

Abstract— In this work, we developed an automatic decision

support system to provide efficient customer assistance on E-
commerce websites. To provide the needed service, E-
commerce sites must identify "users in need." They must
determine which users they can help among all the users on the
site that will make them the most profit. These questions are
complex and difficult to answer without a smart algorithm.
The problem of choosing the potential customer most in need
was aimed at answering the question "which users on the
website will most benefit from assistance". To model and
calculate a score and type of each visitor to the website, we
proposed an approach using the influence (weight) of various
parameters and calculated the final score of all potential users
using the website. The problem is defined as handling online
analysis of Big Data.

Index Terms— Big Data, Decision Support Systems,
Automated Customer Assistance

I. INTRODUCTION

ODAY, online customer service is an essential part of
almost all internet shopping sites. Nevertheless, the

number of users on these sites is usually much greater than
the number of online representatives that can provide
effective help and assist users with their buying experience.
Many sites solve this shortage by creating a chat tool that
replaces human representatives. Yet market research and
consumer satisfaction parameters indicate that these chat
tools are insufficient and can even be annoying. To provide
the needed service, E-commerce sites must identify "users in
need." They must determine which users they can help
among all the users on the site that will make them the most
profit. These questions are complex and difficult to answer
without a smart algorithm.

With the growth of online shopping, IBIS World research
forecasts an increase in online revenues of 8.6% annually
[1] over the next five years. This forecasted increase points
to the need for an effective online customer service that can
answer questions, present offers and provide satisfaction to
online consumers to encourage them to come back and
shop.

Manuscript received March 15, 2016.
Miri Weiss Cohen (corresponding author) is with the Software

Engineering Department, Braude Academic College of Engineering,
Karmiel Israel (phone: 972-4-9901758; fax: 972-4-9901852; e-mail:
miri@braude.ac.il).

Yevgeni Kabishcher is with the Software Engineering Department,
,Braude Karmiel Israel (e-mail: yevgeni.kabishcher@gmail.com).

Pavel Krivosheev is with the Software Engineering Department,,Braude
Academic College of Engineering, Karmiel Israel (e-mail:
pavel88@gmail.com).

Some companies that provide online customer service

claim that the number of shoppers (active users online every
minute of the day) on one site alone ranges from 1000-2000
users. The problem is that only a few representatives are
available for online customer service on this site. Two types
of online customer experiences can be provided. The
implicit method provides an online help button that will
access an online chat with a representative. After clicking
on the button, customers will be able to start talking with a
representative. The explicit method provides a popup
window in the middle of the screen offering a sale or asking
whether the customer needs help.

The question is: Who will benefit most from receiving
online customer service? In other words, what will lead
customers to buy more? We need to analyze the information
collected by the system to determine who the best candidate
is. An example of the collected data of "one click
information" for a single user is depicted in Figure 1.

Let us suppose we gather this information over one
month. Information is currently collected by site-
visit/redirection per user in JSON format of 2KB. A quick
calculation indicates that the size of this information per
month is: 2KB (information per click) * 1000 (no. of users
on site) * 10 (no. of clicks/visits per min) * 43200 (no. of
minutes in month) = 823 GB of information per month.
This amount of information will take a great deal of time to
analyze with standard tools. Therefore, we need to examine
Big Data solutions to solve problems of this nature [2,3].
Even if we analyze the relevant information and come to
some conclusion, some behavioral search parameters change
in real time, causing the “best customer” image to change
and we need to analyze the information again [4]. In fact, it
changes constantly while the site is running, so we need a
real-time solution for this problem. The Model for
Automated Customer assistance in E-Commerce Websites
that we propose is generic and can be applied flexibly to
different websites. During the development stage, several
methodologies were examined, and results are detailed in
the following section.

