ,

𝜕∅𝑘

𝜕𝑞𝑛
 are replaced by 

𝐶𝑘1, … , 𝐶𝑘𝑛 using the method of Lagrange multipliers. 

 

III. INTEGRAL EQUATIONS 

A. Introduction  

 

An integral equation is an equation in which a function to 

be determined appears under an integral sign. It is said to 

be linear when no nonlinear functions of the unknown 

function are involved. The most frequent form is the 

Fredholm equation:  

𝛼(𝑥)𝑦(𝑥) = 𝐹(𝑥) + ∫ 𝐾(𝑥, 𝜀)𝑦(𝜀)𝑑𝜀
𝑏

𝑎

 

If 𝑏 = 𝑥 is identified with the current variable, the 

equation is known as the Volterra equation. , 𝑎 𝑎𝑛𝑑 𝑏 are 

constant. 𝐾(𝑥, 𝜀) is known as the kernel. The integral 

equation is said to be of the first kind if 𝛼 ≡ 0, second kind 

if 𝛼 ≡ 1 and of the third kind if 𝛼 is a function. If 𝛼 is 

positive, the Fredholm equation can take the form 

√𝛼(𝑥)𝑦(𝑥) =
𝐹(𝑥)

√𝛼(𝑥)
+ ∫

𝐾(𝑥, 𝜀)

√𝛼(𝑥)𝛼(𝜀)
√𝛼(𝜀)𝑦(𝜀)𝑑𝜀

𝑏

𝑎

 

and be considered of the second kind in the unknown 

function √𝛼(𝑥)𝑦(𝑥) with a modified kernel. For a two-
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dimensional variable 𝑤(𝑥, 𝑦), the Fredholm equation is of 

the form 

𝛼(𝑥, 𝑦)𝑤(𝑥, 𝑦) = 𝐹(𝑥, 𝑦) + ∬𝐾(𝑥, 𝑦; 𝜀,)𝑤(𝜀,)𝑑𝜀𝑑


 

Certain integral equations can be deduced from or reduced 

to differential equations making use of the formulae: 
𝑑

𝑑𝑥
∫ 𝐹(𝑥, 𝜀)𝑑𝜀
𝐵(𝑥)

𝐴(𝑥)

= ∫
𝜕𝐹(𝑥, 𝜀)

𝜕𝑥

𝐵(𝑥)

𝐴(𝑥)

𝑑𝜀 + 𝐹[𝑥, 𝐵(𝑥)]
𝑑𝐵

𝑑𝑥
− 𝐹[𝑥, 𝐴(𝑥)]

𝑑𝐴

𝑑𝑥
 

For instance the function 𝐼𝑛(𝑥) = ∫ (𝑥 − 𝜀)𝑛−1𝑓(𝜀)𝑑𝜀
𝑥

𝑎
 

will lead to 
𝑑𝐼𝑛

𝑑𝑥
= (𝑛 − 1)𝐼𝑛−1; 

𝑑𝑛𝐼𝑛

𝑑𝑥𝑛
= (𝑛 − 1)! 𝑓(𝑥); and 

consequently ∫ …∫ 𝑓(𝑥)𝑑𝑥
𝑥

𝑎
=

1

(𝑛−1)!
∫ (𝑥 − 𝜀)𝑛−1𝑓(𝜀)𝑑𝜀
𝑥

𝑎

𝑥

𝑎
. 

 

B. Singular Integral Equation  

An integral equation in which the range of integration is 

infinite, or which the kernel 𝐾(𝑥, 𝜀) is discontinuous, is 

called a singular integral equation (refer to [1], p.271-273). 

