
 

  

Abstract—This paper presents the initial development of a 

hardware-software modular and scalable architecture based on 

low cost FPGA and ARM processor development boards to 

implement an Inertial Guidance System, Computer Vision, 

Stochastic Optimization and Deep Neural Networks for a man 

portable AUV designed to enable operations to water depths as 

great as 4000 m. The software is coded by VHDL language 

running on an FPGA and C/C++ scripts running on an 

Embedded System. The FPGA and ARM processor are 

contained in the same chip. The main purpose of the hardware-

software architecture is perform some complex tasks of a ROV 

with human operators like identify sites of scientific interest 

and make parking strategies to collect underwater samples. The 

sites of scientific interest could be a new hydrothermal vent or 

an unknown shipwreck. Also the mission can be reconfigured 

onboard according to the relevant of the acquired data through 

the vehicle’s sensors. Results from laboratory and AUV sea 

trials are shown. 

 
Index Terms—Autonomous Underwater Vehicle (AUV), 

Deep Neural Networks (DNN), Embedded System, FPGA, 

Stochastic Optimization.  

 

I. INTRODUCTION 

HE Deep Ocean Floor is an extreme and mostly 

unknown environment, key tools to explore it are the 

Autonomous Underwater (AUV) and ROV (Remotely 

Operated Vehicle) [1]. Usually a ROV carries an array of 

High Definition cameras that allow scientists closely 

examine the sea floor and perform intricate tasks, examples: 

identify a new specimen and capture it with a robotic arm or 

track the plume coming from a hydrothermal vent [2]. A 

typically work class ROV requires the support of a manned 

vessel that can cost up to $50,000 per day and a initial 

investment of $100,000 plus maintenance cost. These costs 

limit the access to many institutions to this technology [3]. In 

the other hand, Autonomous Underwater Vehicles are 

untethered and can operate at sea for long term without the 

support of a manned vessel. They have sophisticate onboard 

computers and sensors to follow a preprogrammed path and 

execute sequential behaviors scripted with a mission plan 

user interface [4]. The AUVs intrinsically are not a real time 

tool, the stored data are available when the vehicle is on the 
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sea surface. Some AUV include acoustic data link systems to 

access key vehicle parameters and send messages with 

mission updates while the vehicle is submerged [5]. 

Navigate near the sea floor, less than 1 m, is a challenging 

task, ROV pilots make path adjustments to avoid potential 

navigation hazards for the vehicle, especially on irregular 

terrain. Routinary tasks of a team monitoring a ROV mission 

are: get images of a specified object, identify biological, 

archeological or geological features, track a chemical signal 

to its source and generated parking strategies to collect 

samples from the sea floor. These complex tasks are 

executed by human operators and specialists in different 

fields that could be marine biology, oceanography and 

geology. Based on their knowledge and experience, they 

take decisions to explore efficiently a scientific site of 

interest. If an AUV can accomplish these complex tasks, the 

exploration cost at high sea might decreases because two 

components of a ROV system can be avoided, the winch-

tether and the control room. In this paper we purpose a low 

cost hardware-software system architecture optimized for 

small AUV to perform typical ROV deep sea exploration 

tasks. This kind of AUV can be deployed from a sailing boat 

at high sea, performing some tasks of an oceanographic 

vessel equipped with ROV. Many non-governmental 

organization dedicated for ocean conservation operate 

sailing boats where might unable a full components 

installation of a typical 4000m ROV system [6].     

 

AUV mission-critical systems must be controlled by real 

time embedded software that runs on an onboard computer 

[7]. Some AUV navigate based on Strapdown Inertial 

Navigation System and Computer Vision algorithms that 

require high computational capacity [8]. The size and power 

consumption of the onboard computer is a key factor of 

AUV pressure housings design. AUV mission 

reconfiguration, specimen identification and generation of 

strategies for sampling could be based on Artificial 

Intelligence (AI) and Machine Learning (ML) to deal with 

uncertainties that appear in-situ [9]. Real Time identification 

and tracking of an underwater specimen requires image 

segmentation and pattern recognition [10]. Some computer 

vision problems of segmentation and pattern recognition 

require optimize a cost function that depends of a large set 

of parameter. If the cost function is convex, locate the global 

optimum is a very simple task. However typical computer 

vision problems of underwater specimens with irregular 

forms (jelly fish, piece of a shipwreck) are hard to formulate 
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in convex form, where is easy get trapped in local minima. 

