
 

 
Abstract— In this work, we developed an automatic decision 

support system to provide efficient customer assistance on E-
commerce websites. To provide the needed service, E-
commerce sites must identify "users in need." They must 
determine which users they can help among all the users on the 
site that will make them the most profit. These questions are 
complex and difficult to answer without a smart algorithm. 
The problem of choosing the potential customer most in need 
was aimed at answering the question "which users on the 
website will most benefit from assistance". To model and 
calculate a score and type of each visitor to the website, we 
proposed an approach using the influence (weight) of various 
parameters and calculated the final score of all potential users 
using the website. The problem is defined as handling online 
analysis of Big Data. 
 

Index Terms— Big Data, Decision Support Systems, 
Automated Customer Assistance 
 

I. INTRODUCTION 

ODAY, online customer service is an essential part of 
almost all internet shopping sites. Nevertheless, the 

number of users on these sites is usually much greater than 
the number of online representatives that can provide 
effective help and assist users with their buying experience. 
Many sites solve this shortage by creating a chat tool that 
replaces human representatives. Yet market research and 
consumer satisfaction parameters indicate that these chat 
tools are insufficient and can even be annoying. To provide 
the needed service, E-commerce sites must identify "users in 
need." They must determine which users they can help 
among all the users on the site that will make them the most 
profit. These questions are complex and difficult to answer 
without a smart algorithm. 

With the growth of online shopping, IBIS World research 
forecasts an increase in online revenues of 8.6% annually 
[1] over the next five years. This forecasted increase points 
to the need for an effective online customer service that can 
answer questions, present offers and provide satisfaction to 
online consumers to encourage them to come back and 
shop.  
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Some companies that provide online customer service 

claim that the number of shoppers (active users online every 
minute of the day) on one site alone ranges from 1000-2000 
users. The problem is that only a few representatives are 
available for online customer service on this site. Two types 
of online customer experiences can be provided. The 
implicit method provides an online help button that will 
access an online chat with a representative. After clicking 
on the button, customers will be able to start talking with a 
representative. The explicit method provides a popup 
window in the middle of the screen offering a sale or asking 
whether the customer needs help. 

The question is: Who will benefit most from receiving 
online customer service? In other words, what will lead 
customers to buy more? We need to analyze the information 
collected by the system to determine who the best candidate 
is. An example of the collected data of "one click 
information" for a single user is depicted in Figure 1. 

Let us suppose we gather this information over one 
month. Information is currently collected by site-
visit/redirection per user in JSON format of 2KB. A quick 
calculation indicates that the size of this information per 
month is: 2KB (information per click) * 1000 (no. of users 
on site) * 10 (no. of clicks/visits per min) * 43200 (no. of 
minutes in month)  = 823 GB of information per month. 
This amount of information will take a great deal of time to 
analyze with standard tools. Therefore, we need to examine 
Big Data solutions to solve problems of this nature [2,3]. 
Even if we analyze the relevant information and come to 
some conclusion, some behavioral search parameters change 
in real time, causing the “best customer” image to change 
and we need to analyze the information again [4]. In fact, it 
changes constantly while the site is running, so we need a 
real-time solution for this problem. The Model for 
Automated Customer assistance in E-Commerce Websites 
that we propose is generic and can be applied flexibly to 
different websites. During the development stage, several 
methodologies were examined, and results are detailed in 
the following section. 

II. BACKGROUND 

Big data processing systems are characterized by a large 
number of components [4,5] that must be processed. These 
components operate in parallel to run multiple instances of 
the same tasks in order to achieve the needed performance 
levels in applications characterized by huge amounts of 
data. The number of components depends on the dimension 
of the involved data, so that new resources (e.g., processing  
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Fig. 1.  Collected information per click 

 
or storage) are usually added as the working database 
grows. Reliable performance evaluation of these systems is 
crucial to enable administrators and developers to keep pace 
with data growth. Yet such evaluation is extremely difficult 
due to the intrinsic complexity of these architectures [6,7]. 
There are three main approaches for handling and analyzing 
big data: stream processing, batch processing and interactive 
analysis. To understand the architecture of big data, we first 
need to look at its fundamental programming model. Then 
we discuss two uses of the MapReduce model in batch 
processing and big data tools. Finally, we examine the 
stream processing solution.  

