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Abstract—This work presents an application of a nonlinear
model reduction approach to decrease the complexity in simu-
lating a steady-state catalytic reactions, which are essential in
facilitating many chemical processes. This approach is based
on combining the proper orthogonal decomposition (POD) and
the discrete empirical interpolation method (DEIM). This work
illustrates the applicability of the POD-DEIM approach with
the finite volume discretization. POD is used to generate a low
dimensional basis set that captures the dominant behaviour of
the solutions from the finite volume discretization with various
parameter values, and hence provides a substantial reduction
in the number of unknowns. Due to the nonlinearity of this
problem, this work also applies DEIM to reduce the complexity
in computing the POD projected nonlinear term. The numerical
experiments demonstrate the accuracy and efficiency of these
model reduction approaches through the parametric study of
catalytic reactions.

Index Terms—model reduction, differential equations, proper
orthogonal decomposition, discrete empirical interpolation, cat-
alytic reactions.

I. INTRODUCTION

computer simulation recently has become an important
tool to study many important phenomena in science and
engineering that are inaccessible in the laboratory due to
limitations in experimentation technology. This work con-
siders steady-state behaviour of parametrized catalytic re-
actions, which play a crucial role in facilitating a wide
range of chemical processes including steam reforming,
ammonia synthesis, methanol synthesis, hydrocracking, and
hydrodealkylation [1], [2].

To obtain accurate numerical solutions, the discretized
dimension used in the simulation often requires to be very
large, which can lead to an intense computational task.
This work presents a computational reduction for the finite
volume (FV) discretized system of catalytic reaction model
by employing the projection-based technique that combines
the methods of proper orthogonal decomposition and discrete
empirical interpolation.

Proper orthogonal decomposition (POD) is a well-known
approach to construct a basis that can maintain the physics of
the original model with a much smaller dimension. POD is
essentially the same as Karhunen-Love method and principal
component analysis (PCA). It is often used together with
the Galerkin projection process in model reduction context.
Dominant dynamics of the systems can usually be captured
in a very low-dimensional subspace of the POD basis. This
approach has been used widely in many fields of science and
engineering [3]. Although the resulting reduced system gen-
erally has much smaller number of unknowns compared to
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the original system, the complexity of the projected nonlinear
term in this catalytic reaction model is still proportional to
the dimension of the original one. The discrete empirical
interpolation method (DEIM) [4] is therefore used to further
approximate the nonlinear term in the form that can be
computed efficiently. DEIM gives an efficient interpolatory
projection approximation that allows only few important
spatial locations to be evaluated. The combination of POD
and DEIM approaches has been successfully used in many
problems due to its applicability for general nonlinearlities,
as demonstrated through various applications, such as in
neuron modelling [5], shallow water equations [6], structural
dynamics [7], electromagnetic wave scattering [8], subsur-
face flow [9], and many others [10], [11]. To the best of my
knowledge, this POD-DEIM approach has not been used for
the catalytic reaction problem. This work demonstrates the
accuracy and efficiency of the POD-DEIM approach for the
systems with varying 2-dimensional parameter values.

The remainder of this paper is organized as follows. The
mathematical formulation of the catalytic reaction and the
corresponding finite volume discretized system are given in
Section II. The approach based on POD and DEIM for
efficiently reducing the dimension of the FV discretized
system is then discussed in Section III. Section IV presents
the results generated from numerical simulation using the
reduced systems with various parameter values. The conclu-
sions of the study are finally summarized in Section V .

II. PROBLEM FORMULATION

A catalytic reaction is a chemical reaction between reac-
tants together with catalyst which will return to its original
state after the reaction. The role of catalyst is to enable
the reaction to happen. The primary reactant is usually
a liquid or a gas. As the catalyst and the reactant are
immiscible, the reaction occurs at the catalyst surface, which
is therefore made as large as possible. This can be achieved
by applying the catalyst to the pores of porous pellets. The
reactant diffuses from the surface to the inside of the pellet.
Meanwhile, being in contact with the catalyst, the reactant is
converted to the final product. Assume that reactant A reacts
in an equilibrium reaction with catalyst S at the pellet pore
surface to the intermediate product AS in a way described
by [1], [2], [12]

