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Abstract—This research aims to enhance the performance of 

Injection molding production line (IMPL) using process 

analytical technology (PAT) framework. The main quality 

response is can's weight. At initial factor levels, the process 

capability index value of 1.22 for weight indicates that the IMPL 

is incapable. Designed experimentation followed by fuzzy goal 

programming is carried out to determine the combination of 

optimal factor settings. Confirmation experiments were then 

conducted at optimal factor settings, where it is found that the 

IMPL capability is enhanced 1.44. Finally, control charts were 

established for monitoring future IMPL production. In 

conclusions, the tools used in the PAT framework are found 

effective for improving the performance of IMPL. 

 
Keywords: Fuzzy goal programming; Injection molding; Control 

charts. 

 

I. INTRODUCTION 

 

        Globally, the demand for plastic products has 

increased rapidly. In plastics manufacturing, there are three 

types of blow molding; extrusion, injection and stretch. 

Injection molding production line (IMPL) is widely used for 

bottle production applied in food beverage, cosmetics and 

pharmaceutical field. This technology boasts with full 

automation, stable functioning, high intelligence and 

efficiency, low cost, no contamination in production, and up to 

National Hygienic Standard.  

 

Typically, IMPL begins with a plastic resin hot tube called 

pre-form. The pre-form is placed within a split mold with a 

hollow cavity. The mold sides are then clamped together, 

pinching and sealing the pre-form tube. Air is blown into the 

tube, which expands the hot resin wall into the shape of the 

cavity.       

   Then, the mold is cooled with water solidifying the resin 

into the shape of the part. Finally, the part is ejected from the 

mold and trimmed.  

   Producing quality plastic cans, shown in Figure 1, is the 

main challenge that faces product/process engineers. A 

manufacturer aims at improving the performance of IMPL, 

shown in Figure 2,  for a  plastic can.  Variations in can weight 
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may result in production and quality losses. The PAT 

framework is a combination of tools that, when used within a 

system, can provide useful means for acquiring information 

resulting in process continual improvement. Most popular 

PAT tools are multivariate tools for design, data acquisition 

and analysis, process analyzers, process control tools, and 

continuous improvement and knowledge management tools. 

  

       The Taguchi method is applied used for obtaining robust 

design at minimal experimentation effort in a wide range of 

industrial applications [1]-[3]. However, this method does not 

consider process engineers' preferences about process settings 

[4]-[9]. Several formulations of goal programming (GP) 

models were introduced for solving the fuzzy GP (FGP) 

problems taking into account the decision maker's preferences. 

FGP was used for optimal process performance in various 

fields [10]-[15]. In the IMPL, process engineers seek to 

determine the combination of process settings while 

considering preferences on process settings as well as can's 

weight. Therefore, this paper aims at optimizing the 

performance of IMPL using PAT framework. 

 

 

II. PAT Framework 

The PAT framework was implemented to improve the 

performance of injection treatment process and is described as 

follows. 

 

A. Identifying critical process attributes 

   Based on process knowledge, the three main controllable 

process factors of the IMPL are current torque (x1) of 67.7%, 

screw speed (x2) 64.7rev/min, pressure (x3) of 70 bars.  

 

B. Control Charts and process capability analysis 

     The can's weight is considered the nominal-the-best 

response type. The lower and upper specification limits, LSL 

and USL, are 30.3 and 29.7 g, respectively. Twenty five 

samples, each of sample size of two, are collected at the 

current process settings. The x -R control charts are 

established as shown in Figure 3, where both indicate that the 

IMPL is in statistical control The estimated mean and standard 

deviation, ˆ ˆ and   , are 29.863 g and 0.04469g, respectively 

. 

C. Process Capability Analysis 

     Capability analysis is used to assess whether a process is 

statistically capable to meet a set of customer desired product 

specifications. In practice, the process standard deviation,  , 

is unknown and is frequently estimated by Eq. (1). 
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         Figure 1. Plastic can.                                                                                        Figure 2. Injection molding machine. 

