
 

 

 

Abstract — The stability of perforated plates with an in-plane 

pre-load at central circular opening were studied. Parametric 

investigations were conducted by varying the diameter of opening 

and the magnitude of in-plane force. The effect of aspect ratio 

(edge-length to thickness) was examined. Three sets of numerical 

models were prepared. First, the plate structures without any 

openings (pristine) were simulated for critical buckling loads. 

Results were verified with theoretical closed form solutions. 

Second, circular openings were introduced on the same models 

and simulations were repeated. Finally, all models were 

simulated with in-plane pre-loads at cutouts. Plots representing 

Eigen values versus plate slenderness ratio were presented. 

Critical stresses for stability were calculated in relation to 

applied in-plane load at cutouts. Finally, a design equation for 

critical stress values was developed for a perforated plate.  

 
Keywords—Buckling, Perforated plate, ABAQUS, Simply 

supported, 316L. 

 

Notation: 

 

FE —Finite Element 

LPS — Local Positioning System 

SEL — Shell Edge Load 

𝜎𝑐𝑟  — Critical stress for instability 

𝜎𝑐𝑟
𝑝

— Critical stress for instability with pre-load 

𝜎𝑥  — Normal stress parallel to 𝑥 axis 

𝑝𝑥  — Distributed load parallel to 𝑥 axis 

𝐸 — Elastic Modulus 

𝜗 — Poisson’s ratio 

𝑡 — Thickness of plate 

𝐾 — Plate buckling coefficient 

𝐶 — Plate buckling coefficient for a perforated plate 

𝑏 — Width of plate 

𝑎 — Length of plate 

𝜑 — Aspect ratio of plate (𝑎 𝑏 ) 

𝑆 — Slenderness ratio of plate (𝑎 𝑡 ) 

𝑚 — Number of Half-waves 

𝑝𝑐𝑟  — Critical unit compressive force 

𝑑 — Diameter of circular opening 

𝑝𝑎  — Total force applied 

𝐴𝑠𝑒𝑙  — Applied Shell Edge Load 

𝑓 — Multiplication factor 
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I. INTRODUCTION 

The stability of structures is an important area in civil, 

mechanical, marine, aerospace and many other fields of 

engineering. Therefore structural stability problems can 

manifest in a myriad of ways. The field of solid mechanics 

examines many classic problems on stability criterion, and 

there is an extensive literature available on fundamental 

problems in applied mechanics [1], [2]. However, solutions to 

problems with varying boundary conditions and various 

possibilities of loads is a challenge, where there are many gaps 

in knowledge. There are many facets to engineering problems 

that require further study; one such area is in multi-loading 

scenerios involving perforated plates. In this paper, a plate 

without any cutout and with a cutout will be referred to as 

pristine and perforated.  

 

Most published information is largely on pristine plates, 

whereas perforated plates are still an area requiring further 

research, especially under complex loading scenerios. Most 

literature on perforated plates pertain to loads subjected to 

pure uniaxial, biaxial or shear loading ([3]-[4]). However, 

problems involving how pre-loads on a centrally located 

opening affect stability have not been given thorough attention 

which the current investigations focus upon. The critical load 

under edge compression is computed for specific dimensions 

of a perforated plate. Investigations are limited to elastic 

buckling cases with intention for future research to extend to 

inelastic problems, with critical instability stresses examined 

for various slenderness ratios of plates. 

II. PROBLEM DESCRIPTION AND JUSTIFICATION OF RESEARCH 

A schematic of a perforated rectangular perforated plate 

lateral and longitudinal dimensions of 203.2 × 254𝑚𝑚2 and a 

circular cutout at its centre is shown in Fig 1. Its critical 

buckling stress diminishes when this plate is subjected to an 

inplane distributed pre-load on the circular opening. The aim 

is to develop an equation for critical buckling stress with a 

known pre-load at its circular cutout. The plate shown in Fig 2 

is of a blast resistant enclosure with its front face reinforced 

with steel and Al foam designed to withstand low yield frontal 

blast loading. Such reinforcements can be extended to one or 

more faces depending on the requirements. 
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The enclosures have the ability to with-stand high-pressure 

loads generated in a typical explosion. It is the intention of this 

research to build enclosures to protect sensor (viz: strain, 

thermal, LPS and acceleration) and wireless waspnote units.  