II. BACKGROUND

Big data processing systems are characterized by a large
number of components [4,5] that must be processed. These
components operate in parallel to run multiple instances of
the same tasks in order to achieve the needed performance
levels in applications characterized by huge amounts of
data. The number of components depends on the dimension
of the involved data, so that new resources (e.g., processing

A Decision Support System for Automated
Customer Assistance in E-Commerce Websites

Miri Weiss Cohen, Yevgeni Kabishcher, and Pavel Krivosheev

T

Proceedings of the World Congress on Engineering 2016 Vol II
WCE 2016, June 29 - July 1, 2016, London, U.K.

ISBN: 978-988-14048-0-0
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2016

Fig. 1. Collected information per click

or storage) are usually added as the working database
grows. Reliable performance evaluation of these systems is
crucial to enable administrators and developers to keep pace
with data growth. Yet such evaluation is extremely difficult
due to the intrinsic complexity of these architectures [6,7].
There are three main approaches for handling and analyzing
big data: stream processing, batch processing and interactive
analysis. To understand the architecture of big data, we first
need to look at its fundamental programming model. Then
we discuss two uses of the MapReduce model in batch
processing and big data tools. Finally, we examine the
stream processing solution.

MapReduce is a programming model and an associated
implementation for processing and generating large data
sets. Users specify a map function that processes a
key/value pair to generate a set of intermediate key/value
pairs, and a reduce function merges all intermediate values
associated with the same intermediate key. Many real world
tasks are expressible in this model [8]. MapReduce involves
two main programming stages: Mapping: In this stage, the
original computational problem is taken by the master node
and divided into smaller pieces. Every computational piece
is then sent to different worker nodes called mappers.
Reducing: In this stage, the output of every mapper node is
collected and reassembled using the same key index for all
the nodes.
In many cases, we want to view and analyze the data we
have collected. The data will be displayed in an interactive
environment, and users will be able to choose how to
interact with the data. The data can be reviewed, compared
and analyzed in tabular or graphic format as needed. [9]
Stream processing tools [10] were introduced to meet the
need of analyzing large amounts of data (such as online
customer service demands) in order to make decisions in
real time. The difference between batch processing and
stream processing is that in stream the data are analyzed
before being stored.

Storm [10,11] is a real time computation system for
processing streaming data. Storm has many applications,
such as real-time analytics and on-line machine learning. A
storm cluster has three types of components: the master

node that runs a daemon called Nimbus, Zookeeper nodes
and worker nodes, which run a daemon called Supervisor.
The Nimbus is the master node. Its job is to control the
work across the cluster. It distributes code around the
cluster, assigns tasks to machines and monitors the cluster
for failure. The Zookeeper is responsible for coordinating
between Nimbus and the Supervisors. In addition, all state
information and configuration is kept in the ZooKeeper
cluster, which makes the Nimbus and the Supervisor fail-
fast and very stable. The Supervisor receives instructions
from the Nimbus, and starts and stops the worker processes
as necessary. Each worker process is a physical JVM and
executes a subset of all the tasks for the topology [12].

Data streams include all real time computations and are
handled by topologies. A topology is a graph of
computation that defines how to process the streaming data.
The data in storm is also called a "tuple", while a sequence
of tuples is called a stream. A topology graph consists of
spouts and bolts. These spouts and bolts have the interface
to implement application-specific logic [13.

A spout is the source of a stream. It receives a sequence
of tuples and sends it to every bolt that subscribes to that
stream. A spout can be either reliable or unreliable. A
reliable spout makes sure to resend a tuple (which is an
ordered list of data items) if Storm fails to process it. An
unreliable spout does not track the tuple once it is emitted.

The bolts do the "real" work: They run functions, filter
tuples, do streaming joints and aggregations and talk to the
database. After the bolts have done their job on the stream,
they send the stream data to the next bolts in their streaming
procedure. Bolts can be defined in any language. Bolts
written in another language are executed as sub processes,
and Storm communicates with those sub processes using
JSON messages over stdin/stdout [12,13].