For instance: 

-The Fourier sine transform 𝐹(𝑥) = ∫ sin(𝑥𝜀) 𝑦(𝜀)𝑑𝜀
∞

0
, 

associated with 𝑦(𝑥) = ∫ sin(𝑥𝜀) 𝑦(𝜀)𝑑𝜀
∞

0
. It can be inverted 

uniquely in the form  

𝑦(𝑥) =
2


∫ sin(𝑥𝜀)𝐹(𝜀)𝑑𝜀
∞

0

 

The equation possesses  = ±√
2

𝜋
 as characteristic numbers 

of infinite multiplicity, that is, each value of  corresponds 

to infinitely many independent characteristic functions:  

𝑦1(𝑥) = √
2

𝜋
𝑒−𝑎𝑥 +

𝑥

𝑎2+𝑥2
 (𝑥 > 0) and 𝑦2(𝑥) = √

2

𝜋
𝑒−𝑎𝑥 −

𝑥

𝑎2+𝑥2
 (𝑥 > 0) 

This is due to the parameter 𝑎 that can take on any positive 

value. This is in contrast with the fact that the characteristic 

numbers of a nonsingular Fredholm equation corresponds 

only to a finite number of independent characteristic 

functions. 

-The Laplace transform 𝐹(𝑥) = ∫ 𝑒−𝑥𝜀𝑦(𝜀)𝑑𝜀
∞

0
  is associated 

with the homogenous integral equation of the second kind: 
𝑦(𝑥) = ∫ 𝑒−𝑥𝜀𝑦(𝜀)𝑑𝜀

∞

0
   (x>0) 

Let us consider the Gamma function and the relations 

∫ 𝑒−𝑥𝜀𝜀𝑎−1𝑑𝜀
∞

0
= (𝑎)𝑥−𝑎  (𝑎 > 0) and ∫ 𝑒−𝑥𝜀𝜀−𝑎𝑑𝜀

∞

0
= (1 − 𝑎)𝑥𝑎−1  

(𝑎 < 1).  
Then let us divide the first one by √(𝑎)  and the second 

one by √(1 − 𝑎), and adding the resultant equations and 

taking  =
1

√(𝑎)√(1−𝑎)
    (0 < 𝑎 < 1), 𝑦(𝑥) = ∫ 𝑒−𝑥𝜀𝑦(𝜀)𝑑𝜀

∞

0
 we 

obtain: 

𝑦(𝑥) = √(1 − 𝑎)𝑥𝑎−1 +√(𝑎)𝑥−𝑎    (x>0).  

With the identity (𝑎).(1 − 𝑎) =
𝜋

sin𝜋𝑎
, we obtain  =

√
sin𝜋𝑎

𝜋
   (0 < 𝑎 < 1  0 <  < 1/√𝜋)  which is in contrast with 

the fact that the characteristic values of  for a nonsingular 

equation are discretely distributed and cannot constitute a 

continuous “spectrum”. 

-The Abel’s integral equation 𝐹(𝑥) = ∫
𝑦(𝜀)

√𝑥−𝜀
𝑑𝜀

𝑥

0
 is treated in 

the following section. 

 

C. Transforms, Convolution, Laplace Transform of 

Special Volterra Equation  

( [1], p.274-277). 

-Transforms: If the double integral of the relationship 

∫ ∫ (𝑥, 𝜀1)
𝑏

𝑎

𝑏

𝑎

𝐾(𝜀1, 𝜀)𝑦(𝜀)𝑑𝜀𝑑𝜀1 

can be evaluated as an iterated integral, then it follows that 

for 𝐹(𝑥) = ∫ 𝐾(𝑥, 𝜀)𝑦(𝜀)𝑑𝜀
𝑏

𝑎
 we have also 𝑦(𝑥) =

∫ (𝑥, 𝜀)𝐹(𝜀)𝑑𝜀
𝑏

𝑎
. We refer to one of the function as the 

transform and the other as the inverse transform. The 

correspondence may or may not be unique. 