Therefore stochastic optimization algorithm must be used 

[11]. Deep Neural Networks (DNN) have shown good 

performance for pattern recognition and strategies 

generation, even in complex table games like “Go” [12]. 

Usually DNN are implemented on GPU (Graphics 

Processing Units). A GPU based implementation is not 

suitable for a small underwater vehicle due its size and 

power consumption that can excess 100 watts, a GPU 

requires a CPU to work. FPGA are more suitable hardware 

platforms for DNN implementation in small size vehicles, 

there are several previous work of DNN and Convolutional 

Neural Networks (CNN) implementation on FPGA [13].  

 

 We have developed a hardware-software architecture 

using two FPGA-ARM development boards. On one board, 

TERASIC DE0 nano, runs routines for Guidance, 

Navigation and Control (GNC) and Computer Vision (CV), 

the other board, TERASIC DE0 nano SoC, runs a Stochastic 

Optimization unit and DNN based on parallel/sequential 

implementation. The DE0 nano SoC has a FPGA and ARM 

in the same chip. The main objective of this architecture is to 

get the enough autonomy to perform the following complex 

tasks: navigate on irregular terrain, get images of a specified 

object based on its scientific relevance, identify 

archeological, biological or geological features and 

generated parking strategies to collect samples from the sea 

floor and track a chemical signal to its source in order to 

find a potential hydrothermal vent. In our initial approach 

the entire machine intelligence was based on DNN but the 

required computational capacity to analyze 4K images was 

equivalent to 20 GPUs, impractical for a small AUV. 

Therefore we propose a hybrid approach where the images 

are analyzed firstly by SURF algorithm and Stochastic 

Optimization to generate small Regions of Interest (ROI) of 

28x28 pixels, then the classification and characterization is 

performed by the DNN. In this initial stage the system is 

capable to navigate on irregular terrain, get images of a 

specified object and identify biological features. This paper 

is organized as follows. Section II describes the mechanical 

and electronic system of the AUV. Section III describes the 

proposed software architecture. Results from laboratory and 

sea trials are shown in Section IV.   

II. HARDWARE ARCHITECTURE 

A. Mechanical Design 

The developed AUV for this project has a torpedo 

architecture with small positive buoyancy. The vehicle 

length is 1.20 m and has a mass of 34 Kg. The AUV has a 

set of three pairs of control surface. One pair controls the 

yaw angle and the other pairs control the pitch angle. The 

propulsion system is composed by a set of underwater 

thrusters powered by brushless motors with magnetic 

coupling. A thruster is located at the aft and mounted on a 

vertical axis activated by a servo to control the yaw angle. 

The Vehicle has two configurations: as a free flying vehicle 

to make an underwater photogrammetric survey and as a 

vehicle with hovering capacity without the control surfaces. 

To get the hover capability is added two thrusters with 

vertical orientation near to the stern and bow. The main 

pressure housing is composed of a titanium grade 5 cylinder 

with end caps, located in the AUV mid section. Inside are 

the Li-Po batteries and the FPGA-ARM development boards 

with its peripherals. The pressure housing for the cameras is 

a quartz cylinder with aluminum 6061 T6 end caps. Under 

the nose is located a gripper to get samples from the sea 

floor. Figure 1 shows the AUV mechanical layout and 

pressure housings. 

 
Fig. 1. a) AUV mechanical layout, b) Titanium pressure housing, c) Quartz 

pressure housing for cameras.            

