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Abstract— Navier-Stokes models are of great usefulness in 

physics and applied sciences. In this paper, He’s polynomials 
approach is implemented for obtaining approximate and exact 
solutions of the Navier-Stokes model. These solutions are 
calculated in the form of series with easily computable 
components. This technique is showed to be very effective, 
efficient and reliable because it gives the exact solution of the 
solved problems with less computational work, without 
neglecting the level of accuracy. We therefore, recommend the 
extension and application of this novel method for solving 
problems arising in other aspect of applied sciences. Numerical 
computations, and graphics done in this work, are through 
Maple 18. 

 
Index Terms— Analytical solutions; He’s polynomials; 

Navier-Stokes model. 
MSC: 83C15, 65H20, 35Q30. 

I. INTRODUCTION 

avier-Stokes equations are basic models in physics 
used in describing the motion of viscous fluid 

substances. These models are very useful as they describe 
the physics of many phenomena relating mathematics, 
engineering, pure and applied sciences. In computational 
fluid dynamics, Navier-Stokes equations are the main 
equations, relating pressure and external forces acting on 
fluid to the response of the fluid flow [1]. 
In general form, the Navier-Stokes and continuity equations 
are given by: 

  21u
u u P v u

t 


      


�            (1.1) 

0u �                    (1.2) 

where u  is the flow velocity, u  is the velocity, v  is the 

kinematics viscosity, P is the pressure, t  is the time,  is 

the density, and  is a del operator. 
In considering unsteady, one dimensional motion of a 
viscous fluid in a tube; the equations of motion governing 
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the flow field in the tube are Navier-Stokes equations in 
cylindrical coordinates [1]. These are denoted by: 
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        (1.3) 

subject to: 

   ,0u r g r                    (1.4) 

where 
P

P
z


 


. 

In a bid to providing numerical and/or exact solutions to 
linear and nonlinear differential equations; many researchers 
have considered and developed a lot of semi-analytical 
methods. These include Adomian Decomposition Method 
(ADM), Variational Iteration Method (VIM), Differential 
Transform Method (DTM), Laplace Transform Method 
(LTM), and their modified forms [3-7].  
Recently, He [8] developed the Homotopy Perturbation 
Method (HPM) for solving differential equations. Basically, 
the merit of the HPM is to overcome the difficulties 
involved in calculating the nonlinear terms in the concerned 
problem. The HPM has wider applications when handling 
different classes of differential equations, integral equations, 
integro-differential equations and so on [9-15]. As a 
modification of the HPM, Ghorbani et al. [16,17] 
introduced the He’s polynomials where nonlinear terms 
were split into series of polynomials which are calculated 
from HPM. It is remarked that He’s polynomials are attuned 
with Adomian’s polynomials, yet it is showed that the He’s 
polynomials are easier to compute, and are very much user 
friendly. 
In considering the solutions of the Navier-Stokes equation 
(of integer, and non-integer order), some of the semi-
analytical methods have been applied [1-3,18-21]. 
In this work, it is therefore, our intention to provide 
analytical solutions to the Navier–Stokes model of the forms 
in (1.1)-(1.3) using the He’s polynomials method. It is worth 
mentioning that the He’s polynomials method is an 
alternative semi-analytical method, even without giving up 
accuracy. 

II.   THE OVERVIEW OF THE HE’S POLYNOMIAL METHOD 

[16, 17, 22] 

Suppose  is an integral or a differential operator, then we 
consider the equation of the form: 

  0                     (2.1) 
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Let  ,H p  be a convex homotopy defined by: 

       , 1H p p p G         (2.2) 

where  G  is a functional operator with 0  as a known 

solution. Thus, we have: 

   ,0H G  and    ,1H      (2.3) 

whenever  , 0H p   is satisfied, and  0,1p  is an 

embedded parameter. In HPM, p  is used as an expanding 

parameter to obtain: 
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From (2.4), the solution is obtained as 1p  . The 

convergence of (2.4) as 1p   has been considered in 

[23]. 

The method considers  N   (the nonlinear term) as: 
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where 'kH s  are the so-called He’s polynomials, which 

can be computed using: 
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where    0 1 2 3, , , , ,k k kH H       . 

III. THE HE’S POLYNOMIALS AND THE NAVIER-STOKES 

MODEL  

In this subsection, the He’s Polynomials approach will be 
applied to the following Navier-Stokes model as follows: 

A. Problem 1:  Consider the following Navier-Stokes 
model: 
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subject to: 

 , 0w r r                             (3.2) 

Procedure w.r.t Problem 1:   
We re-write (3.1) in an integral form as in (3.3) below: 
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Applying the convex homotopy method to (3.3) gives: 
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Further simplification of (3.4) gives: 
2
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From (3.5), comparing the coefficients of the equal powers 
of p in the following ways gives: 
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Therefore, to obtain  1 2 3,  ,  ,  w w w   , we will apply 

0w r  for the simplification of       1 2 3,  ,  ,p p p  and so 

on, thus: 
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Remark: For graphical consideration of the approximate 

solution, we use  0,0.5r  and  0,0.2t . Figure 1 

and Figure 2 below represent the 3D plots of the solution (of 
problem 1) for terms up to power seven and power five (in 
terms of the time variable t ) respectively. 
 

 
        Figure1: He’s polynomial solution up to 7t .  
 

Proceedings of the World Congress on Engineering 2016 Vol I 
WCE 2016, June 29 - July 1, 2016, London, U.K.

ISBN: 978-988-19253-0-5 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2016



 

 
Figure2: He’s polynomial solution up to 5t .  

 

B. Problem 2:  Consider the following Navier-Stokes 
model: 
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                      (3.7) 

subject to: 

   2, 0 1w r r                   (3.8) 

Procedure w.r.t Problem 2:   
We re-write (3.7) in an integral form as in (3.9) below: 
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Applying the convex homotopy method to (3.9) gives: 
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Further simplification of (3.10) gives: 
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From (3.11), comparing the coefficients of the equal powers 
of h in the following ways gives: 
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Therefore, to obtain  1 2 3,  ,  ,  w w w   , we will apply 
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so on, thus:

  2
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Remark: for 1p  , the solution is: 

  2, 3 1w r t r t               (3.13) 

For graphical consideration of the obtained solution, we use 

 1,1.5r   and  0,1t . Figure 1 & Figure 2 below 

represent 3D plot & implicit plot (respectively) of the 
solution (of problem 2) at 1p  . 

 
Figure1: He’s polynomial solution (3D plot) 

 

 
           Figure2: He’s polynomial solution (implicit plot) 

 

IV. CONCLUDING REMARKS  

In this paper, He’s polynomials approach as a proposed 
solution technique has been applied successfully to the 
Navier-Stokes model for approximate and exact solutions. 
These solutions were calculated in the form of series with 
easily computable components. This technique is very much 
effective, efficient and reliable as it gives the exact solution 
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of the solved problems with less computational work 
without neglecting the level of accuracy. As a way of 
comparison, our results are in very much in agreement with 
those obtained in [1, 2, 21] for a time-order one. We 
therefore, recommend an extension and application of this 
novel method for solving problems arising in other areas of 
applied sciences. Numerical computations, and graphics 
done in this work, are through Maple 18. 
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