-The convolution: The convolution of u(x) and v(x) is given 

by 

∫ u(𝑥 − 𝜀)𝑣(𝜀)𝑑𝜀
𝑥

𝑎

 

The fact that the Laplace transform of the convolution is 

equal to the product of the Laplace transforms permits the 

reduction of the Volterra equation  

𝑦(𝑥) = 𝐹(𝑥) +∫ 𝐾(𝑥 − 𝜀)𝑦(𝜀)𝑑𝜀
𝑥

𝑎

 

to  
L  y(x) = L F(x) + L  K(x)L  y(x) 

 

Henceforth, L  𝑦(𝑥) = L 𝐹(𝑥)/[1- L  𝐾(𝑥)], which right-hand 

member is calculable and it remains only to determine its 

inverse transform by the use of tables or otherwise.  

-Volterra equations of the first kind: 

It is often possible to reduce 𝐹(𝑥) = ∫ 𝐾(𝑥, 𝜀)𝑦(𝜀)𝑑𝜀
𝑥

𝑎
 to 

𝐹′(𝑥) = 𝐾(𝑥, 𝑥)𝑦(𝑥)∫
𝜕𝐾(𝑥,𝜀)

𝜕𝑥
𝑦(𝜀)𝑑𝜀

𝑥

𝑎
 by differentiating its equal 

members; one must assume that 𝐾(𝑥, 𝜀) (for 𝜀 ≤ 𝑥) is 

continuously differentiable, 𝐾(𝑥, 𝑥) ≠ 0 and 𝐹(𝑥) is 

differentiable.  

By setting 𝐹̃(𝑥) =
𝐹′(𝑥)

𝐾(𝑥,𝑥)
 and 𝐾(𝑥, 𝜀) = −

1

𝐾(𝑥,𝑥)

𝜕𝐾(𝑥,𝜀)

𝜕𝑥
 (or 

alternatively by considering 𝑌(𝑥) = ∫ 𝑦(𝜀)𝑑𝜀
𝑥

𝑎
), we obtain the 

equation of the second kind 𝑦(𝑥) = 𝐹̃(𝑥) + ∫ 𝐾(𝑥, 𝜀)𝑦(𝜀)𝑑𝜀
𝑥

𝑎
, 

suitable to the method of successive substitutions. 

-Abel’s integral equation: 

The Volterra equation 𝐹(𝑥) = ∫
𝑦(𝜀)

√𝑥−𝜀
𝑑𝜀

𝑥

0
 is known as the 

Abel’s integral equation. By diving both sides by √𝑠 − 𝑥 

and integrating the result with respect to x over (0,s), s 

parameter, following by an inversion of the order of 

integration of the right-hand member, we obtain  

∫
𝐹(𝑥)

√𝑠 − 𝑥
𝑑𝑥

𝑠

0

= ∫ {∫
𝑑𝑥

√(𝑥 − 𝜀)(𝑠 − 𝑥)
}𝑦(𝜀)

𝑠

𝜀

𝑑𝜀
𝑠

0

 

The change in variable 𝑥 = (𝑠 − 𝜀)𝑡 + 𝜀 lead to: 𝑥 = 𝜀 𝑡 = 0 

and 𝑥 = 𝑠 𝑡 = 1; 𝑑𝑥 = (𝑠 − 𝜀)𝑑𝑡 and 𝑠 − 𝑥 = −(𝑠 − 𝜀)𝑡 + 𝑠 − 𝜀 

𝑠 − 𝑥 = (𝑠 − 𝜀)(1 − 𝑡).  

 

It follows that 

∫
𝑑𝑥

√(𝑥−𝜀)(𝑠−𝑥)

𝑠

𝜀
= ∫

𝑑𝑡

√𝑡(1−𝑡)

1

0
= ∫

𝑑𝑡

√
1

4
−(𝑡−

1

2
)2

1

0
= [arcsin2( 𝑡 −

1

2
)]0
1 = 𝜋 

which leads to the solution 

𝑦(𝑥) =
1

𝜋
 
𝑑

𝑑𝑥
∫

𝐹(𝜀)

√𝑥 − 𝜀
𝑑𝜀

𝑥

0

 

A generalized Abel’s equation can also be found using a 

method similar to the preceding. One can also use 

proprieties of the Laplace transform of convolution, 

combined with the propriety (𝑎).(1 − 𝑎) =
𝜋

sin𝜋𝑎
 of the 

Gamma function.  