B. Electronics System 

The AUV is powered by two 16000 mAh 22.2 V Lithium-

Polymer batteries that allow autonomy up to 14 hours with a 

speed of 2 knots. The thrusters are controlled by a set of 100 

amperes Electronic Speed Controllers (ESC). The central 

elements of the electronics are the TERASIC FPGA DE0 

nano development board and TERASIC FPGA-ARM DE0 

nano Soc. The DE0 nano SoC has a FPGA with a physically 

embedded Dual-core ARM Cortex-A9 on the same chip, 

denominated HPS. The FPGA and HPS are interconnected 

by a high-bandwidth backbone. Depending on mission 

requirements, the DE0 nano SoC can be turned off in order 

to save energy. DE0 nano board reads data from onboard 

kinematic sensors, cameras and radio frequency 

communication devices to generate guidance commands for 

to the ESC and Servos. The kinematic sensors suite are a 

GPS Parallax (12 channels), Honeywell Pressure Sensor and 

a MEMS Inertial Measurement Unit (IMU) composed by 3 

axis accelerometer, gyroscope and magnetometer. The set of 

cameras are two ArduCAM for a stereo Computer Vision 

System and a 4K “Go PRO”. The communication devices 

are a Wi-Fi transceiver for Arduino MEGA, RF 900 MHz 

XBee with range up to 50 Km with a high gain antenna and 

Iridium RockBLOCK 7 Satellite transceiver. The payload is 

a set of environmental sensors that could be a CTD Sea-

Bird, pH probe and a mass spectrometer to track an 

underwater chemical plume. Data from sensors, cameras and 

RF modems are stored in a set of 16 GB SD card. A 1TB 

External Hard Drive is connected to the DE0 nano SoC as a 

USB 2.0 device. The Hard Drive contains a Database of 
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images, 3D models and DNN configurations. Figure 2 shows 

the electronics Layout of the AUV.  

 

 
Fig. 2.  AUV Electronics Layout. 

III. SOFTWARE ARCHITECTURE 

The software architecture is divided in two components: an 

Autopilot system and a Machine Intelligence in a client-

server configuration. The Autopilot runs on the DE0 nano 

and the Machine Intelligence on the DE0 nano SoC. If the 

AUV mission is a photogrammetric survey, the Machine 

Intelligence could be turned off to save energy. The 

Autopilot is divided in three layers. The low layer 

implements communication protocol of sensors, SD card 

write/read routines, RAM memory management and 

generates PWM control signals for the ESC and Servos. The 

mid layer contains the GNC and CV. The low layer and mid 

layer are described by VHDL. The upper layer is the 

Mission Manager. The Machine Intelligence is divided in 

two components: a stochastic optimization unit and DNN. 

The original idea contemplated 4K frames processing with 

DNN, but the required computational resources, an 

equivalent of 20 NVIDIA GeForce GPUs, are not suitable 

for a small AUV due size and power limitations. In our 

approach a preliminary image analysis is performed by the 

SURF algorithm and stochastic optimization looking for 

specific 3D shapes stored in the external Hard Drive, 

examples: a jelly fish or a piece from a shipwreck. The result 

of the analysis is a set of ROI with 28x28 pixels with 8 bit 

gray scale. The DNN operates on these ROI looking for 

specific features to classify and characterized the object of 

interest. The Stochastic Optimization and DNN run on a 

Linux Embedded System as an app in the HPS 

complemented by a hardware accelerator described by 

VHDL modules. Figure 3 shows the software architecture. 

A. GNC and Mission Manager  

The Baseline of the GNC is the Extended Kalman Filter 

(EKF) to perform an Inertial Navigation System (INS). The 

EKF fuses data captured from the IMU, GPS and Pressure 

Sensor. Since the INS uses low cost IMU, input data 

presents errors such as bias, scale factors, random walk 

 
Fig. 3.  Software Architecture 

    

noise and temperature internal compensation. The EKF was 

developed from a set of differential equations that describes 

the vehicle’s dynamics and the noise process in order to 

minimize the errors of the estimated state vector. The INS 

estimates position, velocity and attitude of the AUV with an 

inertial reference frame. The guidance law used is a fairly 

simple algorithm called "Line of Sight" that generates the 

reference yaw angle [14]. The mission manager provides the 

list of flight path coordinates. The AUV automatic control 

system is based on PID and Fuzzy Logic controllers, this 

architecture allows a faster and precise response. The PID 

controllers are implemented by the discrete equation type A 

[15]. The mathematical operations are based on IEEE 754 

64-bit floating point arithmetic. The trigonometric functions 

are implemented by floating-point CORDIC algorithm [16]. 

