

Abstract—Scheduling has been defined as the allocation of

resources to a certain object in a given time and space under a

given set of constraints. Scheduling is based on more than one

dimension including the availability of instructors, teaching

assistants, students, special labs, and others at a certain time.

That expansion turns the scheduling process to a very hard and

complex problem. Research has gone into creating an

automated timetable scheduler using different algorithms,

mainly the Graph coloring and Genetic algorithm, and has

managed to succeed but under certain conditions. This problem

requires a robust solution especially for the university’s

faculties that share the same resources as it is a redundant

process that takes place every semester. This process has an

increasing complexity due to the natural growth of the

students’ population. In this paper, we introduce a new

automated schedule builder that utilizes the genetic algorithm

to produce an optimal timetable for each faculty within a

university. The timetable is treated as a chromosome with a 3D

view (time, day and session), where a uniform crossover method

is adopted to find the best combination and mutation to be

applied in order to produce a good population. In our fitness

function, we pass the new population to each generation in

order to select the best chromosome at the time. The proposed

application produced a nearly optimal timetable that is conflict

free and only requires minimum modification to satisfy all

requirements.

Index Terms— Genetic Algorithm, Graph Coloring,

Timetabling, Scheduling, Automated Scheduling

I. INTRODUCTION

cheduling is the allocation of resources to objects in a

given space and time with certain constraints to

minimize cost and to fulfill a group of constraints [6].

Scheduling has become a large aspect in our everyday life

and is applied in various fields in order to organize the

process of everyday work.

Large institutions face a great amount of difficulty in

preparing schedules due to the rapid increase of students and

courses, which is not directly proportional to the available

resources; hence scheduling becomes a great issue that is

time consuming as well as challenging with respect to

adhering to all relevant institutions. In the early days, univer-

.

Manuscript received March 05, 2016; revised March 26, 2016.This

work is supported by the faculty of Informatics and Computer Science, The

British University in Egypt.

Mohamed Abdelfattah is with the faculty of Informatics and Computer

Science, The British University in Egypt, El-Sherouk, Egypt (e-mail:

mohamed.abdelfattah@bue.edu.eg)

Ahmed Shawish is with the faculty of Informatics and Computer

Science, The British University in Egypt, El-Sherouk, Egypt (e-mail:

ahmed.gawish@bue.edu.eg)

-sities could schedule timetables manually with ease because

the number of students was yet small and the resources were

at the disposal of any number of students; and hence able to

avoid any overlap in terms of lecturers, teaching assistants,

classrooms and courses. Now with the increasing number of

students and courses, resources have become limited and

manually creating timetables has become a long and difficult

process as a consequence of the need to satisfy all

constraints with regards to faculty members and students.

Hence, this process becomes a Nondeterministic

Polynomial-time (NP)-hard problem.

Previous work was dedicated to creating conflict free

timetables that ended up fitting the environment in question

by using their own campuses as test cases. In that sense, each

university faculty had a system or a way of organization that

needed to be taken into consideration before scheduling the

timetables. Most solutions did not take that into account.

Adopting the graph coloring algorithm proved to be slow

on large scaled inputs [2] and did not cover the constraints

for all parties [8]. On the other hand, the genetic algorithm

provided a better performance rate, although not all

dimensions were taken into consideration [12]. An

additional mechanism was added to the genetic algorithm to

aid in failure recovery by resetting the algorithm in case it

fails, but that could lead to indefinite results on a large scale

[5].

Scheduling a conflict free timetable that also gives the

students, lecturers, and teaching assistants a comfortable

week is highly needed. In order to achieve a timetable that is

both conflict free and provides comfort, the timetable has to

satisfy a set of constraints which can be categorized as either

hard or soft in nature.

In this paper, we introduce an automated schedule builder

that utilizes the genetic algorithm to generate an optimal

timetable for each faculty within a university. In our

solution, the timetable is treated as a chromosome with a 3D

view (time, day and session). A uniform crossover method is

adopted to find the best combination and mutation to be

applied in order to produce a good population. In our fitness

function, that tests the fitness of each chromosome, we pass

the new population from each generation in order to select

the best chromosome at the time. The proposed application

produced a nearly optimal timetable that is conflict free and

only requires minimum modification to satisfy all

requirements.