MapReduce is a programming model and an associated 
implementation for processing and generating large data 
sets. Users specify a map function that processes a 
key/value pair to generate a set of intermediate key/value 
pairs, and a reduce function merges all intermediate values 
associated with the same intermediate key. Many real world 
tasks are expressible in this model [8]. MapReduce involves 
two main programming stages: Mapping: In this stage, the 
original computational problem is taken by the master node 
and divided into smaller pieces. Every computational piece 
is then sent to different worker nodes called mappers. 
Reducing: In this stage, the output of every mapper node is 
collected and reassembled using the same key index for all 
the nodes. 
In many cases, we want to view and analyze the data we 
have collected. The data will be displayed in an interactive 
environment, and users will be able to choose how to 
interact with the data. The data can be reviewed, compared 
and analyzed in tabular or graphic format as needed. [9] 
Stream processing tools [10] were introduced to meet the 
need of analyzing large amounts of data (such as online 
customer service demands) in order to make decisions in 
real time. The difference between batch processing and 
stream processing is that in stream the data are analyzed 
before being stored. 

Storm [10,11] is a real time computation system for 
processing streaming data. Storm has many applications, 
such as real-time analytics and on-line machine learning. A 
storm cluster has three types of components: the master 

node that runs a daemon called Nimbus, Zookeeper nodes 
and worker nodes, which run a daemon called Supervisor. 
The Nimbus is the master node. Its job is to control the 
work across the cluster. It distributes code around the 
cluster, assigns tasks to machines and monitors the cluster 
for failure. The Zookeeper is responsible for coordinating 
between Nimbus and the Supervisors. In addition, all state 
information and configuration is kept in the ZooKeeper 
cluster, which makes the Nimbus and the Supervisor fail-
fast and very stable. The Supervisor receives instructions 
from the Nimbus, and starts and stops the worker processes 
as necessary. Each worker process is a physical JVM and 
executes a subset of all the tasks for the topology [12]. 

Data streams include all real time computations and are 
handled by topologies. A topology is a graph of 
computation that defines how to process the streaming data. 
The data in storm is also called a "tuple", while a sequence 
of tuples is called a stream. A topology graph consists of 
spouts and bolts. These spouts and bolts have the interface 
to implement application-specific logic [13. 

A spout is the source of a stream. It receives a sequence 
of tuples and sends it to every bolt that subscribes to that 
stream. A spout can be either reliable or unreliable. A 
reliable spout makes sure to resend a tuple (which is an 
ordered list of data items) if Storm fails to process it. An 
unreliable spout does not track the tuple once it is emitted.  

The bolts do the "real" work: They run functions, filter 
tuples, do streaming joints and aggregations and talk to the 
database. After the bolts have done their job on the stream, 
they send the stream data to the next bolts in their streaming 
procedure. Bolts can be defined in any language. Bolts 
written in another language are executed as sub processes, 
and Storm communicates with those sub processes using 
JSON messages over stdin/stdout [12,13]. 

A stream grouping defines how a stream should be 
partitioned among the bolt's tasks. Storm provides built-in 
stream groupings. Some examples used in our model are 
detailed:  

Shuffle grouping - Tuples are randomly distributed across 
the bolt's tasks such that each bolt is guaranteed to get an 
equal number of tuples. 