A stream grouping defines how a stream should be
partitioned among the bolt's tasks. Storm provides built-in
stream groupings. Some examples used in our model are
detailed:

Shuffle grouping - Tuples are randomly distributed across
the bolt's tasks such that each bolt is guaranteed to get an
equal number of tuples.

{"aac":1386748743275,"visitId":"b1bf4fe0644a41e4983b329e178118e4", "ip":"79.182.105.213
","location":{"ipTo":1337393151,"ipFrom":1337342976,"countryCode":"IL" ,"continentCode"
:"ME","continentName":"MIDDLEEAST","timeZone":"GMT+2","owner":"SE","cityName":"",
"countyName":"","latitude":31.428663,"longitude":35.288086,"regionCode":"","region":""}
,"browser":"mozilla11.0","os":"Windows","flashPlayerVersion":"12.0.0","hasRequiredFlashPla
yerVersion":true,"javaVersion":"TBDfalsetrue","hasRequiredJavaVon":false,"protocol":
"http:","host":"www.hbrtest3.com","currentPathname":{"memers":{"title":"Guy\u0027samazint
estsite", "url""/SWF/28/ GuyAmazingSite.html"}} ,"currentQueryString":"","referrer":""
,"referrerType":"Direct", "landingPage": "http://www.hbrtest3.com\"/SWF/28
/GuyAmazingSite.html\ "","onSiteSince":"Mar 11, 2014 8:1 AM",
"lastIsAlive":"Mar11201411:20:16AM",
"numberOfVisitedPages":1,"visitedPagesHistry":{"elements":[{"title":"Guy\u0027samazingtesit
e", "url": "/SWF/28/ GuyAmazingSite.html"}]},"usedVSBefore":false, "isFirstVisit":false
,"numberOfVisitsInSite":5,"invited":false,"ignoredInvitaion":false,"invitingAgentAc":0,"score"
:56,"status":1,"visitScoreCalcClass":"com.myexpert.util.DefaultVisitScorCalctor","disableMoni
toringKeepAlive":false,"isSupported":true,"isBrowserWebRTCSupported":false}

Proceedings of the World Congress on Engineering 2016 Vol II
WCE 2016, June 29 - July 1, 2016, London, U.K.

ISBN: 978-988-14048-0-0
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2016

Fields grouping -The stream is partitioned by the fields
specified in the grouping. For example, if the stream is
grouped by the "user-id" field, tuples with the same "user-
id" will always go to the same task, but tuples with different
"user-ids" may go to different tasks.

All grouping - The stream is replicated across all the
bolt's tasks.

Global grouping - The entire stream goes to a single one
of the bolt's tasks, specifically the one with the lowest id.

None grouping - This grouping specifies that it does not
matter how the stream is grouped. Currently, none
groupings are equivalent to shuffle groupings. Eventually,
though, Storm will push down bolts with none groupings to
be executed in the same thread as the bolt or spout they
subscribe from (when possible).

Direct grouping - A stream grouped this way means that
the producer of the tuple decides which consumer task will
receive this tuple. Direct groupings can only be declared on
streams that have been declared as direct streams.

Storm guarantees that every spout tuple will be fully
processed by the topology. It does this by tracking the tree
of tuples triggered by every spout tuple and determining
when that tree of tuples has been successfully completed.
Every topology has a "message timeout" associated with it.
If Storm fails to detect that a spout tuple has been completed
within that timeout, then it fails the tuple and replays it later
[12].

Our automatic decision algorithm uses a wide range of
patterns provided by the Storm platform. The following are
commonly used:

Streaming joins - A streaming join combines two or more
data streams together based on some common field.
Whereas a normal database join has finite input and clear
semantics for a join, a streaming join has infinite input and
unclear semantics for what a join should be.

Batching - Often for reasons of efficiency or otherwise,
we would like to process a group of tuples in batch rather
than individually.

BasicBolt - Many bolts follow a similar pattern of reading
an input tuple, emitting zero or more tuples based on that
input tuple, and then passing that input tuple immediately at
the end of the execute method. Among the bolts that match
this pattern are functions and filters.