The rest of the paper is organized as follows; Section 2

covers the background and related work. Section 3 addresses

the proposed automated scheduler, while its implementation

Automated Academic Schedule Builder

for University’s Faculties

Mohamed Abdelfattah and Ahmed Shawish

S

Proceedings of the World Congress on Engineering 2016 Vol I
WCE 2016, June 29 - July 1, 2016, London, U.K.

ISBN: 978-988-19253-0-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2016

details are described in Section 4. The experimental results

are illustrated and discussed in Section 5. Finally, the paper

is concluded and the future work is noted.

II. BACKGROUND AND RELATED WORK

Automated timetable scheduling is quite an interesting

notion with a vast amount work. The majority of proposed

solutions were based on two algorithms: the Graph Coloring

Algorithm (GCA) and the Genetic Algorithm (GA). These

two algorithms compete to solve this problem.

In 2006, Timothy A.Redl published a paper on creating a

conflict free timetable using graph coloring algorithm with

essential and preferential constraints [2]. Timetabling, being

an NP problem, is sometimes needed to explore all possible

solutions to achieve an optimal result. However with an

exhaustive search and a large scale population, it would take

a vast amount of time to compute a result that meets the

required constraints. Therefore a near optimal solution could

be achieved with the graph coloring algorithm, taking the

constraints into consideration. The constraints are divided in

two categories respectively essential and preferable

constraints, which are further discussed [2]. Redl concluded

that with a conflict graph being inputted in the graph

coloring algorithm, it will produce a conflict free course

timetable where after each session in the timetable could be

assigned to a room using a FIRST FIT DECREASING room

assignment (FFDRA) algorithm or BEST FIT

DECREASING room assignment (BFDRA) algorithm. [2]

These algorithms will ensure rooms are big enough to hold

the class [9].

Another paper on creating a student timetable generator

using color algorithm was also published in Ankara by Baki

Koyuncu and Mahmut Seçir in 2006 [8]. As timetabling was

a major problem for the majority of universities, Koyuncu

and Seçir decided to apply the graph coloring algorithm and

see the results based on a large scale population of students,

courses and lecturers. Their results concluded that the

algorithm proved successful in creating a conflict free

timetable in a short period of time and the only time

consuming process was the data input. Also, their work only

took into consideration student constraints and ignored other

types of constraints [8].

Ahmed Abu Absa and Sana’a Al-Sayegh published a

paper for a timetable generator using genetic algorithm. The

genetic algorithm shows great benefit and effectiveness in

creating timetables. But the more conflicts the algorithm

encounters, the longer it will take to compute a schedule. For

example, if the number of conflicts was to be 5, then the

number of iterations to completely produce the timetable

would be 3. Therefore two aspects were taken into

consideration; firstly the size of the population (or initial

population) should be taken into account to avoid deadlock;

secondly, the probability of mutation should be taken into

account so as to increase the speed of computing the

timetable; it is to be noted that the higher the probability of

mutation is, the better the results. It was concluded that the

genetic algorithm would be a good choice to solve the

timetabling problem for universities, but they had to further

test the notion on problems with a larger scale to guarantee

accuracy. [12]

In Jaipur, Bharkha Narang, Ambika Gupta and Rashmi

Bansal published a paper in 2013 on adding active rules

alongside the genetic algorithm to aid the generation of the

timetables. They managed to deduce that active rules could

be a set for the knowledge of intelligence and the genetic

algorithm to help with the dynamic environment, a space

that consistently changes its constraints and rules regularly.

The combination of these two algorithms had proved to be

quite efficient. Each of the two algorithms plays a certain

role, where the genetic algorithm reproduces the tables,

crosses over the tables and mutates them until it finds the

fittest table (that is the optimum solution). It is possible that

in that, case the genetic algorithm fails and not produces a

good enough timetable; in that case, the active rules are right

behind it in order to restart the algorithm and set some new

parameters in order to find an optimal timetable. [7]

Looking at the different algorithms used above, the

Genetic Algorithm and the Graph Coloring Algorithm, and

taking into consideration the final paper that was published

at the Midwest Artificial Intelligence and Cognitive Science

Conference in 2012 [5] in comparing both the algorithms on

the same problem at hand, the Genetic Algorithm excelled in

producing the results and solving some of the instances the

Graph Coloring Algorithm could not solve. Thereafter, the

proposed algorithm to be used for our solution is that of the

Genetic Algorithm.

