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Abstract—In paper the task about stabilization of program 

motions of a balanced gyrostat with time-dependent inertia 
moments is considered. The active stabilizing control attached 
to the gyrostat by the principle of feedback is constructed. 
Conditions under which the desirable program motions 
property of asymptotic stability is possible are received. The 
task is solved on the base of a method of Lyapunov functions 
and a method of the limit equations and the limit systems. 
 

Index Terms—Gyrostat, active control, Lyapunov function, 
feedback, stabilization. 
 

I. INTRODUCTION 

ROBLEMS about spatial orientation of satellites and 
aircraft in an orbit have important applied value and are 

widely considered by authors in many notes. Spatial 
motions of aircraft concerning the center of masses are 
modeled by spherical motions of solid bodies or systems of 
bodies, in particular, gyrostats. The basic methods and 
principles of control of rotational motions of bodies and 
systems were studied, for example, in notes [1-3]. Modern 
domestic and foreign writers investigate tasks about stability 
of equilibrium positions and stationary motions of gyrostats 
in orbits [4, 5], about resonant and chaotic modes of 
motions [6, 7], about stabilization of the set program 
motions of gyrostats of various structure [8, 9]. 

This paper is devoted to research of opportunities of 
realization of program motions concerning the center of 
masses of two coaxial bodies system (gyrostat) of variable 
structure. As a gyrostat of variable structure two bodies – 
the carrier and the rotor allowing relative rotation round the 
general axis are considered. The rotor has time-dependent 
inertia moments. In paper the problem of stabilization is 
solved by active external control by the principle of 
feedback. The presented results are received on the base of a 
method of Lyapunov functions of the classical stability 
theory and of a method of the limit equations and limit 
systems [10]. 

II. PROBLEM DEFINITION AND MOTION EQUATIONS 

Let O  is an inertial coordinate system; O  is 

coordinate system randomly moving generally in relation to 
inertial system of coordinates. The gyrostat represents 
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system of two solid bodies. Body 1T  is the carrier and body 

2T  is rotor which rotates around with the angular speed 
02 (0,0, )    directed on an axes Oz  of not inertial 

coordinate system Oxyz , rigidly connected with the carrier 

(the symbol ( )  denotes transposing). The angle ( )t   

of rotor rotation is a continuous function of time. 2 2 2Ox y z  is 

rigidly connected with the rotor coordinate system. Axis Oz  
and 2Oz  are coincide. 

We will assume that the centers of mass 1O  and 2O  both 

bodies are on the general axis of rotation and don't change 
the positions ( 1 2O O const ), the general center of mass of 

a gyrostat is in a point O  (Fig. 1). We will consider that the 

rotor have the time-dependent inertia moments, and not 
changing positions of the centers of mass of both bodies. As 
a result the center of mass of all system have constant 
position in the point .O  The condition about dependence of 
a tensor of inertia of a body on time allows to characterize 
existence of mobile parts of a design, redistribution or 
motion of masses in a gyrostat.  

Let are set two mutually perpendicular basis vectors 01s  

and 02s , holding invariable position in system of 

coordinates O , and let are set two mutually 

perpendicular basis vectors 01r  and 02r , permanently 

connected with system of coordinates Oxyz . We will put: 

03 01 02 03 01 02,s s s r r r    . 
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Fig. 1.  Gyrostat. 
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We now state the task about realization and stabilization 
of program motion of gyrostat (or about three-axis 
orientation [8]). Namely, we have to find the attached to 
carrier control moment СM  which would stabilize basis 

vector 01r  in the direction 01s  and basis vector 02r  in the 

direction 02s . Then according to basis vector 03r  will be 

focused in the direction 03s . 

Let the coordinate system O  rotates with the 

angular speed 0 0 ( )t   rather motionless inertial 

coordinate system O . Here the function of time 

0 0 ( )t   is the program motion of the gyrostat. 

According to the theorem of change of the kinetic 
moment of system the motion equation of the first body we 
will take in the form 

 

1
1 1 2С

dK
K M M M

dt
    


           (1) 

 
where the sign "tilde" over a sign of differential d  denotes 
a capture of a local derivative, that is in mobile system 
Oxyz ,   is the angular speed of rotation of the carrier in 

coordinate system Oxyz ; 1 1K I   is the kinetic moment of 

the carrier, 1I const  is its tensor of inertia, 1M   is the 

torque of the external forces attached to the carrier, СM is 

the control torque, 2M  is the torque operating on the carrier 

from the rotor. Thus, the motion equation (1) can be written 
in a look: 

 

1 1 1 2 ,СI I M M M                  (2) 

 
where the point denotes a time-derivative. The equation of 
motion of the rotor in rigidly connected with the carrier 
coordinate system Oxyz : 

 

2
2 2 2 2

ˆ dK
K M M

dt
 
 

    
 


, 

cos sin 0
ˆ sin cos 0

0 0 1

 
  

 
   
 
 

 (3) 

 

Here 1 02
2

ˆ ( )      is the absolute angular speed of 

the rotor in coordinate system Oxyz , 1 02
2 2

ˆ ( )K I     is 

its kinetic moment and 2 2 ( )I I t  is its tensor of inertia, 
02 (0,0, )     is the angular speed of rotation of the rotor 

concerning the carrier, 2M   is the torque of the external 

forces attached to the rotor, and 2M  is the torque twisting 

the rotor concerning the carrier. Matrix ̂ is a transition 
tensor from coordinate system 2 2 2Ox y z  to coordinate 

system Oxyz . We will write the equation (3) in a look: 

 
1 02 1 02 1 02

2 2 2

02 1 02
2 2 2

ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( )

ˆ( ) ( ) .