In-memory caching + fields grouping combo – It is
common to keep caches in-memory in Storm bolts. Caching
becomes particularly powerful when combined with a fields
grouping. For example, suppose you have a bolt that
expands short URLs (like bit.ly, t.co, etc.) into long URLs.
Performance can be increased by keeping an LRU cache of
short URL to long URL expansions to avoid doing the same
HTTP requests repeatedly. Component "urls" emit short
URLS, and component "expands" expand short URLs into
long URLs and keep an internal cache [13].

III. PROPOSED APPROACH

In attempting to answer the questions of who will benefit
most from receiving online customer service and what
will lead customers to buy more, we have defined the
following model based on the following performance
measures:

Ability to filter the incoming information and exclude
irrelevant information.
• Handle large amount of information per second

(throughput).
• A programmable system.
• A scalable system - can be migrated into large sites as

well as small ones.

The proposed algorithm and model will determine who in

the online shop needs help by examining each visitor and
analyzing its behavior on the website, just like an assistant
in a regular shop. The algorithm takes as input the user's
current activity (page click, page idle, site search, etc.) and
compares this to the overall site activity during the last
minute. The algorithm returns two pieces of information: the
weight (the probability of the current customer to get
customer assistance) and the reason this customer needs
help. Figure 2 provides a graphic representation of the
model.

Fig. 2. Graphic representation of the data flow

The data flow depicted in Figure 2 is passed and analyzed

in six stages, as indicated by numbers 1-6, in Figure 2. The
output of the algorithm is a weighted factor, which is used
to solve the problem of to whom to provide the best
customer assistance. The stages are detailed as follows:
1. Data from customers browsing the site is collected at each

interaction.
2. Data is collected, sent to a server and received by the

Storm spout.
3. The spout sends the JSON data to the filter bolt for

further analysis.
4. The filter bolt filters “unnecessary” data and sends it a

Visit class to the update bolt.
5. The weight bolt uses a function that will assign each

“parameter” a “weight” (to indicate the importance of
that parameter) to prioritize the customers.

6. After all the calculations are made, the bolt sends the user
id and the “weight” to the customer service priority table.

Recognition of customer type is an important stage in the

model. Recognizing an unsure user may be the critical point
in an automated system to decide between assisting and not
assisting the user. Therefore, we defined four groups of
different customer types or different stages in time for a
specific customer, both based on search time and

Proceedings of the World Congress on Engineering 2016 Vol II
WCE 2016, June 29 - July 1, 2016, London, U.K.

ISBN: 978-988-14048-0-0
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2016

"behavior". These groups must be assigned in the first
minute of the user in the web site, and are as follows:

NEW – This is probably a new visitor. At this point, we
should probably not popup our chat but instead let the
visitor browse the website for a while.
SEARCH – This is probably a visitor that is searching for
something specific. In that case we can offer help in finding
it: “Hello, can I help you find what you are looking for?”
UNSURE – This visitor is probably looking at one or two
specific items and cannot decide which one to take, so we
should help him accordingly: “Hello, can I help you with
‘product name’?”
NORMAL – This option applies for those who are not new
visitors but do not fall into one of the above categories. We
should offer him help by saying: “Hello, can I help you?”
REDIRECTED – A visitor is redirected if the shop owner
wants to set up a special chat help for specific people that
were redirected from a specific page or add: “Chat with

David to get a special offer?”
The Calculate Score algorithm is detailed in Figure 3. The

algorithm uses the data visited by the user as input and
returns as output the score of the visitor (number between 0
and 100) and the visitor type.

Rows 1-10: If the user is on the site less than one minute,
the user type is set to “NEW” and the user scores will
remain zero until the user remains on the site more than one
minute. Otherwise, if the user is not a new user (more than
one minute on the site), the algorithm checks how the user
got to the site. If the user was redirected from a special link
(as decided by the site owner), the user is assigned a score
bonus of 15 points to the total score, and “REDIRECTED”
is added to the type string.

