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Abstract—A defining problem in spoken language identifi-
cation (LID) is how to design effective representations which
allow features to be extracted that are specific to language
information. Recent advances in deep neural networks for
feature extraction have led to significant improvements in
results, with deep end-to-end methods proving effective. In this
paper, a novel network is proposed and explored that models an
effective representation using first and second-order statistics
of features extracted from a well-trained phoneme-related DNN
bottleneck network followed by a stack of CNN convolutional
layers. The high-order statistics extracted through second order
pooling at the output of the CNN are robust to speaker and
channel variability, and background noise. Evaluation with
NIST LRE 2009 shows improved performance compared to
current state-of-the-art systems, achieving over 33% and 20%
relative equal error rate (EER) improvement for 3s and 10s
utterances.

Index Terms—anguage identification, utterance representa-
tion extraction, convolutional neural network, deep neural
network, bilinear pooling

I. INTRODUCTION

ONE of the key issues in building language identification
(LID) classifiers is how to extract efficient and compact

features that are specific to LID information, and useful for
discriminating between languages. This is challenging due
to large variation in speech content, speakers, channels and
background noise, coupled with a scarcity or mismatch in
training resources. Total variability (TV) methods currently
tend to achieve state-of-the-art performance through their
powerful ability to model, exploiting zeroth, first and sec-
ond order Baum-Welch statistics of features in a speaker,
phoneme and channel dependent space. This is true both
in speaker recognition (SR) [1] and language identification
(LID) [2] domains. However, i-vectors are extracted in an
unsupervised fashion and consequently need discriminant
backends such as Linear Discriminant Analysis (LDA) and
Within-Class Covariance Normalization (WCCN). Due to the
generative attributes of Gaussian Mixture Models (GMM), it
is more difficult to model the variance of short speech utter-
ances, thereby significantly reducing performance compared
to long utterances.

Deep learning techniques have been shown to achieve im-
pressive results in related applications that include large scale
speech recognition and image classification. Deep Neural
Networks (DNN) demonstrate particularly strong learning
capabilities in both front-end feature extraction and back-
end modelling positions. For example, Song et.al, Richard-
son et.al and Jiang et.al [3], [4], [5] proposed the use of
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deep bottleneck features (DBFs) from a well trained DNN
for automatic speech recognition (ASR) [6]. DBFs – formed
from a lower dimensionality central construction in a trained
deep network, are inherently quite robust to phonotactically
irrelevant information. DNNs have been shown to excel
when combined with phonotactic training in LID modelling,
nevertheless both the DBFs and their calculated statistics are
extracted from phoneme information. Neither phonemes or
phoneme states are discriminative between all combinations
of languages.

To extract language discriminant features and representa-
tions, more and more end-to-end NNs have been proposed
which can span from a frame level to an utterance level LID
identity – avoiding the need for separate back-end algorithms
which are discriminative. End-to-end schemes have been
used in image processing [7], [8], [9] and speech recogni-
tion [10], combining good performance with convenience in
training. Lopez-Moreno et.al [11] proposed an end-to-end
LID scheme that used large scale DNNs, and which which
had good performance. In their scheme, speech is segmented
into small parts containing just a few frames, with each
part aligned into a specific language ID. However it can be
difficult to train a language discriminant model because DNN
input dimension may not scale to the size necessary to repre-
sent a language discriminant unit. Garcia-Romero et.al [12]
improved upon this by introducing the use of a time delay
neural network (TDNN), which spans a wider temporal
context, hence contributing a greater number of features
from which to form statistics. In that approach, a bottom-
up hierarchical structure was used to produce a posterior
probability over the set of languages concatenated over a long
time span. Gelly et.al [13] and Gonzalez et.al [14] proposed
building Long Short Term Memory-Recurrent Neural Net-
works (LSTM-RNN) to identify languages. This architecture
has natural advantages of sequence modelling which can
choose what to remember and to forget automatically across
a wide context. Geng et.al [15] applied attention-based RNN
mechanisms, first used in neural machine translation, to
LID. In that scheme, each speech frame had a posterior,
forming vectors that were weighted and summed into a
single utterance representation. The unified nature of that
architecture allowed it to benefit from end-to-end training,
which boosted system performance.

Unlike LSTM-RNNs, convolutional neural networks
(CNN) tend to be more flexible and hence many variant
architectures have been published [18], [17], [16]. Aiming for
similar performance gains, the authors [19] also introduced
an end-to-end approach, which was named LID-net. This
combined the proven frame-level feature extraction capabil-
ities of DNNs with the effective utterance level organising
abilities of CNNs. In that network, language discriminant
features were obtained in intermediate CNN layers. We
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Fig. 1. (a)LID-net (top) where features are extracted frame-by-frame from DNN layers 1-3. LID-senones are obtained through several convolutional
layers, with the expansion of filter size in convolutional layer 1 to a context of 21 frames, followed by several 1× 1 filters (convolutional layers 2 to n).
(b) LID-net2 (middle) is based on LID-net up to the pooling layer which is the second order pooling of the LID-senones, yielding higher order statistics.
(c) LID-bilinear-net (bottom) based on LID-net2 but now the statistics are derived from the outer product of two feature maps from different convolutional
layers, from which first and second order statistics can be obtained.

named the features LID-senones because they were analo-
gous to the senones used in many competing methods. The
initial performance evaluation of LID-net showed that it was
at least as good as state-of-the-art DBF/i-vector systems, and
slightly better for short utterances. While it worked well,
LID-net only averaged LID-senone posteriors using zeroth
order Baum-Welch statistics and did not make use of higher
level statistics.