A+ S � AS

with concentrations of A, S, and AS, respectively, denoted
by CA mol/m3, CS mol/kg , CAS mol/kg satisfying

CAS = KCACS and CS = CS0 − CAS
where K (m3/mol) is a constant and CS0 is the initial
concentration of the catalyst. It follows that

CAS =
KCACS0
1 +KCA

.
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If AS reacts in a first order reaction to the final product B
with reaction rate constant with reaction rate constant k̃, we
have the reaction equation

∂CAS
∂t

= −k̃CAS = −k̃CS0
KCA

1 +KCA
= k

KCA
1 +KCA

.

This reaction acts as a source term for species B or, equiv-
alently, as a sink term for A. To simplify the notation, let
C = CA be the concentration of A inside a pellet. Under
the additional assumption of a well-stirred fluid in order to
maintain a constant concentration C = CR and CB = 0 at
the outer surface of spherical pellets where CR is a fixed
constant, R is the radius of each spherical pellet, and CB is
the concentration of the product B, the corresponding initial
boundary value problem is given by

∂C

∂t
−∇ · (D∇C) = −k KC

1 +KC
, 0 < r̃ < R, t > 0,(1)

C(r, 0) = 0, 0 < r̃ < R, (2)

C(R, t) = CR,
∂

∂r̃
C(0, t) = 0, t > 0, (3)

where D is the diffusion coefficient of C inside the pellet.
After a time t � max(R2/D, (1 + KCR)/kK), the con-
centration C reaches stationary equilibrium. Supper that the
pellet has spherical symmetry and the diffusion coefficient
D is assumed to be constant. Then the catalyst reaction
at equilibrium can be described by the following boundary
value problem

D 1
r̃2

d
dr̃

(
r̃2 dCdr̃

)
= k KC

1+KC , 0 < r̃ < R, (4)

C(R) = CR,
d
dr̃C(0) = 0. (5)

To make the problem dimensionless, we define

c :=
C

CR
, r :=

r̃

R
, λ :=

kR2

DCR
, α :=

1

KCR

and the non-dimensionalized problem is given by

1
r2

d
dr

(
r2 dCdr

)
= λ cH(c)

α+c , 0 < r < 1, (6)

C(1) = 1, dc
dr (0) = 0. (7)

where H is the Heaviside function.
Next section discusses the numerical scheme that will be

used to obtain the approximate solutions.

A. Finite Volume Discretized system

This section applies the finite volume method to construct
the discretized system of the catalytic reaction problem. From
(6), integrating over a control volume Vj = (rj− 1

2
, rj+ 1

2
) =

((j− 1
2 )4r, (j+ 1

2 )4r), centred around the grid point rj =
j4r where 4r is the grid size. Applying Gauss’s theorem
gives ∮

∂Vj

∂c

∂n
dS =

∫
Vj

f(c)dV, (8)

where

f(c) := λ
cH(c)

α+ c
, (9)

and n is the outward unit normal on the boundary ∂Vj of the
control volume. We next approximate both integrals above
as follows∮
∂Vj

dS =

∫
r=r

j+1
2

∂c

∂r
dS −

∫
r=r

j− 1
2

∂c

∂r
dS (10)

=
∂c

∂r
(rj+ 1

2
)4πr2j+ 1

2
− ∂c

∂r
(rj− 1

2
)4πr2j− 1

2
(11)

≈ 4π

4r

(
r2j+ 1

2
(cj+1 − cj)− r2j− 1

2
(cj − cj−1)

)
,(12)

where cj is the numerical approximation of c(rj), rj ∈ [0, 1].
Above integral approximations have used the midpoint rule
with the central difference scheme to approximate the deriva-
tives and used n = er at radius r = rj+ 1

2
of the sphere and

n = −er at radius r = rj− 1
2

. Using again the midpoint rule
approximates the volume integral in (8) gives∫
Vj

f(c)dV ≈ f(cj)|Vj | =
4

3
πf(cj)

(
r3j+ 1

2
− r3j− 1

2

)
. (13)

From (12) and (13), the discretized system can be written in
the form of

1

4r2
(
βj+ 1

2
(cj+1 − cj)− αj− 1

2
(cj − cj−1)

)
= f(cj) (14)

where βj+ 1
2

:=
3r2

j+1
2

r2
j+1

2

+r
j+1

2
r2
j− 1

2

+r2
j− 1

2

,

and αj− 1
2

:=
3r2

j− 1
2

r2
j+1

2

+r
j+1

2
r2
j− 1

2

+r2
j− 1

2

.