The back face shown in Fig 3 has a circular opening that 

allows passing wiring harness, and also allows the fixing of 

several sensors, antennas and media recording equipment, as 

shown in Fig 4. The back face is pre-loaded due to the 

mounting of aforementioned units causing the stress 

distribution to change around the cutouts. In this regard, the 

work described in this paper will go some way in developing 

numerical solutions for critical loads for pre-loaded plates. 

 
Fig 1: Problem description 

 

 
Fig 2: Front and back faces of enclosure 

 
Fig 3: Circular cutout on the back face of enclosure 

 

 
Fig 4: Illustration of a pre-load to back face 

III. ANALYTICAL THEORY 

An analytical procedures on pristine plate with an edge-

compression is presented here in Fig 5 the longitudinal (𝑎) and 

lateral (𝑏) edges are parallel to 𝑥 and 𝑦 axis respectively. This 

plate is subjected to in-plane edge-load, with a uniformly 

distributed load acting parallel to the 𝑥 axis given by: 

 

𝑝𝑥 = 𝑡 𝜎𝑥                  (1) 

 

Theoretical critical buckling stress for this case involving 

uniformly distributed edge compression on two opposite 

edges, parallel to the 𝑦 axis, is given by [2]: 

 

𝜎𝑐𝑟 = 𝐾
𝜋2𝐸

12(1−𝜗2)
 
𝑡

𝑏
 

2

             (2) 

 

Here 𝐾 depends on ratio (𝜑) and number of half-waves 

(𝑚) formed in the buckled configuration of plate, and is 

defined by: 

 

𝐾 =  
𝜑

𝑚
+

𝑚

𝜑
 

2

                (3) 
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Fig 5: Simply supported pristine plate under pure edge 

compression  

The product of critical stress 𝜎𝑐𝑟  and area (𝑡𝑏), which gives 

the critical unit compressive force, expressed as:  

 

𝑝𝑐𝑟 = 𝐾
𝜋2𝐸

12(1−𝜗2)

𝑡3

𝑏
               (4) 

 

Buckling will occur in one half-wave shape for short plates 

with small aspect ratios (𝜑). On or above 𝜑 =  2, two half-

waves will be formed; for a short plate (𝜑 <  2), the 

dependence of parameter 𝐾 on the aspect ratio is shown in Fig 

6.  Note that the critical loads for higher values of K are larger 

than a half-wave mode of buckling. In the current analysis, the 

aspect ratio of plate investigated is 0.8; hence, only one-half-

wave based displacement profile is considered in the analysis. 

Analytical procedures  are tedious for plates with cutouts 

(perforated), especially, under complex set of boundary 

conditions and loads, ergo numerical methods are commonly 

used. 

 

 
Fig 6: Relationship between 𝐾 and 𝜑 

IV. PLATE WITH A PRE-LOAD AT CUTOUT 

A perforated plate problem is solved after initial verification 

of results for a pristine plate. FE models of a pristine plate 

were compared with theoretical results. An in-plane load on 

cutout is defined that is equal to product of a multiplication 

factor (𝑓) and theoretical critical load of a pristine plate. With 

this pre-load, the critical edge-load that will cause instability is 

estimated for a perforated plate.  

 

The critical edge-load that causes buckling is dependent on 

multiple parameters. Note that the forgoing procedures are 

quite general involving consideration of just edge-

compression. However, at a certain magnitude of pre-load at 

the cutout, there will be an appreciable depreciation in critical 

buckling load causing the plate to buckle out of its plane. An 

illustration of the buckled configuration of plate with one and 

two-half waves is shown in Fig 7. This phenomenon can be 

verified experimentally by the observation of lobes. This 

critical edge-load is smaller for problems with a higher pre-

load. 

