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Abstract—In this paper, we study the dynamics of Influenza 

transmission in population by using mathematical modeling  in 
infectious. We present the construction of Lyapunov functions 
for the model. The analysis of the model for the transmission of 
Influenza is done in this study. From the analysis the model, we 
use the standard methods for analyzing the system of Ordinary 
Differential Equations. The stability of the model is determined 
by using Lyaponov function to show the global asymptotically 
stables in this study. 
 

Index Terms—Influenza, Lyaponov Function, Mathematical 
modeling 
 

I. INTRODUCTION 

NFLUENZA is caused by a virus that attacks mainly the 
upper respiratory tract, nose, throat and bronchi and rarely 

also the lungs. Spreading from person to person through 
sneezing, coughing, or touching contaminated surfaces. 
There are three types of influenza viruses, labeled A, B, and 
C. Type A influenza viruses are further divided into 
subtypes according to the specific variety and combinations 
of  two proteins that occur on the surface of the virus, the 
hemagglutinin or “H” protein and the neuraminidase or “N” 
protein. Currently, influenza A (H1N1) and A (H3N2) are 
the circulating seasonal influenza A virus subtypes. This A 
(H1N1) virus is the same virus that caused the 2009 
influenza pandemic, as it is now circulating seasonally. In 
addition, there are two type B viruses that are also 
circulating as seasonal influenza viruses, which are named 
after the areas where they were first identified, Victoria 
lineage and Yamagata lineage. Type C influenza causes 
milder infections and is associated with sporadic cases and 
minor localized outbreaks. As influenza C poses much less 
of a disease burden than influenza A and B, only the latter 
two are included in seasonal  influenza vaccines [1].   

Mathematical modeling for infectious disease,  the 
researchers in infectious disease are one of the foremost to 
realize the important role of mathematics and mathematical 
models in providing an explicit framework for 
understanding the disease transmission dynamics within and 
between hosts and parasites. Mathematical models have 
been widely used by epidemiologists as tools to predict the 

 
Manuscript received February 11, 2016; revised February 15, 2016. This 

work was supported in part by Rajamangala University of Technology 
Suvarnabhumi, THAILAND .   

R. Kongnuy  is with the Department of Mathematics, Faculty of Science 
and Technology, Rajamangala University of Technology Suvarnabhumi, 
Nonthaburi Center, Nonthaburi, 11000 THAILAND  (corresponding author 
to provide phone: 66-84682-1922; fax: 660-2525-2682; e-mail:  
rujirakung@hotmail.com).  

occurrence of epidemics of infectious diseases, and also as a 
tool for guiding research for eradication of the disease at the 
present time [2].   

The method of Lyapunov functions is used to establish 
global stability results for biological models by general 
theory of Lyapunov functions and for applications in 
mathematical biology. The systematic use of Lyapunov 
function in studying stability problems is relatively recent. 
However, LaSalle-Lyapunov theory has been used in [3]-[4] 
to  study the stability of classic Susceptible-Infectious-
Removed-Susceptible (SIRS) models. Lyapunov function 
method has been a popular technique to study global 
stability of epidemiological models. A Volterra-type 
Lyapunov function has been used in [5]-[6] to prove global 
stability of the steady states of classic Susceptible-
Infectious-Susceptible (SIS), Susceptible-Infectious-
Removed (SIR) and Susceptible-Infectious-Removed-
Susceptible (SIRS) epidemiological models with bilinear 
incidence rate and in 2004, Korobeinikov [7] construct a  
Lyapunov function to demonstrate the simplification of the 
result for the endemic equilibrium state for SIR and 
Susceptible-Exposed-Infectious-Recovered (SEIR)  
epidemiological models.   

In this paper, the global dynamics of the fourth-
dimensional model of Influenza transmission model which 
construct a system of nonlinear differential equations from 
our study [8]  is resolved through the use of Lyapunov 
functions. We prove the global asymptotic stability of the 
equilibrium states using  Lyapunov functions. Our 
discussion and conclusion are contained in the last section  

II. FORMULATION OF THE MODEL  

A. Concept of the Model 

In the epidemiological model, the total population is 
divided into 4 classes, the following sub-classes that are the 

susceptible individuals hS , infectious individuals  hI , the 
recovered individuals who are totally immune to that strain 

hR  and the recovered individuals who are partially 

immune to that strain classes hC .  

B. Parameter of the model 

Let hS ,  hI , hR  and hC  represent the fraction of 
susceptible , infectious, recovered human who are totally 
immune to that strain  and the recovered human who are 

partially  immune to that strain groups. Note that hN  is the 
total of fraction for human population where  

h h h hS I R C 1    . The birth rate of human, the 
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natural death rate of human, the transmission rate which the 
susceptible human become to infectious human, the 
transmission rate which the infectious human become to the 
recovered human who are totally immune to that strain and 
the transmission rate which the recovered human who are 
totally immune to that strain become to the recovered  
human who are partially immune to that strain classes 
represented by nB ,  , 1 ,   and , respectively.       