Define a parameter vector µ = (α, λ) and state variable
vector of concentration c(µ) = [c1(µ), . . . , cn(µ)]T ∈ Rn,
where cj = cj(µ). The corresponding system of equations
can be written in the matrix form as

A(µ)c(µ) + F(c(µ);µ) + b(µ) = 0, (15)

where A(µ) ∈ Rn×n and b(µ) ∈ Rn are constant matrix
and vector, respectively, depending on parameter µ, and
F(c(µ);µ) = [F (c1(µ);µ), . . . , F (cn(µ);µ)] is a compo-
nentwise nonlinear vector-valued function, where

F (c;µ) = λ
cH(c)

α+ c
=

{
0 c < 0
λc
α+c , c ≥ 0

as defined for f in (9) with additional dependence on
parameter µ = (α, λ). For a given µ, the equation (15) will
be solved by Newton’s method, which requires to use the
Jacobian:

J(c(µ);µ) := A(µ) + JF(c(µ);µ), (16)

where JF(c(µ), µ) is a diagonal matrix given by

JF(c(µ);µ) = diag{F ′(c1(µ);µ), . . . , F ′(cn(µ);µ)} ∈ Rn×n

and the derivatives are taken with respect to the state vari-
ables c1, . . . , cn.

F ′(c;µ) =

{
0 c < 0
λα

(α+c)2 , c ≥ 0
.

Finally, the Newton’s iteration update formula is of the form

ci+1(µ) = ci(µ)− [J(ci(µ);µ)]−1G(ci;µ),

where G(c;µ) := A(µ)c(µ) + F(c(µ);µ) + b(µ).
To obtain accurate numerical solution, the dimension n of

(15) is often required to be large, since it reflects the number
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of cell volumes used in the spatial discretization. Hence,
solving these systems becomes computationally intensive,
especially when many iterations are required to perform
during Newton’s method.

III. COMPLEXITY REDUCTION BY REDUCED-ORDER
MODELLING

A model reduction approach can be used to decrease this
computational complexity. This work employs a projection-
based model reduction approach. It first projects the dy-
namics of the system onto a low dimensional subspace to
reduce the number of unknowns in the original problem. An
effective and well-known approach called Proper Orthogonal
Decomposition (POD), described in III-A is used to construct
low dimensional subspace basis set, which will be used with
the Galerkin projection. Since the complexity of projected
nonlinear term is not truly reduced, as describe later in this
section, the discrete empirical interpolation method (DEIM)
will then be applied to fix this inefficiency as illustrated in
Section III-B.

A. Proper Orthogonal Decomposition (POD)
Let Vk ∈ Rn×k be a k- dimensional basis matrix whose

columns are orthonormal with k � n. Approximating the
state variable c(t) in the span of Vk, i.e. c(t) ≈ Vkc̃(t), and
enforcing the residual to be orthogonal to the space spanned
by columns of Vk in the Galerkin projection give

VT
kA(µ)Vk︸ ︷︷ ︸

Ã(µ)

c̃(µ) + VT
k F(Vkc̃(µ);µ) + VT

k b(µ)︸ ︷︷ ︸
b̃(µ)

= 0, (17)

with the corresponding Jacobian

J̃(c̃(µ);µ) := Ã(µ) + VT
k JF(Vkc̃(µ);µ)Vk, (18)

where Ã(µ) = VT
kAVk ∈ Rk×k and b̃(µ) = VT

k b(µ) ∈
Rk. The Newton’s iteration formula is in the form:

c̃i+1(µ) = c̃i(µ)− [J̃(c̃i(µ);µ)]−1G̃(c̃i;µ),

where G̃(c̃;µ) := Ã(µ)c̃(µ) + VT
k F(Vkc̃(µ);µ) + b̃(µ).