The mathematical operations are based on ALTERA mega 

functions for addition, multiplication and division, in the 

worst case the latency is 10 clock cycles. The readings of the 

onboard sensors are converted from fixed point to 64 bits 

floating point, published by a tri-state buffer on a central bus 

and then stored in a FPGA internal RAM formed by M9K 

memory blocks. A state machine runs GNC opperations and 

finally the results are converted from floating point to fixed 

point. Figure 4 shows the VHDL functional partition of the 

GNC. The Mission Manager is described with C language, 

runs in a soft core 32 bits embedded processor Nios II. The 

Nios II embedded processor is communicated with the 

VHDL blocks through the Avalon bus. With the available 

information from GNC, CV and RF communications the 

Mission Manager, using Bayesian Networks, generates the 

reference coordinates for the GNC. For mission 

reconfiguration purposes the DNN are available for the 

Mission Manager. The DNN will help to estimate a priori the 

risk of vehicle loss during a mission. The Bayesian Networks 

helps to perform an auto-test of all onboard equipment and 

isolate spurious information from ill-equipment [17]. 

Isolation is performed by changing the Bayesian network 
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structure using interpreted evidences   from onboard 

equipment.  

 

 
Fig. 4.  GNC VHDL functional partition  

 

B. 3D Computer Vision 

The purpose of the 3D Computer Vision System is create a 

cloud of points that represent the sea floor and surrounding 

objects to assist the GNC for autonomous navigation and 

generate depth images that are used by the Machine 

Intelligence. The 8-bit pixel intensity represents the depth. 

Stereo Imaging systems process at least two images of the 

same scene to get the depth information presented in the 

acquired images [18]. The images come from a pair of 

Arducam OV5642. A calibration matrix that considers the 

water column and window distortions, distance between 

cameras an others environmental factors is applied on 

incoming frames. We use the SURF (Speeded up Robust 

Features Up) algorithm in conjunction with classic stereo 

vision algorithms [19]. The SURF algorithm includes key 

point detectors and descriptors [20]. The SURF algorithm 

can be efficiently implemented on a FPGA. A FPGA based 

SURF algorithm implementation was developed for the 

ExoMars programme [21]. The images resolution and fps for 

navigation purposes are 640x480 and 30 fps. Basically the 

SURF algorithm has three steps: Interest points are found in 

the frame by a Fast-Hessian Detector, Haar wavelet 

responses for x and y directions are calculated around the 

interest point, the greater dominant direction is selected to 

get rotation invariance, finally the descriptor of the interest 

point surrounding area is calculated by Haar wavelet 

functions. The SURF algorithm includes several 

optimizations like the "Integral Image" that allows filter 

response fast calculations. The Integral Image works as a 

pipe transforming the incoming pixels to integral values 

according this recursive function: 

),1()1,()1,1(),(),( yxfyxfyxfyxIyxf −−−−−−+=  (1) 

where I is the pixel intensity value and (x,y) are the pixel 

coordinates. The implementation of the Computer Vision 

System is similar to the GNC using fixed and floating point 

calculations, both functional partitions described by VHDL 

run parallel. One of the issues for SURF implementation was 

the memory resource demanded by the Hessian Matrix. In 

this case the SD card or the 1 GB DDR3 is used to store the 

matrix values but increase the computation time.  