Then, it follows that the general solution of  

𝐹(𝑥) = ∫
𝑦(𝜀)

(𝑥 − 𝜀)𝛼
𝑑𝜀

𝑥

0

 

is of the form:  

𝑦(𝑥) =
sin𝛼𝜋

𝜋
 
𝑑

𝑑𝑥
∫ (𝑥 − 𝜀)𝛼−1𝐹(𝜀)𝑑𝜀
𝑥

0

 

(0< 𝛼 < 1) 

This result will be used in part IV, paragraph D. 
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Well Profile

Measured

Depth (MD-s)

Vertical 

Depth (X-ε)

( m ) ( m )

0.00 0.00
100.45 100.45
600.55 590.08
850.11 820.03
1020.97 950.44
1620.57 1200.01
1911.30 1380.82
1923.91 1387.22
2506.14 1449.95
2918.53 1508.67
3202.29 1532.46
3313.72 1544.48
3491.31 1544.04
3619.13 1544.45
3975.24 1544.29
4303.23 1544.16
4886.62 1544.41
5202.33 1544.42

IV. TRAVEL TIME OF A DROPPED BALL ALONG A CURVED 

WELLBORE 

A. Problem Formulation  

 
TABLE I 

SYMBOL AND UNITS USED 

Symbol QUANTITY SI unit 

V Potential Energy Joule 

T Kinetic Energy Joule 

T Time, duration strength second 

m mass kg 

g gravity m/s2 

L   Laplace Transform 

Operator 

 

ε Vertical Depth at s m 

s Distance along  wellbore 

from the end point(seat) 

m 

L Lagrangian  

 Gamma Function  

𝑞̇𝑖  
Time first derivative   

MD Measured Depth m 

𝑠′(𝑥) First derivative of s over 𝑥  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1- Constraint Equation: A horizontal well completion profile 

is defined by (s, ε) data points where s is the distance along 

the well from the terminal point, the seat measured depth 

(MD=3200m), and ε is the vertical depth at s. Find a 

polynomial of second degree of the form 𝑦(X, ε) =
𝑢(X − ε)2 + v(X − ε) + w that best represents the well 

profile. Use appropriate regression operations and verify the 

result with Excel “Trend line Options” and “Display 

Equation on Chart”. Deduce the constraint equation of the 

form 𝑠(ε) = 𝑎ε2 + bε + c. 
 

2- Equation of Speed:  

 

a) Suppose that a ball of mass m starts from rest at time t=0 

at the initial point at surface and slides downhole along the 

above wellbore curve under the action of gravity without 

friction, neglecting the buoyancy effect (assumed an unfilled 

well). If the seat depth is X and if the ball height from seat is 

𝜀 at time t, first establish the equation of motion as a 

differential equation in s(t). Second, express the speed ds/dt  
of the ball as a function of t, X, g and 𝜀. Notice that ds/dt  
=-dy/dt 

 

b) Curved Wellbore, Time of Descent: Given the seat 

vertical depth at 1530m, deduce from the preceding result 

the time of descent T of the ball. 

 

3- Time of Descent using Abel’s Integral Equation: 
First find a general solution to the Abel’s Integral Equation 

using the Laplace transform of the convolution. Then, apply 

the result to the time equation found in the previous section 

and deduce the time of descent. 

 
4- Time of Descent using Lagrange’s Equations: write the 

generalized Lagrange’s equations of the system; eliminate 

the parameter  between the equations and find the relation 

between s and t at t=0, s=MD and t=T, s=0; solve for T, 

given X=1530m, MD=3200m. 
 