III. PROPOSED AUTOMATED SCHEDULE BUILDER

Based on the research done on automated timetable

scheduling, there are various solutions published but they

were mainly based on a certain environment. The proposed

solution is to create a generic timetable scheduler that can

adapt to any university and adjust timetables given any set of

constraints. The solution is based on two important

components: the data module and the engine. The data

module covers the essential input data and its representation,

while the engine works to create the timetables. The given

set of constraints will help the engine to come out with the

optimal timetables [11]. In this section, we describe the

constraints as well as the two components of our proposed

automated schedule builder.

A. Constraints

The genetic algorithm will need to take decisions in order

to modify or rate the current timetable at hand. These

decisions will be measured by applying the below

constraints which are defined as two categories: hard

constraints and soft constraints [6].

1) Hard Constraints: they are conditions that must be

met in order to satisfy a conflict free timetable. The hard

constraints that must be fulfilled are as follows:

 Lecture halls, classrooms, or laboratories must not be

double booked in the same time period.

 Lecture halls, classrooms, or laboratories must be big

enough to hold the class.

 Students must not have two modules at the same time.

Proceedings of the World Congress on Engineering 2016 Vol I
WCE 2016, June 29 - July 1, 2016, London, U.K.

ISBN: 978-988-19253-0-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2016

 Lecturer/Teaching Assistant must not give two different

classes in the same time

 Lecturer/Teaching Assistant must not have a class in a

time he/she is unavailable in i.e. off campus

 Each module must be assigned to its appropriate room

 Each module must have a number of consecutive time

slots respectively to the length of the session

 Two modules cannot be assigned to one room at the

same time

2) Soft Constraints: they are conditions that do not have

to be met, but are recommended in order to produce a more

satisfying timetable for the faculty members and/or students:

 Lecturers should not have consecutive classes in a day.

 Preferred time for lecturers to give class should be met.

 Classes should have their schedule in one building or

one section on campus to avoid a lot of movement that

could lead to exhaustion.

 Reduce gaps between courses to reduce the time for

students on campus.

B. Data Module

The genetic algorithm requires data to work with, which is

represented in a specific format, in order to be easily

manipulated within the engine. Below are the sub-

components of the data module:

1) Input Data: The automated scheduler is designed to

manage a full university campus; hence all data related to the

university shall be used. The data we are looking at here

includes the faculties and resources. A faculty will consist of

lecturers, teaching assistants, classes and courses. The

resources are generally the buildings and rooms in which the

scheduled slots will be assigned. This data will be used in

the application’s engine after data entry to produce the

schedule for the selected faculty.

2) Representation of Data (Chromosome): once the data

is captured as input, it needs to be structured in a specific

format which the engine can process to produce the optimal

timetable. The structure in which the data will be formatted

will be in the shape of a timetable, with multiple slots

available for each (day, time). A selected slot based on day,

time and slot number will contain the information as follows:

 Day – day of the week in which the session will be

given

 Time – time of the session that will be given

 Course – the course that will be given at the specified

time

 Lecturer / Teaching Assistant – the individual that will

be giving the session

 Class – the class that will be attending the session

 Room – the room of where the session will be held

C. Engine

Genetic algorithms are based on Darwin’s theory of

evolution in terms of genetics; it is an adaptive heuristic

search algorithm first initiated by John Holland in 1975 [4].

The genetic algorithm here has a survival of the fittest

approach, where a number of timetables are generated and

the best one will surely be produced. Fig. 1 illustrates the

flow of the algorithms operation both diagrammatically and

as pseudo code.

GenerateInitialPopulation P0;

EvaluatePopulation P0;

Generation counter g = 0;

While g<100 repeat

Select elements from Pg to copy into Pg+1;

Crossover some elements of Pg and put into Pg+1;

Mutate some elements of Pg and put into Pg+1;

Evaluate best elements of Pg and put into Pg+1;

Increment generation counter: g g+1;

End While;

Fig. 1 the Process of the Genetic Algorithm

Each component in Fig 1 is described in the coming

categories in the nature of how each component works, and

the specific mechanism the component is applying (if any).

1) Initial Population: Seeing as there must be an initial

population to start with, in our case the population is the

timetables (chromosomes) available, so a random generator

should be initiated to create random schedules for each class

within the selected faculty and that is by randomly placing a

course at different times for each group within a class; 10

randomly generated timetables will be produced for each

class.

2) Fitness Module: After generating our population all

individuals will need to be evaluated to see how fit they are,

by identifying how many conflicts exist. The evaluation

process will be based on the afore mentioned hard

constraints.

