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Abstract— In this paper, an approximate formulation of the 

arbitrary order weakly singular integral is acquired by using 

Block-Pulse functions. The formulation contributes a numerical 

scheme for solving the higher order linear and nonlinear weakly 

singular Volterra integral equation of the second kind. By 

implementing the Block-Pulse functions and the approximation, 

the considered equations will be reduced to a system of algebraic 

equations. Also, the error analyses of the suggested numerical 

method are provided. Some examples are considered to 

demonstrate the efficiency and accuracy of proposed numerical 

approach. 
 

Index Terms— weakly singular integral, weakly singular 

integral equation, Block Pulse functions, operational matrix, 

error analysis, numerical solution. 

 

I. INTRODUCTION 

NTEGRAL equations with higher order have recently proved 

to be valuable tools to the modeling of many physical 

phenomena and it starts to attract much more attention of 

Physicists and Mathematicians [1-3]. These equations are 

represented by linear and nonlinear integral equations and 

solving such higher order integral equations is very important 

[4-10]. So it is very important to find efficient methods for 

solving higher order integral equations. The weakly singular 

Volterra integral equations are also found in a lot of physical, 

chemical, and biological problems, such as reaction-diffusion 

problems, crystal growth and so on [11-13]. Most of the 

higher order integral equations do not have exact analytical 

solutions; hence considerable need has been focused on 

approximate and numerical solutions of these equations. 

Recently, various researchers have introduced new 

methods in the literature. These methods include operational 

matrix method [5], Adomian decomposition method (ADM) 

[7], differential transform method (DTM) [8], Laplace 

decomposition method (LDM) [10], homotopy analysis 

method (HAM) [14] and homotopy perturbation method 

(HPM) [15]. In this article, the integration operational matrix 

of the Block Pulse functions is got by using the operational 

matrix of Legendre wavelet. The operational matrix will be 

used to solve the higher order linear and nonlinear weakly 

singular Volterra integral equation. 

In this paper, we describe application of Block Pulse 
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functions basis in solving the higher order linear and 

nonlinear Volterra integral equation with a weakly singular 

kernel. Consider the higher order linear Volterra integral 

equation with weakly singular kernel 
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where ( ), ( )ia t f t are known continuous functions on [0,1]  and 
( ) ( )iy t  stands for the i th-order derivative of ( )y t .  is a real 

constants. 

The higher order nonlinear Volterra integral equation with 

weakly singular kernel is as following  
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II. THE QUADRATURE FORMULATION OF THE ARBITRARY 

ORDER WEAKLY SINGULAR INTEGRAL 

Block Pulse functions have been studied by many authors 

and also have been applied for solving different problems. 

Here, we present a brief review of Block Pulse functions and 

its properties [15]. The m -set of Block Pulse functions are 

defined as 
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where 0,1,2, 1i m  ,          

with a positive integer value for m . In this paper, we set 1T  , 

and 
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The set of Block Pulse functions are orthogonal with each 

other, that is 
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As m tends to infinity, the m -set of Block Pulse functions 

become a complete basis for any 2[0,1)L , so that an arbitrary 

real bounded function ( )f t , which is square integrable in the 

interval [0, )T , can be expanded into  
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where 
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( ) ( ) .i if m b x f x dx   

   Arbitrary order weakly singular integral is given by as 

following 
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where 2( ) ([0,1])g s L . 

Using the orthogonality property of the Block-Pulse 

functions, the function ( )g s  can be written as 
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where 
0 1 1( , , , )T

mc c c c  , 
0 1 1( ) ( ( ), ( ), , ( ))T

m mB x b s b s b s . 

Substituting the Equation (8) into Equation (7), we have: 
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Combining Equation (3) and Equation (10), we can obtain 
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where (0) (0,0, ,0)TD  . 

Let  / , 1,2, , 1t k m k m   , we have 
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At this time, 1i k  . 

Using Equation (9) and Equation (11), we can obtain the 

approximation of Equation (7). 

 

III. METHOD OF SOLUTION 

In this section, a collocation method based on Block Pulse 

functions is presented for solving the following linear weakly 

singular Volterra integral equation: 
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with condition 
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where ( ), ( )ia t f t are known continuous functions on [0,1]  

and ( ) 2( ) ([0,1])iy t L  stands for the i th-order derivative of 

( )y t .  and ( 0,1,2, , 1)ky k n   are real constants.  

Before solving Equation (12), the integration operational 

matrix of Block-Pulse functions can be got by using the 

operational matrix of Legendre wavelet. 

Legendre wavelet in the interval [0,1) can be defined as 

[16-17]: 
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mP  is said Legendre polynomial. 

Set P is the Legendre wavelet operational matrix of 

integration, 

where 
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Let 
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 ， 11,2, ,2ki M , the Legendre wavelet 

matrix [15] can be acquired 
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The relation between the Block-Pulse functions and Legendre 

wavelet is given by 

( ) ( ).m m mt B t                                                                        (16) 
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   , Q  is called the Block-Pulse operational 

matrix of integration 
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Suppose ( ) 2( ) ([0,1])ny t L , then we get 
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Substituting the Equation (23), Equation (22) and Equation (9) 

into Equation (12), we can obtain. 
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Discreting the Equation (24) by taking step 
1

m
   of t , a 

linear system of algebraic equations can be easily got. Then 
Td can be got by solving Equation (24).  

   Consider the following nonlinear weakly singular 

Volterra integral equation: 
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when 1p  , Equation (28) is Equation (24). 

Discreting the Equation (28) by taking step 
1

m
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nonlinear system of algebraic equations can be easily got. 

Then   and ( )y t can be also obtained. 

 

IV. ERROR ANALYSIS 

In this section, we analyze the error when a differentiable 

function ( )y x is represented in a series of block pulse 

functions over the interval [0,1)I  . We need the following 

theorem. 

Theorem 4.1 Suppose ( )y x  is continuous in I , is 

differentiable in (0,1) , and there is a number M such 
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V. NUMERICAL EXAMPLES 

Example 1. Consider the weakly singular integral [18] 
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The exact solution is 

1
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2 ( 1)
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
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. Taking 

64, 128,m m  and making use of MATLAB2011a, Fig. 1 

and Fig. 2 are comparison of the numerical solutions with the 

exact.  
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Fig. 1. 64, 4m n= . 

 
Fig. 2. 128, 4m n= . 

Example 2. Consider the weakly singular Volterra integral 

equation [20]: 

1/2
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1
( ) ( )( ) , 0 1.

2

t

y t y s t s ds t t t                                (37)             

 The exact solution is t . The absolute errors for different 

m are shown in Fig. 3. 
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Fig. 3. The absolute errors for different m . 

 

VI. CONCLUSION 

In this work, the Block-Pulse functions and their good 

properties has been successfully applied to construct 

approximate solutions for higher order linear and nonlinear 

weakly singular Volterra integral equation of the second kind. 

The Block-Pulse functions method provides the solution in 

terms of convergent series with easily computable 

components. The approximation of the arbitrary order weakly 

singular integral and integration operational matrix are 

obtained. The initial equations can be transformed into a 

system of algebraic equations. The Block-Pulse functions 

method is effective and simple to solve the higher order linear 

and nonlinear weakly singular Volterra integral equation. 
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