 

 
Fig 7: Buckled shapes with (a) one and (b) two-half waves 

 

The FE solution scheme employed here involves two 

stages; initially a standard static load is applied in. A 

schematic of pre-load at central cutout is shown in Fig 8. In 

the second stage a buckling analysis is carried-out. Introducing 

a cutout in a plate leads to a reduction in 𝑝𝑐𝑟 , as discontinuities 

in a structure distrupt the smooth flow of stresses, causing the 

the direct normal stresses for plates in compression are 

affected. FE analyses give Eigen values which are scaling 

factors of initial applied load that will lead to buckling and are 

recorded for all configurations investigated. 
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Fig 8: Illustration of a perforated plate with a pre-load at 

cutout  

Numerical code ABAQUS was used to conduct the 

investigations with much of the parametric modelling 

accomplished using PYTHON programming language scripts. 

FE models with a range of slenderness ratios (40.6 to 225.7) 

were prepared, with thickness varying between 0.9-5 mm. The 

dimensions of the rectangular plates used in simulations are 

detailed in Table I. Yield stress versus plastic strain properties 

of 316L grade alloy used for FE model is in Table II, an 

elastic modulus of 200 𝐺𝑃𝑎 and poisson’s ratio 0.3 were 

assigned. 

 

Table I: Plate thickness simulated 

𝑡 

(mm) 
𝑎 

(mm) 
𝑏 

(mm) 
𝑎

𝑡
 

0.9 203.2 254 225.7 

1.2 203.2 254 169.3 

1.5 203.2 254 135.4 

2.0 203.2 254 101.6 

2.2 203.2 254 92.3 

2.5 203.2 254 81.2 

2.7 203.2 254 75.2 

3.0 203.2 254 67.7 

3.2 203.2 254 63.5 

3.5 203.2 254 58.0 

4.0 203.2 254 50.8 

4.5 203.2 254 45.1 

5.0 203.2 254 40.6 

 

Table II: Plasticity data for 316L  

Yield Stress (MPa) Plastic Strain 

238.4 0.0 

302.8 0.0078 

383.9 0.0341 

447.9 0.0642 

501.6 0.092 

594.1 0.146 

669.6 0.1998 

729.8 0.2516 

780.4 0.3035 

819.2 0.3559 

 

The material properties were obtained from tensile testing 

according to EN 10002-1.  Note that only elastic properties 

were considered in this paper. In literature [5] materials are 

also assumed to deform plastically with no work hardening 

after yield stress. Such models also referred to as the elastic 

and perfectly plastic material model. FE models with two 

cutout diameters of 20.32 and 40.64 𝑚𝑚 were considered. 

They were descritized into a grid of quadrilateral shell 

elements using adaptive meshing for modelling curvature 

around the circular cutouts. A fine mesh was used in zones 

around the cutout with the best mesh density gained from a 

grid independence study. High aspect ratios (length to width 

of elements) in the structured mesh were avoided to minimize 

inaccuracies illustrated in Fig 9. The general-purpose shell (4-

NODE, S4R type ABAQUS [8]) elements that are capable of 

bending, axial deformation and transverse shear were used. 

Five integration points were used over the thickness for each 

element.  