 

 

 

          
 

(a) Initial IMPL settings.                                                                          (b) Optimal IMPL settings.       

Figure 3. The x -R charts for can's weight and capability analysis. 
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ˆ                                                                   (1)
R

d
                                  

where d2 is a constant related to the sample size, while R is 

the center line of the R chart. The actual process capability 

index,
 pkC , attempts to take the target into account. The 

pkC  

estimator, ˆ
pkC , can be expressed mathematically by: 

 

ˆ ˆˆ min ,                                         (2)
ˆ ˆ3 3

pk

LSL USL
C

 

 

  
  

 
                 

Applying Eq. (2), the estimated process capability is 1.22, 

which is smaller than the minimal recommended values of 

1.33. As a result, the IMPL is concluded incapable of 

producing conforming cans within weight specifications. 

Therefore, improvement is needed in IMPL performance by 

reducing weight variations. 

                                         

C. Designed experiments 

 

    Based on process knowledge, the main factors affecting the 

wastewater quality characteristics are current torque (%, x1), 

screw speed (1/min, x2) and back presser (bar, x3). For the 

present process with three two -level factors, the proper 

experimental design is the 23 full factorial design. Eight 

experiments will be conducted with two replications. In each 

experiment, a sample of ten cans is randomly selected and 

then the weight observations are recorded as shown in Table 1  
 

  

D. Modeling and prediction 

 

    The regression model for can's weight is formulated as 

follows: 

     

2
93.9,   s=000239792,  p-value <0.0001                                                

3 2 1 3 2 3 1

       2 1 3 2 1

               (3) =343-4.25x 4.88x 4.43x 0.0662x x 0.0602x x

0.0691x x 0.000938x x x

R
adjusted

y



   

 
 

For the average can weight, which is the nominal-the-best type 

response, the triangular membership function,
y , is 

represented by: 
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The corresponding constraints are expressed as: 
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 

  
 

0                                                                           (4e)y y
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Then, for can's weight the membership function with the 

corresponding constraints are formulated as follows: 
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Let  and y y   denote the negative and positive deviation from 

the can's weight target, then the corresponding constrains are: 

 
30,                                                                  (5a)

1,                                                                 (5b)
0.3 0.3

0 0.3,                      

y y

y y

y

y

y  

 




 

 



  

  

                                                       (5c)

0 0.3,                                                                           (5d)y
 

 

 

Since process engineers have no prior information on the exact 

targets of x1, x2, and x3, the trapezoidal membership function,

jx , is chosen to express each process factor and is defined as:  
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where 
l

x j
g and 

u

jxg are the lower and the upper limits of xj, 

respectively. The 
jx

 and 
jx

 are the maximal negative and 

positive admissible violations from 
l

x j
g and 

u

jxg , respectively.  
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The objective function of the model is to minimize the sum of 

deviations of response and process variables. Accordingly, the 

objective function is to minimize: 

 

Z=3.3( +y y   )+5(
1 1+x x   )+5(

2 2+x x   )+5(
33 +x x   )     (9) 

 
Solving the model, the obtained optimal process conditions 

found are: current torque ( x1 ) of 67.5%, screw speed (x2 ) of 

63.3 rev/min, pressure ( x3) of 75 bars. These parameters yield 

optimal value of weight response 30.03g. The membership 

values for y, x1, x2, and x3 are 90.099 %, 100 %, 100 %, and 

100 %, respectively. 

 

E. Production Control  

 

   The x -R charts are constructed for validation as shown in 

Figures 3. It is noted that both charts are concluded in 

statistical control for can's weight and hence, they can be used 

for monitoring future production. The calculated ˆ ˆ and    

values are found to be 29.8744 g and 0.0404g, respectively.  

