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Abstract—In this paper, we consider the two-stage com-
pensator designs. As an investigation of the characteristics
of the two-stage compensator designs, which is not well in-
vestigated yet, we implement three dimensional visualization
systems of input-output relation and optimization system of
the parametrization of stabilizing controllers based on the two-
stage compensator design.

Index Terms—Linear systems, Feedback stabilization, Visu-
alization, Two-Stage Compensator Design, Mathematica

I. INTRODUCTION

IN this paper, we consider the two-stage compensator

designs in the framework of the factorization approach. In

the design, during the first stage, a new closed loop system

selects stabilizing compensator for the plant. In the second

stage, a stabilizing controller is selected for the new closed-

loop system that also achieves some other design objectives

such as decoupling and sensitive minimization.

Recently, we have given a parametrization of stabilizing

controllers of the two stage compensator design based only

on the factorization approach, which is in the form of the

Youla-Kučera-parametrization[1], [12], [13], [14].

The factorization approach to control systems has the ad-

vantage that embraces, within a single framework, numerous

linear systems such as continuous-time as well as discrete-

time systems, lumped as well as distributed systems, one-

dimensional as well as multidimensional systems, etc[1],

[2], [3]. Hence the result given in this paper will be able

to a number of models in addition to the multidimensional

systems. In the factorization approach, when problems such

as feedback stabilization are studied, one can focus on the

key aspects of the problem under study rather than be

distracted by the special features of a particular class of linear

systems. This approach leads to conceptually simple and

computationally tractable solutions to many important and

interesting problems[4]. A transfer matrix of this approach is

considered as the ratio of two stable causal transfer matrices.

In some design problems, one uses a so-called two-stage

compensator design for selecting an appropriate stabilizing

compensator. One of examples of two-stage compensator

design is earthquake-resistant dumpers for a building shown

in Figures 1. Another example of two-stage compensator

design is earthquake-resistant dumpers for a bridge shown in

Figures 1. By attaching resistant dumpers to these building

and bridge, these building and bridge become strong against

earthquake.
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Fig. 1. Earthquake-Resistant Dumpers for building.

Fig. 2. Earthquake-Resistant Dumpers for bridge.

The problem of the two-stage compensator design is that

the relationship between inputs and outputs are not theoret-

ically clarified yet. Thus, we consider to make a software

to present the relationship. Thus, the objective of this paper

is to make systems to visualize the input-output relationship

based on the two-stage compensator design. The systems are

implemented on Mathematica[9], one of the most common

computer algebra systems. By using visualization technique

and Golden Section Method[15], we also consider the opti-

mization of the system based on the two-stage compensator

design.
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Fig. 3. Feedback system Σ.

To achieve this, we have implemented visualization sys-

tems of the parametrization of stabilizing controllers based

on the two-stage compensator designs [16], [17], [18] and

also implemented system, which present norms of output

signals and optimize the system based on the two-stage

compensator design. We call these system Visualization

system and Optimization system, respectively.

In Visualization system, output signals can be visualized

as 3D graphs. Because we use Mathematica, we can overlook

output signal with all parameter by using some implemented

functions of 3D graph system such as we can rotate 3D graph

by dragging the mouse inside the graphic. In Optimization

systems, norms of output signals can be visualized 3D graphs

and minimum norm of output signals can be found by Golden

Section Method[15].

In this paper, we consider the SISO and MIMO discrete-

time LTI systems as a model of the factorization approach.

II. PRELIMINARY

The stabilization problem considered in this paper follows

the papers [6], [7], in which the feedback system Σ [4] is as

in Figure 3. For further details the reader is referred to the

literatures[4], [6], [7], and [8].

We consider that the set of stable causal transfer functions

is an integral domain, denoted by A. The total ring of

fractions of A is denoted by F ; that is, F = {n/d |n, d ∈
A, d 6= 0}. This F is considered as the set of all possible

transfer functions, which is given as ratio of two stable causal

transfer functions. Matrices over F are transfer matrices.

Let Z be a prime ideal of A with Z 6= A. Define the

subsets P and Ps of F as follows:

P = {a/b ∈ F | a ∈ A, b ∈ A\Z},

Ps = {a/b ∈ F | a ∈ Z, b ∈ A\Z}.

Then, every transfer function in P (Ps) is called causal

(strictly causal). Analogously, if every entry of a transfer

matrix is in P (Ps), the transfer matrix is called causal

(strictly causal).

In this paper, we consider the discrete-time LTI system,

then

A = {
u

v
|u, v ∈ R[d], all roots r of v are with |r| > 1},

Z = (d),

d is the unit delay operator.