{"aac":1386748743275,"visitId":"b1bf4fe0644a41e4983b329e178118e4", "ip":"79.182.105.213 
","location":{"ipTo":1337393151,"ipFrom":1337342976,"countryCode":"IL" ,"continentCode" 
:"ME","continentName":"MIDDLEEAST","timeZone":"GMT+2","owner":"SE","cityName":"",
"countyName":"","latitude":31.428663,"longitude":35.288086,"regionCode":"","region":""} 
,"browser":"mozilla11.0","os":"Windows","flashPlayerVersion":"12.0.0","hasRequiredFlashPla
yerVersion":true,"javaVersion":"TBDfalsetrue","hasRequiredJavaVon":false,"protocol": 
"http:","host":"www.hbrtest3.com","currentPathname":{"memers":{"title":"Guy\u0027samazint
estsite", "url""/SWF/28/ GuyAmazingSite.html"}}  ,"currentQueryString":"","referrer":"" 
,"referrerType":"Direct",  "landingPage":  "http://www.hbrtest3.com\"/SWF/28 
/GuyAmazingSite.html\ "","onSiteSince":"Mar 11, 2014 8:1 AM", 
"lastIsAlive":"Mar11201411:20:16AM", 
"numberOfVisitedPages":1,"visitedPagesHistry":{"elements":[{"title":"Guy\u0027samazingtesit
e", "url": "/SWF/28/ GuyAmazingSite.html"}]},"usedVSBefore":false, "isFirstVisit":false 
,"numberOfVisitsInSite":5,"invited":false,"ignoredInvitaion":false,"invitingAgentAc":0,"score" 
:56,"status":1,"visitScoreCalcClass":"com.myexpert.util.DefaultVisitScorCalctor","disableMoni
toringKeepAlive":false,"isSupported":true,"isBrowserWebRTCSupported":false} 
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Fields grouping -The stream is partitioned by the fields 
specified in the grouping. For example, if the stream is 
grouped by the "user-id" field, tuples with the same "user-
id" will always go to the same task, but tuples with different 
"user-ids" may go to different tasks. 

All grouping - The stream is replicated across all the 
bolt's tasks.  

Global grouping - The entire stream goes to a single one 
of the bolt's tasks, specifically the one with the lowest id. 

None grouping - This grouping specifies that it does not 
matter how the stream is grouped. Currently, none 
groupings are equivalent to shuffle groupings. Eventually, 
though, Storm will push down bolts with none groupings to 
be executed in the same thread as the bolt or spout they 
subscribe from (when possible). 

Direct grouping - A stream grouped this way means that 
the producer of the tuple decides which consumer task will 
receive this tuple. Direct groupings can only be declared on 
streams that have been declared as direct streams. 

Storm guarantees that every spout tuple will be fully 
processed by the topology. It does this by tracking the tree 
of tuples triggered by every spout tuple and determining 
when that tree of tuples has been successfully completed. 
Every topology has a "message timeout" associated with it. 
If Storm fails to detect that a spout tuple has been completed 
within that timeout, then it fails the tuple and replays it later 
[12]. 

Our automatic decision algorithm uses a wide range of 
patterns provided by the Storm platform. The following are 
commonly used:  

Streaming joins - A streaming join combines two or more 
data streams together based on some common field. 
Whereas a normal database join has finite input and clear 
semantics for a join, a streaming join has infinite input and 
unclear semantics for what a join should be. 

Batching - Often for reasons of efficiency or otherwise, 
we would like to process a group of tuples in batch rather 
than individually.  

BasicBolt - Many bolts follow a similar pattern of reading 
an input tuple, emitting zero or more tuples based on that 
input tuple, and then passing that input tuple immediately at 
the end of the execute method. Among the bolts that match 
this pattern are functions and filters.  

In-memory caching + fields grouping combo – It is 
common to keep caches in-memory in Storm bolts. Caching 
becomes particularly powerful when combined with a fields 
grouping. For example, suppose you have a bolt that 
expands short URLs (like bit.ly, t.co, etc.) into long URLs. 
Performance can be increased by keeping an LRU cache of 
short URL to long URL expansions to avoid doing the same 
HTTP requests repeatedly. Component "urls" emit short 
URLS, and component "expands" expand short URLs into 
long URLs and keep an internal cache [13]. 

 
III. PROPOSED APPROACH 

In attempting to answer the questions of who will benefit 
most from receiving online customer service and what 
will lead customers to buy more, we have defined the 
following model based on the  following  performance 
measures: 

Ability to filter the incoming information and exclude 
irrelevant information. 
• Handle large amount of information per second 

(throughput). 
• A programmable system.  
• A scalable system - can be migrated into large sites as 

well as small ones. 
 
