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Abstract — A simple and efficient approach for computing 

the inverse of Vandermonde matrix is presented in this paper, 

which is based on synthesis division of polynomials. This 

approach does not involve matrix multiplication, computation 

of determinant or solving a system of linear equations for 

determining the unknown elements of the inverse matrix. Some 

illustrative examples are provided. 

 
Index Terms — Vandermonde matrix, matrix inverse, 

synthetic division. 

 

I. INTRODUCTION 

HE Vandermonde matrix (VDM) has important 

applications in various areas such as polynomial 

interpolation, signal processing, curve fitting, coding theory 

and control theory [2, 4, 6, 9], etc. Since the last decade, the 

study of more efficient approaches for computing the inverse 

of VDM or its generalized version has been an important 

research topic in many mathematics and sciences disciplines. 

In this paper, we present a novel simple and efficient 

approach for finding the inverse of VDM, based on synthesis 

division of polynomials and some previous works of the 

author and the others [5, 7, 8, 10]. 

The whole paper is organized like this. The basic 

mathematical background is described in section 2. Then, the 

new computational approach is discussed in section 2, 

followed by some numerical examples in section 3. Finally, 

some concluding remarks are provided in section 4. 

II. MATHEMATICAL BACKGROUND 

Consider the polynomial: 
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where ai, i are known constants. We are interested to find the 

inverse of the following Vandermonde matrix:  
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According to [10], the formula V-1 = W  A can be applied to 

compute the inverse of V, where the matrices W and A are 

defined by: 
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with  ja 1 , m

mj

ja 


2 , sm

smj

ja 


3 , ..., and 

 j
n

na )1( . However, the computational cost could be 

high if direct matrix multiplications are applied to compute 

V-1. In the next section, we will introduce a new approach to 

compute V-1 by means of synthetic division of polynomials. 

III. A NEW APPROACH 

Let us see how the elements of V-1 look like, when the 

formula V-1 = W  A is applied to the cases n = 2 and n = 3. 

 

(i) When n= 2, we have:  
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where .211  a  

Hence,  
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If we apply synthetic division to the [f (x) – a2](x – 1), 

where 21

2

21 ))(()( axaxxxxf   , we have 

 

1 1 a1 

  1 

 1 1+ a1 

 

We can see that the elements obtained by synthetic division is 

equal to the numerators of the elements in the first row of V-1, 
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except in the reverse order. By applying a further synthetic 

division to the answer obtained, we get 

 

1 1 a1 

  1 

 1 1 + a1 

  1 

 1 1 2 

 

since .2 2111  a  Notice that the element in bracket, 

namely 1 2, is equal to the denominators of the elements in 

the first row of V-1. Similarly, if we apply synthetic divisions 

to [f(x) – a2]  (x – 2), we have 

 

2 1 a1 

  2 

 1 2 + a1 

  2 

 1 2 1 

 

since .2 1212   a  In other words, all the elements of 

V-1 can be determined completely by using synthetic division 

of polynomials only, without having to use matrix 

multiplications or computation of determinant. 

 

(i) When n= 3, we have: 
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where 3211  a  and 1332212  a . 

Now,  
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Applying synthetic divisions to the [f (x) – a3]  (x – 1), 

where 32

2

1

3

321 ))()(()( axaxaxxxxxf   , 

we have 

1 1 a1 a2 

  1 1
2+ a11 

 1 1 + a1 1
2+ a11+a2 

  1 1
2-12-13 

 1 1-2-3 (1- 2)(1- 3) 

since 21
2+ a11+a2-12-13 = (1- 2)(1- 3).  

Next,  

2 1 a1 a2 

  2 2
2+ a12 

 1 2+ a1 2
2+ a12+a2 

  2 2
2-12-23 

 1 2-1-3 (2- 1)(2- 3) 

since 22
2+ a12+a2-12-13 = (2- 1)(2- 3).  

Also, 

3 1 a1 a2 

  3 3
2+ a13 

 1 3+ a1 3
2+ a13+a2 

  3 3
2-13-23 

 1 3-1-2 (3- 1)(3- 2) 

 

since 23
2+ a13+a2-13-23 = (3- 1)(3- 2). Thus, the 

synthetic division approach works equally well for 

computing V-1 for n = 3. 

IV. NUMERICAL EXAMPLES 

Example1. Find the inverse of the following Vandermonde 

matrix. 
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Solution. Let us define the following polynomial: 

.6116)3)(2)(1()( 23  xxxxxxxf  

Applying synthetic divisions, we have:  

1 1 -6 11 

  1 -5 

 1 -5 6 

  1 -4 

 1 -4 2 

 

So, the first row of V-1 is (3   -5/2   1/2). 

Next, 

2 1 -6 11 

  2 -8 

 1 -4 3 

  2 -4 

 1 -2 -1 

 

So, the second row of V-1 is (-3   4   -1). 

Also, 

3 1 -6 11 

  3 -9 

 1 -3 2 

  3 0 

 1 0 2 

 

So, the third row of V-1 is (1   -3/2   1/2). 

Hence,  
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Example2. Find a quadratic interpolation polynomial which 

passes through the points (-1, 10), (1, 0) and (2, 4). 

 

Solution. Let the interpolation polynomial be: 

.)( 2

321 xaxaaxs   

Since s(-1)=10, s(1)=0, s(2)=4,  so we have: 
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Consider the following Vandermonde matrix: 
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Let us define a polynomial as follows: 

.22)2)(1)(1()( 23  xxxxxxxf  

Applying synthetic divisions, we have:  

-1 1 -2 -1 

  -1 3 

 1 -3 2 

  -1 4 

 1 -4 6 

 

So, the first row of V-1 is (1/3   -1/2   1/6). 

Next, 

1 1 -2 -1 

  1 -1 

 1 -1 -2 

  1 0 

 1 0 -2 

 

So, the second row of V-1 is (1   1/2   -1/2). 

Also, 

2 1 -2 -1 

  2 0 

 1 0 -1 

  2 4 

 1 2 3 

 

So, the third row of V-1 is (-1/3   0   1/3). 

Hence,   
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The required interpolation polynomial is .352)( 2xxxs   

V. CONCLUDING REMARKS 

In this paper, we have introduced a simple and efficient 

method for computing the inverse of VDM via synthetic 

division of polynomials, without having to involve matrix 

multiplication, computation of determinant or solving a 

system of linear equations for determining the elements of the 

inverse of VDM. Although we have discussed how to apply 

this new approach to the cases for n = 2 or 3 only, this 

approach can be easily adapted to deal with the inverse of 

VDM for n > 3 without much modifications.  Also, it is not 

hard to see that the total number of arithmetic operations, 

namely multiplications and additions, involved in using 

synthetic divisions to compute the elements of the inverse of 

VDM is comparatively less than that by applying direct 

matrix multiplication to WA, it means this new approach 

has less computational cost. More detail analysis of the 

complexity of the synthetic division approach and its 

applications to compute the inverse of the general VDM with 

size nn will be our continued research topic and the findings 

will be presented or published elsewhere. 
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