B. Solution: 

 

1) Wellbore Profile Mathematical Model: Constraint 

Equation  

 

It is useful to obtain a well profile in equation (or set of 

equations) so it (they) can be used as a constraint (set of 

constraints) in Lagrange’s equations of motion. We use the 

“line of best fit” or the least square regression technique for 

that effect ([2], [3]). This could be done by section but, since 

the wellbore looks like a curve rather than a line, and for the 

sake of simplicity, we choose to approximate the entire 

wellbore by one equation of the form:  

s(ε) = 𝑎ε2 + bε + c 
For the n data points, the equation can be rewritten in the 

form of matrix multiplication by  

{

𝑠1
𝑠2
⋮
𝑠𝑛

} = 𝑎{

ε1
2

ε2
2

⋮
ε𝑛
2

}+ 𝑏 {

ε1
ε2
⋮
ε𝑛

}+ 𝑐 {

1
1
⋮
1

} = [

ε1
2       ε1    1

ε2
2       ε2    1…………

ε𝑛
2           ε𝑛       1

] {
𝑎
𝑏
𝑐
} 

[
ε1
2      ε2

2   …   ε𝑛
2

ε1      ε2   …   ε𝑛
1         1    …   1

] {

𝑠1
𝑠2
⋮
𝑠𝑛

} 

= [
ε1
2      ε2

2   …   ε𝑛
2

ε1      ε2   …   ε𝑛
1         1    …   1

] [

ε1
2       ε1    1

ε2
2       ε2    1…………

ε𝑛
2            ε𝑛      1

] {
𝑎
𝑏
𝑐
} 

 {

∑ε𝑖
2𝑠𝑖

∑ε𝑖𝑠𝑖
∑𝑠𝑖

} = [

∑ε𝑖
4      ∑ ε𝑖

3       ∑ ε𝑖
2

∑ε𝑖
3       ∑ ε𝑖

2      ∑ ε𝑖  

∑ ε𝑖
2      ∑ ε𝑖           𝑛  

] {
𝑎
𝑏
𝑐
} 

 {
𝑎
𝑏
𝑐
} = [

∑ε𝑖
4     ∑ ε𝑖

3       ∑ ε𝑖
2

∑ε𝑖
3       ∑ ε𝑖

2      ∑ ε𝑖  

∑ ε𝑖
2      ∑ ε𝑖            𝑛  

] −1 {

∑ε𝑖
2𝑠𝑖

∑ε𝑖𝑠𝑖
∑𝑠𝑖

}  

 

 {
𝑎
𝑏
𝑐
}=[

2.26347𝐸 + 17  44509532727    30626508.92
44509532727      30626508.92     21730.379 

30626508.92     21730.379           18  
]

−1

 

∗ {
99482528978
66692545.75
45446.40

} = {
0.0026876
−1.918186
267.60127

} 

 

 𝑦(𝑋, ε) = 0.0026876 (X − ε)2 − 1.918186(𝑋 − ε) 
+267.60127 

MD−  𝑠(ε) = 0.0026876 (X − ε)2 
−1.918186(𝑋 − ε) + 267.60127 

 

 
For X=1530m and MD=3200m we obtain  

s(ε) = −0.0026876 (1530 − ε)2 

+1.918186(1530− ε) − 267.60127 + 3200 
Leading to the constraint equation:  

𝑠(ε) = −0.0026876 ε2 + 6.30587ε− 424.1795 

 

Fig. 1.  Wellbore Profile 
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This equation is represented on the following graph, using 

the change in variable 𝑥 = 1530 − ε and 𝑦 = s(ε) − 3200 for 

clarity purposes: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2)  Equation of Speed - Solution Method 1   

 

The total energy is roughly approximated. The result is 

expected to be inaccurate. 