The proposed algorithm and model will determine who in 

the online shop needs help by examining each visitor and 
analyzing its behavior on the website, just like an assistant 
in a regular shop. The algorithm takes as input the user's 
current activity (page click, page idle, site search, etc.) and 
compares this to the overall site activity during the last 
minute. The algorithm returns two pieces of information: the 
weight (the probability of the current customer to get 
customer assistance) and the reason this customer needs 
help. Figure 2 provides a graphic representation of the 
model.  

 
 
 

  
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.  Graphic representation of the data flow 

 
The data flow depicted in Figure 2 is passed and analyzed 

in six stages, as indicated by numbers 1-6, in Figure 2. The 
output of the algorithm is a weighted factor, which is used 
to solve the problem of to whom to provide the best 
customer assistance. The stages are detailed as follows: 
1. Data from customers browsing the site is collected at each 

interaction. 
2. Data is collected, sent to a server and received by the 

Storm spout. 
3. The spout sends the JSON data to the filter bolt for 

further analysis. 
4. The filter bolt filters “unnecessary” data and sends it a 

Visit class to the update bolt. 
5. The weight bolt uses a function that will assign each 

“parameter” a “weight” (to indicate the importance of 
that parameter) to prioritize the customers. 

6. After all the calculations are made, the bolt sends the user 
id and the “weight” to the customer service priority table. 
 
Recognition of customer type is an important stage in the 

model. Recognizing an unsure user may be the critical point 
in an automated system to decide between assisting and not 
assisting the user. Therefore, we defined four groups of 
different customer types or different stages in time for a 
specific customer, both based on search time and 
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"behavior". These groups must be assigned in the first 
minute of the user in the web site, and are as follows: 
 
NEW – This is probably a new visitor. At this point, we 
should probably not popup our chat but instead let the 
visitor browse the website for a while. 
SEARCH – This is probably a visitor that is searching for 
something specific. In that case we can offer help in finding 
it:  “Hello, can I help you find what you are looking for?” 
UNSURE – This visitor is probably looking at one or two 
specific items and cannot decide which one to take, so we 
should help him accordingly: “Hello, can I help you with 
‘product name’?” 
NORMAL – This option applies for those who are not new 
visitors but do not fall into one of the above categories. We 
should offer him help by saying: “Hello, can I help you?” 
REDIRECTED – A visitor is redirected if the shop owner 
wants to set up a special chat help for specific people that 
were redirected from a specific page or add: “Chat with 

David to get a special offer?” 
The Calculate Score algorithm is detailed in Figure 3. The 

algorithm uses the data visited by the user as input and 
returns as output the score of the visitor (number between 0 
and 100) and the visitor type. 
 
Rows 1-10: If the user is on the site less than one minute, 
the user type is set to “NEW” and the user scores will 
remain zero until the user remains on the site more than one 
minute. Otherwise, if the user is not a new user (more than 
one minute on the site), the algorithm checks how the user 
got to the site. If the user was redirected from a special link 
(as decided by the site owner), the user is assigned a score 
bonus of 15 points to the total score, and “REDIRECTED” 
is added to the type string. 
 

.

Algorithm:  CALCULATE SCORE 

Input: VisitData  
Output: The score of the visitor (number between 0 and 100), Visitor type (combination of the above types) 

1: visitorScore  0 
2: visitorType  “”  
3: If timeVisitorInWebsite < 1 Min then 
4:     visitorType = NEW 
5: else if timeVisitorInWebsite > 1 Min then 
6:     if isImportantURL(redirectedFromURL) then 
7:         visitorScore = visitorScore + 15 
8:         visitorType += REDIRECTED 
9:     end if 