Throughout the paper, the plant can be either SISO or

MIMO, and its transfer function, which is also called a plant

itself simply, is denoted by P and belongs to Pn×m, which

means that the plant has m inputs and n outputs. We can

always represent P in the form of a fraction P = ND−1,

where N ∈ An×m and D ∈ Am×m with nonsingular.

Fig. 4. Two-Stage Compensator Design (y2 to u2).

For P ∈ Fn×m and C ∈ Fm×n, a matrix H(P,C) ∈
F (m+n)×(m+n) is defined as

H(P,C) :=

[
(In + PC)−1 −P (Im + PC)−1

C(In + PC)−1 (Im + PC)−1

]
(1)

provided that In + PC is a nonzero of A. This H(P,C)

is the transfer matrix from
[
ut

1 ut

2

]t
to

[
et1 et2

]t
of

the feedback system Σ. If In + PC is a nonzero of A and

H(P,C) ∈ A(m+n)×(m+n), then we say that the plant P
is stabilizable, P is stabilized by C, and C is a stabilizing

controller of P . In the definition above, we do not mention

the causality of the stabilizing controller. However, it is

known that if a causal plant is stabilizable, there is always

a causal stabilizing controller of the plant [7].

We will denote by S(P ) the set of stabilizing controllers

of P .

The following is well known Youla-Kučera-

parametrization(Theorem1)to provide the set of all

stabilizing controllers.

Theorem 1: ([1], [12], [13], [14]) Let P denote a causal

plant of Pn×m. Let P = ND−1 = D̃−1Ñ . Select X̃ ,Ỹ ,X
and Y such that

Ỹ N + X̃D = Im, ÑY + D̃X = In. (2)

Then the S(P) is given by

S(P )

= {(X̃−RÑ)−1(Ỹ +RD̃) |R ∈ Am×n, |X̃−RÑ | 6= 0 }

= {(Y +RD)(X −NR)−1 |R ∈ Am×n, |X −NR| 6= 0 },

where R is a parameter matrix.

III. TWO-STAGE COMPENSATOR DESIGN

The two-stage compensator design is for selecting an

appropriate stabilizing compensator[4]. Given a plant P , the

first stage consists of selecting a stabilizing compensator

for P . Let C0 ∈ S(P ) denote a compensator of P (that

is, an arbitrary but fixed compensator of P ) and define

P1 = P (Im + C0P )−1. The second stage consists of

selecting a stabilizing controller for P1 that also achieves

some other design objectives such as decoupling, sensitivity

minimization, etc. The resulting configuration with its inner

and outer loops is shown in Figure 4.
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Fig. 5. Composite Stabilized Feedback with c0 and c1.

Theorem 2 is same as Theorem 5.3.10 of [4]. Theorem 3

is a generalized version of Theorem 2 with coprime factor-

izability. We will employ following theorems and corollary

to achieve two stage compensator design.

Theorem 2: ([5]) Let P denote a causal plant of Pm×n

and C0 a causal stabilizing controller of P (C0 ∈ Pm×n).

Further let P1 be P (Im + C0P )−1. Denote by C0 + S(P1)
the following set:

{C0 + C1 |C1 ∈ S(P1)}.

Then

C0 + S(P1) ⊂ S(P ), (3)

with equality holding if and only if C0 ∈ Am×n.

Figure 4 cannot implement all controllers as the stabilizing

controllers in general.

Theorem 3: ([5]) Let P , C0, P1 be as in Theorem 2.

Let N , D, Ñ , D̃, Y , X , Ỹ , X̃ be matrices over A such

that
{

P = ND−1 = D̃−1Ñ , C0 = Y X−1 = X̃−1Ỹ ,

Ỹ N + X̃D = Im, ÑY + D̃X = In.

Then,

C0 + S(P1)

= {(X̃−RÑ)−1(Ỹ +RD̃) |R=X̃R1X,R1 ∈ Am×n}

= {(Y +RD)(X −DR)−1 |R=X̃R1X,R1 ∈ Am×n}.

We can obtain Theorem 3 by replacing parameter R of

Theorem 1 with X̃R1X .

By Theorem 2, we see that the sum of C0 and a stabilizing

controller of P1, say C1, is again a stabilizing controller of

P . This sum, a stabilizing controller of P , is the parallel

allocation of C0 and C1, as shown in Figure 5.

The theorems were based on the feedback from y2 to u2

(cf. Figures 3 and 4). Even so, we note that, from Figure 3,

we have two inputs u1 and u2 and two outputs y1 and

y2. Thus we can consider alternative two-stage compensator

design based on other input(s) and other output(s). Let us

consider the two-stage compensator design based on the

feedback from y1 to u1. In this case, the feedback system is

as in Figure 6.