3) Selection Module: The selection operator can be

implemented through various ways as stated by Razali and

Geraghty [10]. The selection strategy chosen for this project

is the Tournament selection process which is implemented as

follows: firstly a set number of competitors is identified, n;

secondly, n number of participants are selected from the

Proceedings of the World Congress on Engineering 2016 Vol I
WCE 2016, June 29 - July 1, 2016, London, U.K.

ISBN: 978-988-19253-0-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2016

current population which would then compete against each

other with focus on their fitness levels; Finally, the fittest

participant wins and is selected for the crossover or mutation

stage.

4) Crossover Module: After chromosomes have been

evaluated and the selection module has selected the best

amongst them, they are passed on to crossover traits to

generate a new chromosome, which will have a higher

fitness rate than the original chromosomes since best traits of

both chromosomes will be selected. There are a few

crossover strategies that one could choose from as Jorge

explained in his paper[1], the choice will be made depending

on the design of the chromosome taking into consideration

how its properties will be distributed amongst its offspring’s

as well as the performance. Unlike the uniform operator, the

uniform crossover operator is not a good choice as the

simple single point crossover will not shuffle around the

required data well. The uniform operator works by setting a

probability or percentage (p) and a random percentage is

generated (r). If r is greater than p then the single gene that is

being processed of parent 1 will go to offspring 2 where the

gene of parent 2 will go to offspring 1; if r is smaller than p

then the process is reversed.[1]

5) Mutation Module: This module will select some other

parents in order to alter the chromosome to produce a better

offspring; but this module is not operated at all times; after

the crossover module executed, a random probability

variable is generated. If it is within the set range, the

mutation module will execute. The mutation module is

executed by shuffling some of the slots in the chromosome

and enhancing a few of them. As a result, a better

chromosome is produced.

IV. EXPERIMENT AND RESULTS

A. Case Study

The subject of this case study is one of the recently

established universities that contain a group of faculties that

share the same resources. It is important to note that there is

an increasing number of students each year, while the

resources (Professors, Teaching Assistants, Lecture halls,

Classrooms, and labs) do not increase at the same rate. It is

quite clear how difficult the process is especially with the

urgent need to produce a conflict free timetable for all

faculties with their different classes each academic semester.

We choose to test our solution on a faculty that contains

18 lecturers and 22 teaching assistants (TAs). The staff is

teaching 34 modules for 4 classes in the faculty. Each

module is composed of a lecture time and laboratory time;

the whole class takes the lecture at the same time in a lecture

hall, while they are divided into groups ranging from 25 – 30

students to take laboratory and/or tutorials with the teaching

assistant. The population size of the 4 grades starting from

grade 1 up to grade 4 is 200,170,110 and 80, respectively.

This faculty shared their resources with another faculty as

follows: 8 lecture halls, 16 classrooms, and 7 Computer

Laboratories which can be utilized during the term.

The above data are the required parameters for the

Genetic Algorithm. The constraints in which the Genetic

Algorithm will work on will be based on the user’s input.

B. Results and Discussion

After developing the application, the above case study

was applied to test the output of the application; the

produced results were acceptable. Figures ranging from Fig.

2 to Fig. 6 demonstrate the application. Fig.2 defines the

input of each faculty at the university with its respected staff

(lecturers and teaching assistants), modules and number of

classes. In Fig.3, the university buildings are inputted along

with the lecture halls, laboratories, and classrooms for each

building. Fig.4 is the starting point in creating a timetable for

a selected faculty for a specific semester; and in Fig.5, the

generated timetables can be selected for viewing. Finally in

Fig. 6, shows the output of the application, a timetable for a

selected faculty and class.

The results of the algorithm will depend on three main

aspects; First, the number of generations the algorithm will

proceed for, provided that the bigger the number of

generations is, the better the results will be. That is because

the algorithm takes more time to manipulate and create new

timetables in order to reach a better timetable. Secondly, the

initial population (or set of timetables) generated will have

an impact on reaching a better chromosome, or individual, in

the shortest time possible as well as more accurate results.

Third and last is the fitness function and the core of the

whole schedule builder. All decisions made on a

chromosome are made after measuring its fitness. The fitness

value produced will affect the selection, crossover and

mutation functions.

To better simplify the notion behind the schedule builder,

it is safe to that the algorithm is only as good as the fitness

function. In other applications, the fitness function was

designed to fit the environment that it would be working in.