C. Equations of the Model 

For the SIRC model in this study, the flow is from the 
hS  group to the hI  group, and then either directly to the 
hR  group. After that, the flow is from hR  group to the 
hC  group. The transfer diagram leads to the following 

system of ordinary differential equations:  
h

h h h
n 1

dS
B I S S

dt
     ,           

h
h h h

1
dI

S I ( ) I
dt

      ,             (1) 

h
h hdR

I ( ) R
dt

      , 

h
h hdC

R C
dt

    .       

III. ANALYSIS 

A. Analysis the Model 

The differential equation of the total population of (1) is 

h h h h h h h h
n

d
(S I R C ) B (S I R C )

dt
         .  

   (2) 
Thus the total population size may vary in time. In the 
absence of disease, the population size converges to the 

steady stable nB


.  Then, the studying (1) in the following 

feasible region: 

 h h h h 4 h h h h(S , I , R , C ) ; S , I , R , C 0,     

         h h h h nB
S I R C


     

            (3) 

which can be shown to be positively invariant with respect 
to (1). Direct calculations shows that system (1) has two 
possible steady states  

       0 0E (S , 0, 0, 0, )              (4) 

where 0 nB
S 


 and a unique endemic steady state   

                       * * * * *E (S , I , R , C , )                  (5) 

with  

* n

0

B
S

R



,               (6) 

       *
0

1
I (R 1)


 


,               (7) 

*
0

1
R (R 1)

( )


 
   

,           (8) 

*
0

1
C (R 1)

( )


 
   

           (9) 

which 1 n
0

B
R

( )



   

, 0R  is the basic reproductive 

number , is   

                
0

1 n 1
0

B S
R

( ) ( )

 
 
       

.          (10) 

B. Global Stability of the Disease Free Steady State  

The global stability of the disease free steady state 0E  is 
proved by using common quadratic and linear Lyapunov 
functions and LaSalle’s invariance principle.  

Theorem 1. If 0R 1 then the disease free steady state 0E  

of (1) is globally asymptotically stable in  . 
Proof   

          h h h h 4 hV : (S , I , R , C ) : S 0    

by  
h h h hV(S , I , R , C )                                   

( )
(S S ) ( ) I ( ) R C

2S

h 0 2 h h h
0

  
            . (11) 

The derivative of (11) with respect to t  along solution 
curves of (1) is given by  

' h h h hV (S , I , R , C )        

h h h h
h 0

0
( ) d S dI d R d C

(S S ) ( ) ( )
dt dt dt dtS

  
           

h 0 h h h
n 10

( )
(S S )(B I S S )

S

  
       

    h h h( )( S I ( ) I )1          

    h h h h( )( I ( )R ) ( R C )             

h 0 2 h 0 h h
10 0

( ) ( )
(S S ) (S S ) I S

S S

       
       

    h h h h( )( S I ( ) I ( )R )1                

    h h( R C )   .                (12)      

Using the expression  
h h h 0 h h 0 2

h h 01 1
10 0

I S (S S ) I (S S )
I (S S )

S S

   
    . 

We obtain,  
' h h h hV (S , I , R , C )            

( ) ( ) I
(S S ) (S S )

S S

hh 0 2 h 0 21
0 0

       
        

h h 0 h h( ) I (S S ) ( )( S I1 1          

 ( ) I ( ) R ) ( R C )h h h h             

( )( I )
(S S ) ( ) I S

S

h h 0 2 h 01 10
    

            
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h h 2 h h( )( ) I ( )( ) R R C                   
h( )( I ) h 0 2 h 01 (S S ) (( ) I S10S

    
         

   h h h( )( ) I ) ( ) I R              

( )( I )
(S S ) ( ) I 2 R

S

h
h 0 2 h h1

0
     

           

    
0

2 h h 1( ) S
R (( )( ) I )( 1)

( )( )

   
        

     
 

( )( I )(S S )
( ) I 2 R

S

h h 0 2
h h1

0
      

          

    
0

2 h h 1S
R ( )( ) I ( 1)

( )


        

  
 

( )( I )(S S )
( ) I 2 R

S

h h 0 2
h h1

0
      

          

 2 h h
0R ( )( ) I (1 R )         .        (13) 

Therefore, 0R 1 ensure that ' h h h hV (S , I , R , C ) 0 for 

all the h h h hS , I , R , C 0  and that V (S ,I ,R ,C ) 0' h h h h   

holds when h 0S S and 
hI  h hR C 0  . The steady 

0E  is globally asymptotically stable. 

C. Global Stability of the Endemic Steady State  

The globally asymptotic stability of the endemic steady state 
is proved by constructing a globally Lyapunov function. We   
obtain the Lyapunov function of a suitable combination of 
common quadratic and Volterra type functions. 
Theorem 2 If 0R 1 , then the unique endemic steady state 

*E of (1) is globally asymptotically stable in the interior of 
 .  
Proof  Define 

  h h h h h h h hL : (S , I , R , C ) : S , I , R , C 0    

by  
h h h hL(S , I , R , C )  

(S S ) I R R
(I I I ln ) (R R R ln )

2S I I R

h * 2 h * hh * * h * *
* * * *

 
      


   

   
* h

h * *
* *

C C
(C C C ln )

R C


  


. 