POD is used to generate this basis matrix Vk by em-
ploying the solution snapshots, which are discrete samples
of trajectories associated with a particular set of parameters.
Let C := [c1, . . . , cns

] ∈ Rn×ns be the matrix of snapshots
cj = c(µj), µj ∈ D for j = 1, . . . , ns, with number of
snapshots ns and parameter domain D ⊆ Rd, d > 0. In a
finite dimensional case, POD can be computed by using the
singular value decomposition (SVD) of C:

C = VΣWT ,

where V = [v1, . . . ,vr] ∈ Rn×r and W = [w1, . . . ,wr] ∈
Rns×r are orthogonal and Σ = diag(σ1, . . . , σr) ∈ Rr×r
with σ1 ≥ σ2 ≥ . . . ≥ σr > 0. The POD basis of dimension
k is then the set {vi}ki=1. More details on POD can be found
in many previous works, e.g. [13], [3].

Notice that, when the Newton’s iterations are performed,
computing the term VT

k JF(Vkc̃(µ);µ)Vk, in the Jacobian
of the reduced system (18) is required matrix-vector prod-
ucts to be done repeatedly with complexity depending on
n, as the value of c̃(µ) gets updated. Moreover, the low
dimensional variable c̃(µ) has to be prolonged back to the
high dimensional vector in order to evaluate F(·) and JF(·).
This computational inefficiency can be avoided by using the
DEIM approximation described in the next section.

B. Discrete Empirical Interpolation Method (DEIM)

The DEIM approximation can be obtained by first com-
puting a low-dimensional basis matrix U = [u1, . . . ,um] ∈
Rn×m whose span gives a good approximation to the
nonlinear snapshots {F(c(µ1)), . . . ,F(c(µns

))} , where
µ1, . . . , µns are some selected parameter values and m� n.
Then the interpolation indices ℘1, ℘2, . . . , ℘n are obtained by
a greedy procedure and used to approximate the nonlinear
term F(Vkc̃(µ)) as follows:

F(Vkc̃(µ)) ≈ Ug(µ)

PTF(Vkc̃(µ)) = PTUg(µ)

g(µ) := (PTU)−1F(PTVkc̃(µ))

where P = [e℘1 , . . . , e℘m ] ∈ Rn×m and ej is the j-
th column of the identity matrix. Pre-multiplying PT to a
matrix is equivalent to selecting the rows ℘1, ℘2, . . . , ℘n of
that matrix. Hence, for a componentwise evaluation function
F, PTF(Vkc̃(µ)) = F(PTVkc̃(µ)) as used above. That is,
VT
k F(Vkc̃(µ)) can be approximated by

F̂(Vkc̃(µ)) := VT
kU(PTU)−1︸ ︷︷ ︸

precomputed:k×m

F(PTVkc̃(µ))︸ ︷︷ ︸
m×1

, (19)

with the corresponding Jacobian given by

ĴF(c̃(µ);µ) := VT
kU(PTU)−1︸ ︷︷ ︸

precomputed:k×m

JF(PTVkc̃(µ))︸ ︷︷ ︸
m×m

PTVk︸ ︷︷ ︸
m×k

, (20)

where the m×m Jacobian is given by

JF(PTVkc̃(µ)) = diag{F ′(cr1(µ)), . . . , F ′(crm(µ))},

and cr(µ) = PTVkc̃(µ), which can be computed with
complexity independent of n as noted earlier. The Newton’s
iteration formula then becomes:

c̃i+1(µ) = c̃i(µ)− [Ĵ(c̃i(µ);µ)]−1Ĝ(c̃i;µ),

where Ĝ(c̃;µ) := Ã(µ)c̃(µ) + F̂(Vkc̃(µ);µ) + b̃(µ) and
Ĵ(c̃(µ);µ) = Ã(µ) + ĴF(c̃(µ);µ). As a result, the compu-
tational complexity for the approximation in (20) which is
independent of n.

The algorithm for selecting the interpolation indices is
analogous to the one proposed in [14] for constructing an
approximation of a non-affine parametrized function with
spatial variable defined in a continuous bounded domain.