.

Algorithm: CALCULATE SCORE

Input: VisitData
Output: The score of the visitor (number between 0 and 100), Visitor type (combination of the above types)

1: visitorScore 0
2: visitorType “”
3: If timeVisitorInWebsite < 1 Min then
4: visitorType = NEW
5: else if timeVisitorInWebsite > 1 Min then
6: if isImportantURL(redirectedFromURL) then
7: visitorScore = visitorScore + 15
8: visitorType += REDIRECTED
9: end if

10: if numberPagesVisited < getAverageOfEven tsIn1MinOnTheSite(siteId) then
11: visitorScore += normlizeToPercent(numberPagesVisited,40)
12: else if numberPagesVisited > getAvarageOfEventsIn1MinOnTheSite(siteId) then
13: visitorScore += normlizeToPercent(numberPagesVisited,50);
14: visitorType +=SEARCH
15: else if the visitor used search on site more than the average person then
16: visitorScore += normlizeToPercent (number of times usedsearch,50)
17: visitorType+=SEARCH
18: else if the visitor is in the same page >= 60 seconds then
19: visitorScore += normlizeToPer cent (number_pages_visited, 50);
20: visitorType +=UNSURE
21: end if
22: if the visitor used chat before then
23: visitorScore += normlizeToPercent(number of times the visitor used the chat,20)
24: else if the visitor declined to chat before then
25: visitorScore -= normlizeToPercent(number of times the visitor declined chat,20)
26: end if
27: preferredLocation = location decided by the site owner to prefer visitors from that area
28: if the visitor is from preferredLocation then
29: visitorScore = visitorScore + 15
30: end if
31: end if
32: output = visitorScore;

Fig. 3. Calculate Score Algorithm

Proceedings of the World Congress on Engineering 2016 Vol II
WCE 2016, June 29 - July 1, 2016, London, U.K.

ISBN: 978-988-14048-0-0
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2016

Rows 15-18: If the user used the search more than the
average number of search queries in one minute, the number
of the user’s queries will affect the user score by increasing
it by 50% of the total score, and the user type string is
updated with “SEARCH”

Rows 18-21: Else, if the visitor stays on the same page
more than 60 seconds, then

Rows 22-26: If the user used that chat before, the number
of chat uses affects the total score by increasing it by 20%.

Rows 28-30: If the user came from a preferred location,
the user gets a 15% bonus.
For each case the algorithm adds to the total score starting
from 0 up to 100 by using a function called
NormalizeToPercent
Once the data has been analyzed and the user is offered
help, the system provides assistance as depicted in Figure 5.
The result is two records. One is on the console containing
the scores and information of the user being helped by the
automated system, and the other is the output of the
resulting GUI on the web site.

IV. SIMULATIONS AND RESULTS

After running the system on the website or on a
simulation process for a certain amount of time, we expect
to see that

users who most need help and have problems finding
what they are looking for on the website will get higher
scores and will receive chat support faster.

Figures 5 and 6 depict the simulation of running the
system for 78 and 108 seconds respectively.

The main window includes three parts: the upper sub-
window displaying the online customers and their IDs
(assigned by the system), the user type (processed by the
information retrieval process) followed by the score

(calculated by the algorithm).
In the lower part of the window, the log displays the events
as well as exceptions in the process. The right panel
displays the average values (AVG), the average number of
page visits and the number of searches performed in a given
time as calculated each minute.

Fig. 4. Resulting output on the console and on the website.

In Figure 5 some users are new, indicating they have been

in the system for less than a minute and not redirected from
any other website. The algorithm calculates 0.0 score not
offering any of the users any assistance. The simulation
window also indicates the time the visitor is on the web
page and the number of pages the user visited. Figure 5
depicts the state of the simulation after 78 seconds. The
figure shows that the scores are calculated for each visitor
and a type is assigned to it. A snapshot of system simulation
at 105 seconds (Figure 6) shows more relevant results for
decision making. We see that user d has better score than
user a and therefore has a better chance of being
automatically chosen to be offered assistance.