 

 
Fig 9: Illustration of adaptive mesh (a) pristine (b) with cutout 

It is assumed that the free edges on the boundary are simply 

supported in an out-of-plane direction. The bottom end nodes 

of FE model were constrained against any movement along 

the global 𝑥 direction. So the boundary conditions reflect a 

case of simply supported edge condition. An in-plane uniform 

SEL is applied on the top edge based on the following 

formulation: 

 

𝐴𝑠𝑒𝑙 =
𝜋2𝐸

12(1−𝜗2)

𝑡3

𝑏2               (5) 

 

An illustration of the edge load applied is highlighted in Fig 

10. The product of 𝐴𝑠𝑒𝑙  and Eigen values provided by the 

buckling analysis, gives the critical Shell Edge Load (SEL) of 

instability, for example a SEL of 2042.52 𝑁/𝑚 is obtained 

from eq. (5) for a 0.9 𝑚𝑚 thick plate. The corresponding 

buckling analysis produced an Eigen value of 4.24; in a 

similar fashion an analysis is repeated for a perforated plate. 
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Eigen values of a plate of 20.32 𝑚𝑚 diameter (𝑑) cutout are 

shown along side a pristine plate in Fig 11. An Eigen value of 

4.2433 for the pristine plate is within 1% of theoretical result. 

A lower value of 4.0652 was obtained for plate with a cutout.  

 

A lower value in relation to a pristine plate is expected for 

perforated as an opening reduces the strength of plate. The 

critical shell edge-load that will cause instability therefore 

is 2042.52 × 4.0652 = 8303.26 𝑁/𝑚. FE results of 

perforated plates of cutout diameters (𝑑) 20.32 and 40.64 𝑚𝑚 

were compared with a pristine plate. An in-plane uniform SEL 

is applied on the top edge based on equation (5). 

Corresponding critical Eigen values for various slenderness 

ratios are shown in Fig 12.  The Eigen values are nearly 

constant independent of slenderness ratios for the cases 

considered. The 𝐾 values for a perforated plate of thickness 

0.9 mm and cutout diameter 20.32 mm is shown in Fig 13, a 

reduction was noted with an increase in cutout diameter.  

 
Fig 10: Illustration of edge load 

 
Fig 11: Buckling analysis results of pristine (left) and perforated (right) plates 

 

 
Fig 12: K values of models simulated 

 

 
Fig 13: Effect of increasing the cutout dimeter 
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V. EIGEN VALUES UNDER PRE-LOADS AT CUTOUT  

The FE models previously examined were subjected to 

additional in-plane pre-loads at cutouts; for example, a 

theoretical load (𝑝𝑐𝑟 ) of 2180.2 𝑁 is obtained from eq. (4) for 

a 0.9 𝑚𝑚 thick pristine plate. The plate was pre-stressed by a 

load that is a multiplication factor (𝑓) of 𝑝𝑐𝑟  on nodes around 

the cutout. The value of 𝑓 was varied between 1 and 10% of 

𝑝𝑐𝑟 . i.e. 21.802 and 218.02 N for the aforementioned 

configuration. An illustration of nodes around the cutout is 

highlighed in Fig 14. The SEL calculated from eq (5) was 

applied in the global 𝑥 direction on top edge, and the bottom 

edge was restrained against moving in the applied direction. 

Buckling analysis was then carried-out and Eigen values were 

obtained. An illustration of results for a pre-load of 10% of 𝑓 

on 20.32 mm diameter cutout is shown in Fig 15. 

 

 

 
Fig 14: Nodes around cutout with in-plane pre-load 

 

  
Fig 15: FE result for a plate with a pre-load on cutout 

VI. RESULTS AND DESIGN EQUATION DEVELOPMENT 

The elastic stability of a perforated plate with pre-loads at 

the cutout was examined. A simple, easy to use formula was 

developed to plot the critical buckling stresses for all 

configurations of models examined. A buckling coefficient (𝐶) 

was computed for the perforated plate. A curve fitting exercise 

was conducted to obtain coefficients through polynomial fits. 

The general method [5] in the development of design formulae 

involves a best-fit regression analysis that is a compromise 

between simplicity and accuracy. Design equations assume 

slenderness ratio and opening size as the two most important 

physical variables to affect stability behavior of plates. 