 

1. Equation of Speed 
If y=MD-s is the distance from surface (dy/dt=-ds/dt), 

neglecting the damping, the kinetic energy and the work 

done by gravity 𝑊 = 𝑚𝑔(𝑋 − ε), hence the potential 

energy 𝑉 = −𝑚𝑔(𝑋 − ε), lead to:  

 

𝑇 =
1

2
𝑚(𝑦)̇ 2, 𝑉 = −𝑚𝑔(𝑋 − ε)  𝑦̇2 =  2𝑔(𝑋 − ε)𝑦̇ = √2𝑔(𝑋 − ε)   

but  
𝑑𝑦

𝑑𝑡
= −

𝑑𝑠

𝑑𝑡


𝑑𝑠

𝑑𝑡
= −√2𝑔(𝑋 − ε) 

 

2. Time of Descent to X=1530m 
 

𝑑𝑠

𝑑𝑡
= −√2𝑔(𝑋 − ε)

𝑑𝑡

𝑑𝑠
=

−1

√2𝑔(𝑋−ε)
𝑑𝑡 =

−𝑑𝑠

√2𝑔(𝑋−ε)
, 

 

note that at ε = X, t = 0 and at ε = 0, t = T 

𝑇2 − 𝑇1 = T − 0 = T (X) = ∫
−𝑠′(ε)

√2𝑔(𝑋 − ε)

ε=0

ε=𝑋

dε

= ∫
𝑠′(ε)

√2𝑔(𝑋 − ε)

ε=X

ε=0

dε 

 
𝑠(ε) = −0.0026876 ε2 + 6.30587ε− 424.1795 

 𝑠′(ε) = −0.0053752ε + 6.30587 

T(1530) =  ∫ (
−0.0053752ε + 6.30587

√2 x 9.81(1530 − ε)
)

1530

0

dε 

 

we evaluate the expression by integrating by part:  

T(𝑋)=∫
𝐴ε+𝐵

√𝐶+𝐷ε

𝑋

0
dε = ∫ (𝐴ε + 𝐵)(𝐶 + 𝐷ε)−1/2

𝑋

0
dε =

[(𝐴ε + 𝐵)
1

(−
1

2
+1)𝐷

(𝐶 + 𝐷ε)−
1

2
+1]

0

X

-∫ 𝐴
1

(−
1

2
+1)𝐷

(𝐶 + 𝐷ε)−
1

2
+1𝑋

0
dε 

T(𝑋)=[
2

𝐷
(𝐴ε + 𝐵)(𝐶 + 𝐷ε)

1

2]
0

X

-∫
2𝐴

𝐷
(𝐶 + 𝐷ε)

1

2
𝑋

0
dε=[

2

𝐷
(𝐴ε + 𝐵)(𝐶 +

𝐷ε)
1

2]
0

X

-[
2𝐴

(
1

2
+1)D2

(𝐶 + 𝐷ε)
1

2
+1]

0

X

=[
2

𝐷
(𝐴ε + 𝐵)(𝐶 + 𝐷ε)

1

2]
0

X

--[
4𝐴

3D2
(𝐶 + 𝐷ε)

3

2]
0

X

 

T(𝑋)=
2

𝐷
[(𝐴X + 𝐵)(𝐶 + 𝐷X)

1

2 − (𝐵)(𝐶)
1

2] --
4𝐴

3D2
[(𝐶 + 𝐷X)

3

2 − (𝐶)
3

2] 

T(1530) =  ∫ (
−0.0053752ε + 6.30587

√30019 − 19.62ε
)

1530

0

dε 

T(𝑋)=
2

−19.62
[(−0.0053752 ∗ 1530 + 6.30587)(30019 − 19.62 ∗

1530)
1

2 − (6.30587)(30019)
1

2]– 
4(−0.0053752)

3(−19.62)2
[(30019 − 19.62 ∗

1530)
3

2 − (30019)
3

2] 
Curved Well, Time of descent (X = 1530m) =  𝟏𝟒𝐬𝐞𝐜 

 

3) Abel’s Integral Equation - Solution Method 2 

 

This is achieved by solving the following Abel’s integral 

equation:  

T(x) = ∫
𝑠′(ε)

√2𝑔(𝑋 − ε)

𝑋

0

dε 

 

1. Solution to the Generalized Abel’s Integral 
Equation 

 

F(𝑥) = ∫
𝑦(ε)

(𝑥−ε)𝛼

𝑥

0
dε (0<  𝛼 < 1) 