10:     if numberPagesVisited < getAverageOfEven  tsIn1MinOnTheSite(siteId) then 
11:         visitorScore += normlizeToPercent(numberPagesVisited,40)  
12:     else if  numberPagesVisited > getAvarageOfEventsIn1MinOnTheSite(siteId) then 
13:         visitorScore += normlizeToPercent(numberPagesVisited,50); 
14:         visitorType +=SEARCH 
15:     else if  the visitor used search on site more than the average person then 
16:  visitorScore += normlizeToPercent   (number of times usedsearch,50) 
17:   visitorType+=SEARCH 
18:      else if  the visitor is in the same page >= 60 seconds then 
19:  visitorScore += normlizeToPer cent (number_pages_visited, 50); 
20:   visitorType +=UNSURE 
21:      end if 
22:     if the visitor used chat before then 
23:   visitorScore += normlizeToPercent(number of times the visitor used the chat,20) 
24:     else if  the visitor declined to chat before then 
25:   visitorScore -= normlizeToPercent(number of times the visitor declined chat,20) 
26:     end if 
27:     preferredLocation = location decided by the site owner to prefer visitors from that     area 
28:     if the visitor is from preferredLocation then 
29:   visitorScore = visitorScore + 15 
30:     end if 
31: end if 
32: output = visitorScore; 

 
Fig. 3.  Calculate Score Algorithm 
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Rows 15-18: If the user used the search more than the 
average number of search queries in one minute, the number 
of the user’s queries will affect the user score by increasing 
it by 50% of the total score, and the user type string is 
updated with “SEARCH” 

Rows 18-21: Else, if the visitor stays on the same page 
more than 60 seconds, then  

Rows 22-26: If the user used that chat before, the number 
of chat uses affects the total score by increasing it by 20%. 

Rows 28-30: If the user came from a preferred location, 
the user gets a 15% bonus. 
For each case the algorithm adds to the total score starting 
from 0 up to 100 by using a function called 
NormalizeToPercent 
Once the data has been analyzed and the user is offered 
help, the system provides assistance as depicted in Figure 5. 
The result is two records. One is on the console containing 
the scores and information of the user being helped by the 
automated system, and the other is the output of the 
resulting GUI on the web site. 

IV. SIMULATIONS AND RESULTS 

After running the system on the website or on a 
simulation process for a certain amount of time, we expect 
to see that  

users who most need help and have problems finding 
what they are looking for on the website will get higher 
scores and will receive chat support faster. 

Figures 5 and 6 depict the simulation of running the 
system for 78 and 108 seconds respectively.  

The main window includes three parts: the upper sub-
window displaying the online customers and their IDs 
(assigned by the system), the user type (processed by the 
information retrieval process) followed by the score 

(calculated by the algorithm).  
In the lower part of the window, the log displays the events 
as well as exceptions in the process. The right panel 
displays the average values (AVG), the average number of 
page visits and the number of searches performed in a given 
time as calculated each minute. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4. Resulting output on the console and on the website. 

 
In Figure 5 some users are new, indicating they have been 

in the system for less than a minute and not redirected from 
any other website. The algorithm calculates 0.0 score not 
offering any of the users any assistance. The simulation 
window also indicates the time the visitor is on the web 
page and the number of pages the user visited. Figure 5 
depicts the state of the simulation after 78 seconds. The 
figure shows that the scores are calculated for each visitor 
and a type is assigned to it. A snapshot of system simulation 
at 105 seconds (Figure 6) shows more relevant results for 
decision making. We see that user d has better score than 
user a and therefore has a better chance of being 
automatically chosen to be offered assistance. 

 

 
 

Fig. 5. Running the simulation for example for 78 seconds. 
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Fig.6. Running the simulation for 105 seconds 
 

 

V. CONCLUSION 

An automatic decision support system to provide efficient 
customer assistance on E-commerce websites was 
developed. The problem of choosing the potential customer 
most in need is aimed at answering the question "which 
users on the website will most benefit from assistance". To 
model and calculate a score and type of each visitor to the 
website we proposed an approach using the influence 
(weight) of various parameters, and calculated the final 
score of all potential users using the website.  

The problem is defined as handling online analysis of Big 
Data. The platform we chose to run our algorithm, Apache 
Storm, was efficient in running the algorithm on a very 
large number of inputs in real time. The algorithm was 
tested on separate log files that were pre-generated to test all 
the algorithm options and in real time websites. In our work 
the algorithm calculates the visitor score while considering 
the average visitor activity on the site.  

It should be noted that visitor behavior on a website can 
differ from different websites. These differences can emerge 
from the website structure and the visitor himself, our model 
and algorithm are designed in a generic manner that can be 
adapted and modified to the needs of various demands and 
websites. 
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