C. Stochastic Optimization 

More complex algorithms are required for objects 

recognition with irregular surfaces based on onboard 

Database. Tracking a biological organism is a previous step 

to get more detailed images and sample it with a gripper. In 

an underwater expedition with ROV, a biologist managing 

the mission could be looking for a particular specimen, 

example crabs near to a hydrothermal vent [22], 

continuously is compared the objects from the ROV video 

signal with an idealized model learned before. This natural 

process for a human operator, compare between objects and 

an idealized model, is performed by the Stochastic 

Optimization unit. This approach consisted in matching a 

depth image generated by the CV with a hypothesized model 

based on stochastic optimization through particle swarms 

(PSO). During the internal process several models are 

matched with an object view. This model is controlled by a 

number of parameters to compensate changes of the AUV 

viewing position. A model consists of basic 3D geometric 

primitives (cylinder, ellipsoid, cone) to represent the features 

of an underwater object and kinematic parameters. The 

supported number of 3D model parameters is 30 due 

computational resources limitations. Figure 5 shows 

examples of 3D models: a Crab with 28 degree of freedom 

and a starfish. The matching process is performed by 

estimation of the parameters that minimizes the discrepancy 

between the image and the model. The models could 

represent the shape of a biological organism, geological sites 

or pieces of a shipwreck. The models are stored in the 1 TB 

External Hard Drive. Some 3D models can be downloaded 

from the cloud. The PSO implementation follows the basic 

steps for stochastic search algorithms namely weighting, 

selection and mutation. In the weighting step the energy 

function is evaluated and the particles receive a proportional 

weight. The selection process accepts or rejects particles 

with some probability that could depend on their weight. 

Finally in the mutation process, new candidate locations are 

generated from the current particles. There are several 

energy functions to perform the PSO. For this initial stage 

we used a modified version of a “Golden Energy” function 

[23]. The PSO runs as an app on a Linux Embedded System. 

However some process, hypothesis-observation discrepancy, 

demands large computational available resources. The 

required operations include rendering, pixel-wise and 

floating point arithmetic for summation of the results. We 

exploit the advantage of the DE0 nano Soc, a hardware-

software co-design that combines the best of both worlds, 

highly accurate arithmetic of ARM A9 processor with short 

development time and FPGA parallelization capabilities 

allowing significant speed-up of Golden Energy function 

implementation. Many of the typical functions of a GPU 

were implemented in a hardware acceleration unit coded by 

VHDL in the FPGA. This module is communicated with the 

HPS through the AXI Bridge.  
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Fig. 5.  Examples of 3D model for PSO a) crab model, b) starfish model 

 

D. Deep Neural Networks 

Achieve a great vehicle autonomy require sophisticate, 

and complex algorithms. Performing PSO with the onboard 

computational resources on complex objects like a coral reef 

is not suitable. However some complex underwater 

structures, coral reef or a piece of shipwreck are identified as 

a “navigation obstacle” by the SURF algorithm. The main 

goal of DNN usage is perform near real time onboard 

classification and characterization of specimens detected by 

the PSO and SURF, then reconfigure the mission path and 

vehicle behavior according to specimen relevance. DNNs 

demand a large amount of computational resources and 

weight storage. Since the FPGA and HPS processing 

capacity are limited, we have implemented DNN based on 

fixed-point arithmetic and 3-bit weight. We avoid the usage 

of external RAM memory for weight storage, they are stored 

in on-chip FPGA memory of 2460 Kbits and Logic 

Elements. The DNN algorithm and Architecture 

Optimization is based on [24]. The network configuration of 

the DNN can be changed during the mission reconfiguring 

the FPGA from the HPS by an application software. The 

DNN possible networks configurations (compiled VHDL 

and C/C++ scripts) and weights are stored in the external 

Hard Drive. A DNN configuration is dedicated for image 

features recognition of the 28x28 ROI. Others DNN 

configurations are dedicated for tasks like mission 

reconfiguration or AUV risk estimation. An ongoing work is 

features recognition from ROI color patterns. The DNN for 

biological and geological features recognition has three 

hidden layers. The input is a 28x28 ROI, 8 bit gray scale. 

DNN for AUV mission reconfiguration has four hidden 

layers. A fixed-point optimization for the weights is applied 

to reduce word length into 3 bits. The DNNs are 

implemented by C/C++ scripts and VHDL code with a 

modular parallel-sequential architecture. The C/C++ scripts 

runs on the HPS as an app in the Linux Embedded System. 