To find the general solution, we use the propriety of the 

Laplace transform of a convolution ([1], p.274-277): 
L  𝐹(𝑥)=L  𝑥−𝛼. L  𝑦(𝑥) 

By virtue of  
L  𝑥−𝛼 = (1 −  𝛼)𝑠𝛼−1 

we obtain  

L  𝑦(𝑥)=
1

(1− 𝛼)𝑠𝛼−1
 L  𝐹(𝑥)=

𝑠1−𝛼

(1− 𝛼)
 L  𝐹(𝑥) 

It follows that 
1

𝑠
L  𝑦(𝑥)=

𝑠1−𝛼

s(1− 𝛼)
 L  𝐹(𝑥) =

𝑠−𝛼

(1− 𝛼)
 L  𝐹(𝑥). 

With the propriety of the Gamma function ([3], p.319) 

∫ (1 − 𝑡)𝛼−1𝑡−𝛼
1

0

𝑑𝑡 = (1 −  𝛼).(𝛼) =
𝜋

sin (𝛼𝜋)
 

.Using 
(𝛼)𝑠−𝛼= L  𝑥𝛼−1 

we obtain 
1

𝑠
L  𝑦(𝑥)=

( 𝛼)𝑠−𝛼

( 𝛼)(1− 𝛼)
L  𝐹(𝑥) 

=
sin (𝛼𝜋)

𝜋
( 𝛼)𝑠−𝛼  L  𝐹(𝑥)=

sin (𝛼𝜋)

𝜋
L  𝑥𝛼−1 L  𝐹(𝑥) 

1

𝑠
L  𝑦(𝑥)=

sin (𝛼𝜋)

𝜋
L  𝑥𝛼−1 L  𝐹(𝑥)  ∫ 𝑦(ε)

𝑥

0
𝑑ε=

sin (𝛼𝜋)

𝜋
∫ (𝑥 − ε)𝛼−1F(ε)dε
𝑥

0
 

 

After derivation of both sides of the equality, we deduce: 

  

𝑦(𝑥) =
sin (𝛼𝜋)

𝜋

𝑑

𝑑𝑥
∫ (𝑥 − ε)𝛼−1F(ε)dε
𝑥

0

 

 

2. Incorporating the Wellbore Profile 

Using 𝛼 =
1

2
  in the above equation, the solution of 

T(𝑥) = ∫
𝑠′(ε)

√2𝑔(𝑥 − ε)

𝑥

0

dε 

 is then given by  
𝑠′(𝑥)

√2𝑔
=

sin (
𝜋

2
)

𝜋

𝑑

𝑑𝑥
∫ (𝑥 − ε)−1/2F(ε)dε
𝑥

0
  𝑦(𝑥)=

1

𝜋
√2𝑔∫

T(ε)

√(𝑥−ε)
dε

𝑥

0
 

 

Where T(ε) is obtained by the method of point 1) from well 

data survey. 

 

3. Time of Descent 
With  

y=1.3898(X− ε(t)  MD− 𝑠(𝑡) = 1.3898 

ε(t) 𝑠 = 1.3898ε − 1073.606 
The time of descent becomes: 

T(𝑋)=∫
𝐵

√𝐶+𝐷ε

𝑋

0
dε =

2B

D
[(𝐶 + 𝐷X)

1

2 −𝐵𝐶
1

2]  

T(1530) =  ∫
1.3898

√30019−19.62ε

1530

0
dε 

T(𝑋)=
2∗1.3898

−19.62
[(30019 − 19.62 ∗ 1530)

1

2 − 30019
1

2] 

 

Slant Well Time of descent (X = 1530m) =  𝟐𝟓𝐬𝐞𝐜 

 

y = 0.0027x2 - 1.9182x + 267.6
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Fig. 2.  Constraint Equation from Regression 
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4) Lagrange’s Equations - Solution Method 3 

 