This function is defined, continuous and positive definite for 

all h h h hS , I ,R ,C 0 . It can be verified that the function 
h h h hL(S , I , R , C ) takes the value h h h hL(S , I , R , C )  

0  at the steady state *E , and thus, the global minimum 

of h h h hL(S , I , R , C )  occurs at the endemic steady state 

*E . Since * * * *(S , I , R , C ) is an endemic steady state point 

of (1) we have  
* * *

n 1B I S S    ,            (14) 

*
1( ) S     ,             (15) 

*

*
I

( )
R


    ,              (16) 

*

*
R

C


  .                    (17) 

Computing the derivative of h h h hL(S , I , R , C ) along the 

solutions of system (1), we obtain  
' h h h hL (S , I , R , C )     

h * h h * h * h * h2(S S ) dS (I I ) dI R (R R ) dR
* h * hdt dt dt2S I I R

   
  


                    

   
C C dC

(1 )
dtR C

* * h

* h


 


                          

h * h *
h h h h h

n 1 1* h
(S S ) (I I )

(B I S S ) ( S I
S I

 
        

   
R (R R )

( ) I ) ( I ( )R )
I R

* h *
h h h

* h
 

         


 

    
C C C

( )( R C )
R C

* h *
h h

* h
 

   


 

h *
* * * h h h

1 1*
(S S )

( I S S I S S )
S


         

    
(I I )

( S I S I )
I

h *
h h * h

1 1h


    

    
R (R R ) I

( I R )
I R R

* h * *
h h

* h *
  

  


 

    
C C C R

( )( R C )
R C C

* h * *
h h

* h *
  

  


 

h *
h * h h * *

1*
(S S )

( (S S ) (I S I S ))
S


        

    
R R I

(I I )(S S ) (1 )( I R )
I R R

* * *
h * h * h h

1 * h *
 

      


 

    
C C R

(1 )( R C )
R C C

* * *
h h

* h *
 

   


.             (18) 

Notice that  

        h h * * * h * h h *S I S I S (I I ) I (S S )     .    (19) 

Then, we have  
' h h h hL (S , I , R , C )  

h *
h * * h * h h *

1 1*
(S S )

( (S S ) S (I I ) I (S S ))
S


         

    
R R I

(I I )(S S ) (1 )( I R )
I R R

* * *
h * h * h h

1 * h *
 

      


 

    
C C R

(1 )( R C )
R C C

* * *
h h

* h *
 

   

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h * 2 h h * h
h *

1* * * * h
(S S ) I R R I

( I ) R ( 1)
S I R I R


         

     
R C R C

C ( 1)
R C C R

h h h *
*

* * h *
     

h * 2 h h * h
h *

1* * * * h
(S S ) I R R I

( I ) R ( 1)
S I R I R


          

    
R C R C

C ( 1)
R C C R

h h h *
*

* * h *
      

h * 2 h * h h
h *

1* * * h *
(S S ) R R I I

( I ) R ( 1)
S R I R I


         

    
C R C R

C ( 1)
C C R R

h h * h
*

* h * *
     

h * 2
h

1*
(S S )

( I )
S


         

   
h * h h

0 * * h *
1

R R I I
( (R 1))( 1)

( ) R I R I


    

   
 

    
C R C R

( (R 1))( 1)
( ) C C R R

h h * h
0 * h * *1


    

   
 

h * 2
h

1*
(S S )

( I )
S


         

    
h * h

0 * * h
1

R R I
( (R 1))( )

( ) R I R


  

   
 

    
C R C

( (R 1))( )
( ) C C R

h h *
0 * h *1


  

   
 

    
h

1 n
*

1

B I
( 1)( 1)

( ) ( ) I

 
  

       
 

    
B R

( 1)( 1)
( ) ( ) R

h
1 n

*1


  

       
 

h * 2
h

1*
(S S )

( I )
S


         

    
h * h

0 * * h
1

R R I
( (R 1))( )

( ) R I R


  

   
 

    
C R C

( (R 1))( )
( ) C C R

h h *
0 * h *1


  

   
 

    
h *

*
1 n 2*1

I I
I ( B ( ))( )

( )( )
I

 
      
      

 

  
R R

R ( B ( ))( )
( )( )

R

h *
*

1 n 21 *

 
      
      

.(20) 

The fourth and fifth terms in (20) are always negative when 

R 10  . Therefore,  ' h h h hL (S , I , R , C ) 0 ,the endemic 

steady stable *E  is globally asymptotically stable in the 
interior of  .  

IV. CONCLUSION 

In this study, we prove the global stability of the 
mathematical model for Influenza Dynamics in the SIRC 
model. The quantity is called the basic reproductive number 
of the disease. It is the number of secondary cases generated 
from a single infective case introduced into a susceptible 
population. We prove that if the basic reproductive number 

0R is less than one or equal to unity, then the disease free 

steady state is globally asymptotically stable in Theorem 1. 
If 0R is greater than unity, unique endemic steady state 

exists and is globally asymptotically stable in Theorem 2. 
We construct Lyapunov functions for each steady state. The 
constructions are obtained by suitable combinations of well 
known Lyapunov functions.  
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