Nevertheless, in our implementation, it was designed to be

of a generic nature that perfectly fit the purpose of selection.

 With respect to response time, the two main operators

that can save processing time when calculating the nearly

optimum timetable are the selection and crossover operators;

there are many strategies to apply for any of the operators it

is just a matter of knowing which strategy is best. Razali and

Geraghty [10] can help in giving specifics on the selection

operator, and Mendes can help in selecting the right

Crossover operator depending on the parameters of a

problem [1].

V. CONCLUSION

The paper proposed an automated timetable schedule

builder. An application is developed to enable a university to

automatically create all faculty timetables from one place

with the click of a button. The solution reported the ability to

meet most of the hard constraints with a nearly optimal

solution, which would require a few manual adjustments to

meet the university resource requirements and save a lot of

time. The algorithm used to manage the resources and create

the resulting timetable was the Genetic Algorithm. The

solution first creates a chromosome, which is the

representation of the timetable. It is created as a 3D form of

(time, day, and session). After that, the right fitness function

to measure the fitness of each chromosome and produce the

optimal timetable after a number of generations. The genetic

Proceedings of the World Congress on Engineering 2016 Vol I
WCE 2016, June 29 - July 1, 2016, London, U.K.

ISBN: 978-988-19253-0-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2016

Fig. 2, Entering Faculty Resources

Fig. 3, Entering Building Resources

Fig. 4, Creating a Timetable

Fig. 5, Viewing a Timetable

Fig. 6, Timetable view

algorithm can be modified to produce a better generation

and this is achieved by amplifying the fitness function and

applying a better crossover and mutation method that can be

applied on a 3D chromosome.

REFERENCES

[1] J. Magalhães-mendes, "A Comparative Study of

Crossover Operators for Genetic Algorithms to Solve

the Job Shop Scheduling Problem," WSEAS

Transactions on Computers, vol. 12, no. 4, pp 164-173,

2013.

[2] T. A. Redl, "On Using Graph Coloring to Create

University Timetables with Essential and Preferential

Conditions," Proceedings of the 3
rd

 Inter. Conf. on

Computational and Information Sciences, University of

Houston-Downtown, pp 162- 167, 2006.

[3] "Scheduling," 17 April 2015. [Online]. Available:

http://dictionary.reference.com/browse/scheduling.

[4] P. Weaver, "the origins of bar charting," Mosaic Project

Services Pty Ltd, South Melbourne, 2014, [online]

available:http://www.mosaicprojects.com.au/PDF_Pape

rs/P182_The_origins_of_bar_charting.pdf.

[5] M. M. Hindi and R. V. Yampolskiy, "Genetic

Algorithm Applied to the Graph Coloring Problem," in

Proc. 23
rd

 Midwest Artificial Intelligence and Cognitive

Science Conf., pp. 61-66, 2012.

[6] A. Wren, "Scheduling, timetabling and rostering — A

special relationship?" in Proc. 1
st
 Inter. Conf. on

Practice and Theory of Automated Timetabling, pp. 46-

75, 1995.

[7] B. Narang, A. Gupta and R. Bansal, "Use of Active

Rules and Genetic Algorithm to Generate the Automatic

Time-Table," Inter. Jour. on Recent and Innovation

Trends in Computing and Communication, vol 3, no.

11, pp 3480 – 3483, 2014.

[8] B. Koyuncu and M. Seçir, "student time table by using

graph coloring algorithm," In 5th Inter. Conf. on

Electrical and Electronics Engineering – ELECO, 2007.

[9] T. A. REDL, "A Study of University Timetabling that

Blends Graph Coloring with the Satisfaction," Ph.D.

Thesis. Rice University, 2004, [online] available:

https://scholarship.rice.edu/handle/1911/18687

[10] N. M. Razali and J. Geraghty, "Genetic Algorithm

Performance with Different Selection Strategies in

Solving TSP," Proceedings of the World Congress on

Engineering, London, 2011.

[11] A. J. Champandard, "Genetic Algorithms,", 2015.

[Online]. Available:

 http://ai-depot.com/BotNavigation/Avoidance-

GeneticAlgorithm.html.

[12] A. Ahmed and A. Sana'a, "E-learning Timetable

Generator Using Genetic Algorithm," University of

Palestine, Gaza.

Proceedings of the World Congress on Engineering 2016 Vol I
WCE 2016, June 29 - July 1, 2016, London, U.K.

ISBN: 978-988-19253-0-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2016