To make this paper self-contained, the DEIM algorithm
is given below. Note that the notation max in Algorithm 1
is the same as the function max in MATLAB. Thus,
[ρ ℘`] = max{|r|} implies ρ = |r℘`

| = maxi=1,...,n{|ri|},
with the smallest index in the case of a tie.

IV. NUMERICAL RESULTS

We consider the numerical solutions obtained from the
original full-order system and the reduced systems described
in the previous section. The spherical domain used in the
dimensionless system is shown in 1.

The full-order system is solved by Newton method on
the FV discretized system and 50 snapshots are sampled
from the parameter domain (α, λ) ∈ [0.01, 10] × [1, 100] (5
values of α ∈ [0.01, 10] and 10values of λ ∈ [1, 100]). The
singular values of these solutions and nonlinear snapshots are
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Algorithm 1 : DEIM [4]

INPUT: {u`}m`=1 ⊂ Rn linearly independent
OUTPUT: ~℘ = [℘1, . . . , ℘m]T ∈ Rm

1: [ρ ℘1] = max{|u1|}

2: U = [u1], P = [e℘1 ], ~℘ = [℘1]

3: for ` = 2 to m do

4: Solve (PTU)c = PTu` for c

5: r = u` −Uc

6: [ρ ℘`] = max{|r|}

7: U← [U u`], P← [P e℘`
], ~℘←

[
~℘
℘`

]
8: end for

shown in Figure 2. Figure 3 compares the numerical solutions
of the concentration from the full-order system (dimension
n = 100), POD reduced system (dimension k = 10)and
POD-DEIM reduced system (dimension k = 10,m = 10)
are indistinguishable. The concentration profiles from the
reduced systems at different locations in the spherical domain
are shown in Figure 4, together with the absolute error
(compared to the solution from the full-order system) at
different select parameter values that are not in the snapshots
set, which are used to construct the reduced basis. Notice that
when the dimension is reduced by a factor of 10, the absolute
error is ranging between O(10−4) and O(10−2).

Fig. 1. Spherical domain (dimensionless) and the control volumes used in FV
discretization.
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Fig. 3. Concentration computed from the original full-order system (dim=100) and
from POD (dim=10) and POD-DEIM (dimPOD = dim DEIM =10) reduced systems
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Table I shows the average relative errors of the POD-
DEIM reduced systems using different 50 pairs of parameters
(α, λ) where α ∈ {0.0100, 2.5075, 5.0050, 7.5025, 10.0000}
and λ ∈ {1, 12, 23, 34, 45, 56, 67, 78, 89, 100}. Notice that
the accuracy is improved as the dimensions of the reduce
systems increase. The average relative errors of the solutions
from POD-DEIM reduced systems are getting close to the
ones obtained from the POD reduced system as the DEIM
dimension increases. This illustrates the convergence of the
POD-DEIM approach when it is applied to the systems
arising from finite volume discretization.

TABLE I
Average relative errors of the solution of reduced systems of 50 pairs of

parameters (α, λ) with α ∈ {0.01, 2.5075, 5.005, 7.5025, 10} and
λ ∈ {1, 12, 23, 34, 45, 56, 67, 78, 89, 100}.

Dimension Error (Average)
Full 100 (FV) −
POD 10 3.9015× 10−5

POD 10/DEIM 10 2.1220× 10−3

POD 10/DEIM 20 3.9015× 10−5

POD 10/DEIM 30 3.9015× 10−5

POD 20 1.0617× 10−13

POD 20/DEIM 10 1.9698× 10−3

POD 20/DEIM 20 3.6521× 10−13

POD 20/DEIM 30 1.1768× 10−13

POD 30 1.0271× 10−14

POD 30/DEIM 10 1.9698× 10−3

POD 30/DEIM 20 3.4644× 10−13

POD 30/DEIM 30 1.4336× 10−14

POD 30/DEIM 40 1.0940× 10−14

V. CONCLUSION

This work illustrates the applicability of the model re-
duction approach based on POD and DEIM to decrease the
complexity in solving the finite volume discretized system
of catalytic reactions. The numerical results suggests that we
can use this approach to accurately predict and analyze the
concentration with much lower computational complexity,
especially when the Newton’s method is used. This approach
can be extended to the inverse problem in which some certain
parameters have to be identified.
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