The system is scalable, several DE0 nano Soc can work in a 

stack configuration to get more computational capacity.  The 

weights are trained off-line, several training images are 

stored in the external Hard Drive. Initially, the system was 

evaluated with hand writing numbers. Then images with 

geometrical patterns of starfish and corals were used for 

training. The execution time of the PSO and DDN limits the 

AUV forward velocity. For each displacement of 3 meters, a 

DNN routine is executed. The PSO and DNN execution time 

depends of detected specimens quantity. In shallow waters 

the PSO and DNN requires large execution time due the 

great number of biological specimens in the water column 

and sea floor.     

IV.  RESULTS 

The GNC system used 21 % of FPGA Logic Elements, 30 

% of embedded memory and has an execution time less than 

3 ms. The FPGA resource utilization of SURF algorithm is 

55 % of Logic Elements, 70% of embedded multipliers and 

90 % of 32 MB external SD RAM. The mission manager 

utilized less than 15 % of Logic Elements. Clearly, the most 

FPGA consuming resources is the Computer Vision System. 

The PSO routines coded by VHDL required 24 % of Logic 

Elements. DNN utilized 70 % of Logic Elements. Working 

at the same time, PSO and DNN app consumes 90 % of 

CPU available resources. The FPGA clock frequency in both 

development boards is 50 MHz. The HPS clock is 925 MHz. 

The PSO testing and DNN training was performed using 3D 

printed models of biological specimens that can be found on 

the sea floor. A 3D printed starfish with number “1” wrote 

on the top was employed to test the PSO and DNN. The 

PSO average frame rate is 5Hz with two 3D printed starfish. 

The actual PSO performance is suitable for low speed 

specimens in the water column and sea floor. The DNN were 

trained and successfully identify hand writing numbers on 

the 3D printed starfish. The DNN processing time for 

recognizing 10000 images was 570 ms. Sea trials in 

Ecuadorian waters were carried out to test the proposed 

hardware-software architecture. The initial sea trials tested 

the performance of the GNC and SURF algorithms. After 

GNC and CV worked successfully, the other development 

board, DE0 nano SoC, was activated at sea but immediately 

thermal problems were presented with the main FPGA chip 

when the PSO and DNN are running at the same time, in few 

minutes was reached temperatures over 50 oC, probably due 

the absence of air flow in the pressure housing. A heat sink 

has installed on the FPGA and the titanium pressure housing 

was filled with helium gas that has a better thermal 

conductivity than air [25]. The object recognition algorithms 

successfully avoided navigation hazards, recognized starfish, 

corals on the sea floor and got detailed images of stationary 

interest objects. The system didn’t track moving objects like 

a fish.   With the installed onboard computational capacity, 

the SURF, PSO and DNN algorithms can applied on 

stationary or very low speed objects, this issue limits the 

AUV forward speed to 30 cm/s in shallow waters with 

irregular terrain. The max depth of the sea trials was 40 m. 

Laboratory test and sea trials are presented in Figure 6. 

V. CONCLUSIONS AND FUTURE WORKS 

The initial development of hardware-software architecture 

for a man portable AUV was presented. The FPGA 

accomplished the required computational resources 

demanded by the GNC and CV routines. High computational 

demanding algorithms, PSO and DNN, fitted well on the 

FPGA-ARM development board applying hardware-

software co-design techniques to exploit the best of both 

worlds achieving near real time performance with low cost 

hardware. The SURF, PSO and DNN algorithms performs 

acceptable with a confident rate of 95 % but for more 

complex tasks additional onboard computational capacity 

must be added. Future works includes algorithms recognition 

improvement and extensive thermal analysis of onboard 
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hardware in pressure housings with bad thermal conductivity 

like ceramics to support hardware expansions for more 

complex DNN.   

 

 
Fig. 6.  Results: a) Printing a starfish 3D model, b) PSO evaluation and 

DNN training with 3D printed model, c) Sea Trials 
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