Fig. 5. Running the simulation for example for 78 seconds.

Proceedings of the World Congress on Engineering 2016 Vol II
WCE 2016, June 29 - July 1, 2016, London, U.K.

ISBN: 978-988-14048-0-0
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2016

Fig.6. Running the simulation for 105 seconds

V. CONCLUSION

An automatic decision support system to provide efficient
customer assistance on E-commerce websites was
developed. The problem of choosing the potential customer
most in need is aimed at answering the question "which
users on the website will most benefit from assistance". To
model and calculate a score and type of each visitor to the
website we proposed an approach using the influence
(weight) of various parameters, and calculated the final
score of all potential users using the website.

The problem is defined as handling online analysis of Big
Data. The platform we chose to run our algorithm, Apache
Storm, was efficient in running the algorithm on a very
large number of inputs in real time. The algorithm was
tested on separate log files that were pre-generated to test all
the algorithm options and in real time websites. In our work
the algorithm calculates the visitor score while considering
the average visitor activity on the site.

It should be noted that visitor behavior on a website can
differ from different websites. These differences can emerge
from the website structure and the visitor himself, our model
and algorithm are designed in a generic manner that can be
adapted and modified to the needs of various demands and
websites.

REFERENCES
[1] Ibis Report Industry https://www.ibisworld.com/industry/home.aspx
[2] S. Cai, M. Jun, "Internet users' perceptions of online service quality: a

comparison of online buyers and information searchers," Managing
Service Quality, 13.6:504-519, 2003.

[3] R. M. Chang, R. J. Kauffman, Y. O. Kwon, "Understanding the
paradigm shift to computational social science in the presence of big

[4] data," Decision Support Systems, 63, 67–80, 2014.
http://dx.doi.org/10.1016/j.dss.2013.08.00

[5] C. L. P. Chen, C-Y. Zhang, "Data-intensive applications, challenges,
techniques and technologies: A survey on Big Data," Information
Sciences, 275, 314–347, 2014. dx.doi.org/10.1016/j.ins.2014.01.015.

[6] A. Castiglione, M. Gribaudo, M. Iacono, F. Palmieri, "Exploiting
mean field analysis to model performances of big data architectures,"
37, 203–211, 2014. http://dx.doi.org/10.1016/j.future.2013.07.016

[7] T. H. Davenport, P. Barth, R. Bean, "How 'Big Data' Is Different,"
MIT Sloan Management Review, Fall 2012.
http://sloanreview.mit.edu/article/how-big-data-is-different

[8] H. C. Chen, R. H. L. Chiang, V. C. Storey, "Business intelligence and
analytics: from big data to big impact," MIS Quarterly. 36 (4), 1165–
1188, 2012.

[9] C. White, Using big data for smarter decision making, IBM:
Yorktown Heights, NY, 2011.

[10] IBM Map reduce - Official Website:
http://www.ibm.com/analytics/us/en/technology/hadoop/

[11] P. Zikopoulos, C. Eaton, Understanding Big Data: Analytics for
Enterprise Class Hadoop and Streaming Data (1st ed.), McGraw-Hill
Osborne Media, 2011.

[12] P. Giacomelli, Apache Mahout cook book. Princeton, 2013),
https://www.princeton.edu/~achaney/tmve/wiki100k/docs/Naive_Bay
es_classifier.html

[13] Hadoop - Official Website, http://hortonworks.com/hadoop/storm/
[14] Apache storm tutorial,

http://storm.incubator.apache.org/documentation/Tutorial.html

Proceedings of the World Congress on Engineering 2016 Vol II
WCE 2016, June 29 - July 1, 2016, London, U.K.

ISBN: 978-988-14048-0-0
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2016