Following the result of paragraph II.C or reference ([1], 

p.135-138, p.151-164), we use the generalized Lagrange 

equation with constraints in the form: 
𝑑

𝑑𝑡
(
𝜕(𝐹 + 𝐺)

𝜕𝑞̇𝑖
) −

𝜕(𝐹 + 𝐺)

𝜕𝑞𝑖
= 0 

where F=L is the Lagrangian and G=∅ the constraint 

equation. 

 
y=1.3898(X− ε(t))  MD− 𝑠(𝑡) = 1.3898 ε(t) 𝑠 = 1.3898ε −

1073.606 
 ε(t) 𝑠 = 1.3898ε − 1073.606 

𝑇 =
1

2
𝑚𝑠̇2, 𝑉 = −𝑚𝑔(𝑋 − ε), ∅(𝑠, ε) =  𝑠 − 1.3898ε + 1073.606 

L=T-V, F=L+∅ =
1

2
𝑚𝑠̇2+ 𝑚𝑔(𝑋 − ε) + ( 𝑠 − 1.3898ε + 1073.606), 

which leads to 
𝜕(𝐿+∅)

𝜕ε̇
= 0; 

𝑑

𝑑𝑡
(
𝜕(𝐿+∅)

𝜕ε̇
) = 0;  

𝜕(𝐿+∅)

𝜕ε
= −𝑚𝑔 − 1.3898 

𝜕(𝐿+∅)

𝜕𝑠̇
= 𝑚𝑠̇; 

𝑑

𝑑𝑡
(
𝜕(𝐿+∅)

𝜕𝑠̇
) = 𝑚𝑠̈;  

𝜕𝑇

𝜕𝑠
= ; 𝑚𝑠̈ −  = 0 

There follows:  
−𝑚𝑔 − 1.3898 = 0

𝑚𝑠̈ = 
} ⇒

−𝑚𝑔

1.3898
= 𝑚𝑠̈ ⇒

𝑔

−1.3898
= 𝑠̈ 

𝑑2𝑠

𝑑𝑡2
= −

𝑔

𝑎
 

𝑑𝑠

𝑑𝑡
= −

𝑔

𝑎
𝑡 

+𝐵at t = 0,
ds

dt
= 0 (starts free fall from rest), B = 0, 𝑠(𝑡) =

−𝑔

2𝑎
t2 +𝐶 

At t=0, y=0 and s=MD, we obtain 𝑠(𝑡) = MD −
𝑔

2𝑎
t2 and 𝑇(𝑠 = 0, 𝑦 =

𝑀𝐷) = √
2𝑎

𝑔
(𝑀𝐷 − 𝑠) for 𝑎 = 1.3898, 𝑔 = 9.81 and 𝑀𝐷 = 3200 hence, 

Slant Lagrange 𝑇(𝑀𝐷 = 3200) = √
2∗1.3898

9.81
3200=30 sec 

V. CONCLUSION 

 Three methods were compared. One uses the speed 

approximation from which, a function of the speed is 

integrated and the time of travel is then deduced. This 

method gives 14 seconds in our example and appears a little 

bit short based on personal field experience. The method is 

inaccurate due to important assumptions that cannot be 

evaluated such as frictions. Frictions depend on the 

roughness of the tubular, the fluid, etc. It is hard to evaluate 

the actual friction because the inside of the tubular is 

different from the origin once in the wellbore. It is likely 

that it will have fines or scale deposits that are not 

predictable. Therefore this method is not the right way 

forward. 

 

The other two methods, the Abel’s equation and the calculus 

of variation give respectively 25 and 30 seconds. These are 

more realistic for the measured depth of our application 

example. 

 

These methods of calculations are based on the 

mathematical model of the wellbore profile, meaning the 

wellbore is represented by an actual mathematical equation 

that we found from regression techniques. This 

mathematical equation is then considered as a physical 

constraint that imposes a path to the ball when applying 

Lagrange equations in calculus of variations. These methods 

are closer to actual experience and are better than the one 

from classical mechanic discussed earlier. 
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