The configuration is as in Figure 7.

Based on this feedback, the following result has also been

given in [5].

Corollary 1: ([5]) Let P ,C0,P1 be as in Theorem 2. Let

N ,D,Ñ ,D̃ ,Y ,X ,Ỹ ,X̃ be as in Theorem 3.

Fig. 6. Feedback from y1 to u1.

Fig. 7. Composite Stabilized Feedback with c0 and c1 based on Feedback
from y1 to u1.

Then we have,

C0 + S(P1)

= {(X̃−RÑ)−1(Ỹ +RD̃) |

R=−Ỹ R2Y,R2 ∈ An×m, |X̃ −RÑ | 6= 0}

= {(Y +RD)(X −NR)−1 |

R=−Ỹ R2Y,R2 ∈ An×m, |X −NR| 6= 0}.

We can obtain Corollary 1 by replacing parameter R of

Theorem 1 with Ỹ R2Y where R2 of Corollary 1 is equal

to R of Theorem 1.

IV. DEMONSTRATION

Due to the space limitation, we present here the SISO plant

case only. As an example, we consider P as follows:

P =
d2 + 1

d2 − 1
2d+

1
4

,

and the inputs u1 and u2 be 0 and 1, respectively, where

d denotes the delay operator. In this case, the coprime

factorization is given as

N = Ñ =
16

25
(d2 + 1), D = D̃ =

4

25
(2d+ 1)2,

Y = Ỹ =
7

4
+ d, X = X̃ = −

3

4
− d.

We consider two constants a and b and the form a + bd
as a parameter.

Let −20 ≤ a, b ≤ 20, R1 = a+ bd, u1 = 0, and u2 = 1.

Then outputs y1 and y2 based on Theorem 3 are visualized as

Figures 8 and 9, respectively. Also outputs y1 and y2 based on

Corollary 1 are visualized as Figures 10 and 11, respectively.
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Fig. 8. 3D graph animation of output signal y1 based on Theorem 3. R1

form is a+ bd. a and b range are −20 ≤ a, b ≤ 20.

Fig. 9. 3D graph animation of output signal y2 based on Theorem 3. R1

form is a+ bd. a and b range are −20 ≤ a, b ≤ 20.

In these visualization, the constant a is implemented by

Slider Function of Mathematica. On the other hand, the

constant b is one of three axes. Thus the figure changed by

time (the value of the constant a), so that they are animations

on Mathematica.

Next, we consider l2-norms of signals. Again let −20 ≤
a, b ≤ 20, R1 = a + bd, u1 = 0, and u2 = 1. Then the

norms of y1 and y2 based on Theorem 3 are visualized as

Figures 12 and 13, respectively. Also the norms of y1 and

y2 based on Corollary 1 are visualized as Figures 14 and 15,

respectively.

Minimum norms based on Golden Section Method[15] are

shown in Table I.

Figure Minimum norm

Figure 12 1.60389

Figure 13 1.29109

Figure 14 1.94602

Figure 15 1.56893

TABLE I
MINIMUM NORM OF FIGURES 12 TO 15.

Fig. 10. 3D graph animation of output signal y1 based on Corollary 1. R2

form is a+ bd. a and b range are −20 ≤ a, b ≤ 20.

Fig. 11. 3D graph animation of output signal y2 based on Corollary 1. R2

form is a+ bd. a and b range are −20 ≤ a, b ≤ 20.

Fig. 12. Norms of output signal y1 based on Theorem 3. R1 form is a+bd.
a and b range are −20 ≤ a, b ≤ 20.
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Fig. 13. Norms of output signal y2 based on Theorem 3. R1 form is a+bd.
a and b range are −20 ≤ a, b ≤ 20.

Fig. 14. Norms of output signal y1 based on Corollary 1. R2 form is
a+ bd. a and b range are −20 ≤ a, b ≤ 20.

Fig. 15. Norms of output signal y2 based on Corollary 1. R2 form is
a+ bd. a and b range are −20 ≤ a, b ≤ 20.

V. CONCLUSION AND FUTURE WORKS

In this paper, we have visualized the input-output relation

for discrete-time LTI systems using parametrization of two-

stage compensator design. We also visualize the norms of the

outputs and obtained the optimization by using the golden

section method.

We consider that the optimization by golden section

method is to obtain the minimal or maximal values numeri-

cally, which is not theoretical. We will investigate the method

to obtain the optimal values by theoretical method.
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