 

                                                                                                                                      

III IMPROVEMENT ANALYSIS 

 

Table 2 displays the improvement analysis, where it is noted 

that: 

i. The estimated process mean,
 
̂ , at the combination of 

optimal factor settings  is 29.8744, which becomes closer 

to the target value (= 30 gm) than its corresponding value 

of 29.863 at the combination of initial factor levels. 

ii.  The estimated variation,
 
̂ , reduced from 0.04469gm at 

initial settings to 0.0404gm at optimal settings. 

iii. The process capability index, ˆ
pkC , value is improved 

from 1.22 to 1.44. This result indicates that the IMPL 

becomes capable. 

 

IV. CONCLUSIONS 

 

The PAT framework is successfully implemented to improve 

the performance of IMPL. In this framework, the x -R charts 

control charts are employed to assess IMPL performance at 

initial factor settings followed by process capability analysis. 

A fuzzy goal programming model is then formulated and 
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applied to optimize process settings based on process-

engineer's preferences for factor settings and quality response. 

Results showed that the IMPL capability index is improved 

from 1.22 to 1.42, and thereby it becomes capable. In 

conclusion, the PAT framework efficiently optimized IMPL 

performance. 
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TABLE 1.      EXPERIMENTAL DATA. 

 

Exp. i 
Process  factor Replicate I 

 x3 x2 x1 1 2 3 4 5 6 7 8 9 10 Average 

1 70 63.3 74.4 29.84 29.92 29.83 29.85 29.88 29.9 29.78 29.83 29.88 29.86 29.857 

2 70 63.3 67.7 29.87 29.88 29.9 29.85 29.85 29.92 29.95 29.88 29.83 29.83 29.876 

3 70 64.7 74.4 29.9 29.88 29.95 29.86 29.82 29.89 29.82 29.84 29.84 29.9 29.87 

4 70 64.7 67.7 29.85 29.9 29.86 29.87 29.84 29.83 29.85 29.81 29.86 29.87 29.854 

5 75 63.3 74.4 29.87 29.91 29.88 29.81 29.87 29.85 29.9 29.87 29.78 29.91 29.865 

6 75 63.3 67.7 29.83 29.82 29.87 29.9 29.8 29.85 29.9 29.88 29.83 29.86 29.854 

7 75 64.7 74.4 29.85 29.89 29.8 29.87 29.83 29.87 29.81 29.88 29.81 29.84 29.845 

8 75 64.7 67.7 29.76 29.83 29.84 29.93 29.85 29.88 29.83 29.9 29.82 29.87 29.851 

                                                              Replicate II 

 1 70 63.3 74.4 29.9 29.84 29.86 29.87 29.86 29.81 29.86 29.9 29.82 29.88 29.86 

2 70 63.3 67.7 29.88 29.92 29.87 29.84 29.88 29.87 29.91 29.87 29.86 29.89 29.879 

3 70 64.7 74.4 29.91 29.79 29.86 29.83 29.85 29.89 29.9 29.86 29.84 29.91 29.864 

4 70 64.7 67.7 29.83 29.8 29.87 29.94 29.8 29.85 29.9 29.84 29.85 29.86 29.854 

5 75 63.3 74.4 29.84 29.96 29.85 29.85 29.94 29.77 29.84 29.88 29.83 29.84 29.860 

6 75 63.3 67.7 29.84 29.92 29.83 29.85 29.88 29.9 29.78 29.83 29.88 29.86 29.857 

7 75 64.7 74.4 29.93 29.89 29.8 29.88 29.81 29.84 29.87 29.79 29.85 29.81 29.847 

8 75 64.7 67.7 29.8 29.82 29.84 29.92 29.84 29.88 29.83 29.9 29.81 29.87 29.851 

 

 
TABLE 2.      IMPROVEMENT SUMMARY. 

 

Process 

settings 
̂  ̂  

ˆ
pkC  Process condition 

Initial 29.863 0.04469 1.22 incapable  

Optimal 29.8744 0.0404 1.44 Capable 
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