Generally, the lateral dimensions of the pristine plate are 

assumed as infinite compared to the diameter of cutout. For 

square plates (𝑎 = 𝑏), the buckling or ultimate loads can be 

considered as: 

 

𝑝𝑐𝑟 = 𝑔  
𝑑

𝑎
,
𝑎

𝑡
                    (6) 

 

The same procedure was employed in this paper for cases 

involving small cutout diameters that are much smaller 

compared to the dimensions of the plate. A simplified design 

equation is formulated that is specific to the plate examined. 

i.e. a 203.2 × 254 𝑚𝑚2 plate. The objective is to keep the 

equation simple yet reliable thus less influencial parameters 

are avoided. This simplified equation considers the 

slenderness ratio as a function to estimate 𝜎𝑐𝑟
𝑝

. The critical unit 

compressive stress at simply supported edges is given by: 

 

𝜎𝑐𝑟
𝑝

= 𝐶
𝜋2𝐸

12(1−𝜗2)
 
𝑡

𝑏
 

2

              (7) 

 

Here 𝐶 is a function of single independent variable, the 

slenderness ratio 𝑆. It is calculated with a cubic polynomial fit 

and is given by: 

 

𝐶 = 𝐶1𝑆
3 + 𝐶2𝑆

2 + 𝐶3𝑆 + 𝐶4          (8) 

 

The coefficients 𝐶1,𝐶2, 𝐶3 & 𝐶4 are listed in Table III. Note 

that in this investigation, the maximum in-plane loading at the 

cutout was limited to 10% of 𝐴𝑠𝑒𝑙 . The diameter of cutout was 

kept constant as 40.64 mm. There is a significant reduction in 

critical buckling load when the pre-load is increased beyond 

this limit. This is especially true if the diameter of the cutout is 

increased beyond 20% of edge dimension for a thinner plate. 

The accuracy of a quadratic fit was not significantly greater 

than a third order polynomial estimate. This equation will 

facilitate in the design of enclosures for blast resistant 

applications. 

 

Note that it is required to find the limitations of this 

equation. The analysis conducted in this paper is a linear 

buckling analysis, however, a nonlinear analysis with fully 

defined material data is recommended for applications in real 

world scenario. In blast loading scenerios, the imperfections 

and material plasticity under large deformations influence 

structural collapse. Also note that out-of-plane loading and 

moment effects were not considered. 
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Table III: List of coefficients for design equation 

 

In-plane load applied 

at cutout 

𝐶1 𝐶2 

 

𝐶3 

  

𝐶4 

 

1% of 𝑓 3.6001 × 10−8 −1.7491 × 10−5 2.7712 × 10−3 3.8921 

3% of 𝑓 3.6046 × 10−8 −1.7504 × 10−5 2.7721 × 10−3 3.8415 

5% of 𝑓 3.5973 × 10−8 −1.7478 × 10−5 2.7692 × 10−3 3.7908 

7% of 𝑓 3.608 × 10−8 −1.7516 × 10−5 2.7735 × 10−3 3.7398 

10% of 𝑓 3.5971 × 10−8 −1.748 × 10−5 2.7705 × 10−3 3.6633 

 

 

VII. CONCLUSIONS 

Stability of plates containing circular cutouts subjected to 

in-plane pre-loads at central opening were investigated.  A 

simplified design formula to estimate critical buckling loads 

was successfully presented. This design equation can be 

applied to a plate with a cutout diameter 20.32 𝑚𝑚. It is 

demonstrated here there is a possibility of developing generic 

formulae for any diameter cutout. To summarise: 

 

o Both cutout diameter and in-plane pre-load affect the 

critical buckling load. However, small in-plane pre-

loads on a diameter cutout (less than 10% longer 

edge length) do not significantly reduce strength. 

o The critical stress of instability of a plate always 

decreases with increase in slenderness ratio and this 

decrease is greater for larger diameter (more than 

20% of edge 𝑎) cutout. 

o Increasing the cutout diameter size to 20% of 

longitudinal edge 𝑎, reduces buckling load by 11.4% 

for a plate of aspect ratio 0.8. 
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