I I I

I M M

           

    

  



     

     

 
 (4) 

 

From the equations (2) and (4) we will receive the motion 
equations of all system concerning the center of mass: 

 

 
 

1 1 1 02
1 2 2 2 1

1 02 02 1 02
2 2

ˆ ˆ ˆ ˆ ˆ ˆ( ) ( )

ˆ ˆ ˆ( ) .С

I I I I I

I I M M

          

       

  

 

      

      




 (5) 

 

Here torque 1 2M M M     characterizes impact of 

external forces on all gyrostat. We will assume further that 

external forces are absent, that is 0M   . 
 

III. PROGRAM CONTROL AND STABILIZING CONTROL 

We will designate the control torque С p sM M M  . 

Here torque pM  is the program control, torque sM  is the 

stabilizing control. If in an initial time point at 0t   a 
reference point 01 02 03, ,r r r  coincides with a reference point 

01 02 03, ,s s s , then direct substitution 0 ( )t  in the motion 

equations (5) we will calculate the program control torque: 
 

 1 1 1 02
1 2 0 2 2 0

1 02 02 1 02
2 0 1 0 0 2 0

ˆ ˆ ˆ ˆ ˆ ˆ( ) ( )

ˆ ˆ ˆ( ) ( )

pM I I I I

I I I

        

         

  

 

     

      




 (6) 

 
The program control torque (6) realizes the program 

motion with an angular speed 0 ( )t  of the gyrostat. But in 

the presence of initial deviations or actions of small 
perturbations we will constructed the additional stabilizing 
torque sM  which would provide asymptotic stability of this 

program motion. 
Let us introduce the new generalized coordinates 

(deflections) x  according to equality 
 

0 ( )t x   .                 (7) 

 
We substitute formulas (6) and deflections in equation 

(5), than we have the control equation in deflections: 
 

 

1 1 1
1 2 2 2

1 02
1 0 0 1 2 0

02 1
0 2

ˆ ˆ ˆ ˆ ˆ ˆ( ) ( )

ˆ ( )

ˆ( ) .s

I I x I I x

x I x I x x I x

I x M

     

    

  

  





   

         

   



 

 (8) 

 
We choose the stabilizing torque in the form 
 

3

0 0
1

( ), 0, 1, 2,3.s i i i i
i

M Bx r s const i 


        (9) 

 
Here ( )B B t  is the symmetric matrix of size three on 

three which is subject to definition. For vectors 0is  we have: 

 

0 0 0( ) , 1,2,3.i is x s i              (10) 

 
The equation system (8), (10) with control (9) on a set 
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{ 0}x   has only equilibrium positions: 

 

01 01 02 02 03 01 020, , , .x s r s r s s s           (11) 

 
Derivative of Lyapunov function 
 

3
1 2

1 2 0 0
1

1 ˆ ˆ( ( ) ( ) )
2

T
i i i

i

V x I I x r s  



        (12) 

 
owing to system (8), (10) with (9) without composed above 
the second order of a small will have an appearance: 

 

1 1 1
2 2 2

1 ˆ ˆ ˆ ˆ ˆ ˆ( ) .
2

T T

T

dV
x Bx x Cx

dt

x I I I x       

   

   
       (13) 

 
Here elements of a symmetric matrix { }ijC c  are 

defined by formulas 
 

02
11 02 2 2 2

02
03 3 2 2

02
12 21 01 1 2 2

02 02
02 2 2 2 03 3

2 2 2

02
22 03 3 2

( )( cos sin )

( )( sin cos ),

2 2 ( )( cos sin )

( )( sin cos ) ( )

(( ) cos 2 sin ),

( )( sin

zx zy

yx zy

zx zy

zx zy

xx yy xy

xx

c I I

I I

c c I I

I I

I I I

c I

   

   

   

     

 

  

   

  

     

     

  

 

 

2

02
01 1 2 2

02
13 31 01 1 2 2

02 02
02 2 2 2 2 03 3 2

02
23 32 01 1 2 2 2

02
02 2 2 2

cos )

( )( sin cos ),

2 2 ( )( cos sin )

( )( cos sin ) ,

2 2 ( )( sin cos )

( )( sin

xy

zx zy

yx yy

zz xx yx yz

yx yy zz

xx y

I

I I

c c I I

I I I I

c c I I I

I I



   

   

     

   

  

 

  

    

     

     

    02
03 3 2

02 02
33 01 1 2 02 2 2

cos ) ,

( ) ( ) .

x xz

yz xz

I

c I I

  

   

 

   

 (14) 

 
We will define matrix B  elements according to a 

condition: 
 

1 1 1
2 2 2

2

0 0

ˆ ˆ ˆ ˆ ˆ ˆ0.5( )

, const 0.

Tx B C I I I x

b x b

              

  

 
   (15) 

 

Then the matrix 1 1 1
2 2 2

ˆ ˆ ˆ ˆ ˆ ˆ0.5( )B C I I I             
   

will be positive definite, and the derivative (13) of 
Lyapunov function will be negative definite determined by 
speeds. The set on which the derivative is equal to zero, is a 
set { 0}x  . The system limit to system (8), (10) with (9) on 

a set { 0}x   has no other decisions, except (11). 

Therefore on the basis of the theorem from paper [10] we 
will receive that equilibrium position 0 00, i ix s r   is 

asymptotically stable. Any other equilibrium positions are 
unstable. Thereby we have that the control torque 

С p sM M M   defined from formulas (6), (9), (14) by 

condition (15) solves the task of realization of program 
motion of the gyrostat with variable inertia moments. 
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