In this paper, we extend the idea further by extracting first
and second order Baum-Welch statistics. The method we pro-
pose is inspired by the image processing domain where two
dimensional feature maps are common. Perronnin et.al and
Carreira et.al introduced fisher vector (FV) [20] and second
order pooling (O2P) [21] respectively, showing how first and
second order statistics, widely used in patten recognition,
can be extracted and contribute outstanding performance to
classification. In LID-net2, we use O2P to deriver utterance-
level feature statistics on LID-senones, and will show that
performance is excellent. However DNN and CNN inter-
mediate layers are known to form graduated representations
from the input features to the output classes. In this case,
the CNN transforms LID-features into language classes.
Since the layers concentrate information differently, there is
potential for output from multiple layers to be somewhat
complimentary. We therefore test a system that generates the
higher order statistics from different layers. This is called
LID-bilinear-net. In both LID-net2 and LID-bilinear-net, we
include additional fully-connected (fc) layers for the output
classification to map the pooled statistics into the language
classes.

A. Contribution

We introduce two end-to-end DNN-CNN neural network
variants that utilize high-order LID-senone statistics. Both
systems combine the advantage of both the high-order Baum-
Welch statistics calculation of i-vector systems with the

natural discriminant attributes of neural networks. In LID-
net2, high-order statistics are obtained through an O2P
method borrowed from fine-grained visual recognition [22],
whereas in LID-bilinear-net, the statistics are obtained us-
ing the outer product operation from two different layers
and pooled to obtain an utterance representation. The three
architectures are shown in Fig. 1, with LID-net having been
introduced in [19],. The main differences are that the spatial
pyramid pooling (SPP) operation (which was also adapted
from image processing [23]) is replaced by O2P from the
same or different layers. The detailed theory and mechanism
of bilinear pooling will be discussed in Section II-B while
the proposed architectures are detailed in Section II-C. In
Section III,we explore the strong modelling capability of the
networks.

To summarise, the contribution of this paper is two novel
end-to-end architectures named LID-net2 and LID-bilinear-
net, that utilize LID-senones to obtain high-order statis-
tics. Experiments on the full 23 languages of NIST LRE
2009 compare performance to state-of-the-art DBF/i-vector
systems, demonstrating a very considerable improvement,
especially for the shortest utterances.

II. BILINEAR MODELS FOR LID

A. A Statistical View of LID-net

The structure of LID-net [19], shown in Fig.1(a), consists
of a DNN-based front-end to derive LID-related acoustic
features, followed by a CNN back-end, using SPP to form
an utterance representation. The DNN is configured with
a constricted bottleneck (BN) layer to transform acoustic
features into a compact representation in a frame-by-frame
manner. Convolutional layers then perform nonlinear trans-
formations of BN features into units which are discriminative
to language, termed LID-senones. The SPP layer forms an
utterance representation from LID-senones, then the derived
vector can be classified directly as described in [19].
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The size1 of LID-senone after convolutional layer n (fn) is
Kn@1×N2, and for convenience it can be reshaped to Kn×
N2, then the LID-senone statistics (N ) are also reshaped
from Kn@1 × 1 to Kn × 1. The fn is transferred into γn
after softmax γn = softmax(fn). The elements of γn are
γnk(t) (k = 1 . . .Kn and t = 1 . . . N2) while the elements
of N are Nk (k = 1 . . .Kn). Therefore if average pooling
is used, zeroth order statistics are

Nk =
1

N2

N2∑
t=1

γnk(t) (1)

It is clear that with this method the kth senone statistic
is computed just like the zeroth Baum-Welch statistic of
acoustic features in the kth Gaussian in the standard i-vector
system. The previous end-to-end system that used only zeroth
order LID-senone statistics [19] outperformed state-of-the-
art DBF/i-vector systems which utilized high-order statistics.
Therefore utilizing higher order statistics obtained using the
back-propagation algorithm in LID-bilinear-net would be
expected to improve performance even further.

B. New Pooling Mechanism

The pooling model B in CNN can be viewed as fA,B =
B(fA,fB). Let fA and fB be the A and B feature maps
derived from structured CNN layers. In LID-net2, A and
B are from the same layer feature maps, whereas in LID-
bilinar-net, they are from different layer feature maps. In
each case, fA,B is the output of bilinear pooling. The size
of fA and fB are (H × W ) × KA and (H × W ) × KB

respectively (reshaped from KA@H ×W and KB@H ×W
respectively), implying both fA and fB must have the same
feature dimension W and H to be compatible, but could have
different numbers of channels.

The expression of bilinear pooling can be developed to
fA,B = B(fA,fB) = P(fAT · fB). The feature map
outputs are combined at each location using the matrix outer
product, thus the shape of (fAT · fB) is simply KA ×KB .
To obtain an utterance representation descriptor, the pooling
function P aggregates the bilinear feature across the entire
spatial domain of one combination, and here we choose
average pooling and so fA,B will end up with size KA×KB ,
effectively reshaped to (KA × KB)@1 × 1. The descriptor
then can be used with a classifier, and here we use a multi-
layer neural network.

C. Bilinear model for LID

Referring to the structure of the existing LID-net and
proposed LID-bilinear-net shown in Fig.1, a DNN-based
front-end extracts LID-features while a CNN-based back-
end derives LID-senones. LID-bilinear-net’s bilinear pooling
layer extracts a high-order utterance representation utilizing
correlation of dimensions in LID-senones. This utterance
descriptor could then be directly used with a classifier, and
the whole network can use back-propagation rather than
typical high-order statistics algorithms such as FV [20] or
O2P [21].

1A size of Kn@1 × N2 means the height is 1, the number of weights
is N2 and there are Kn channels.

As Section II-A mentioned, feature maps fA and fB could
be reshaped into sizes of KA×N2 and KB×N2 respectively
(where N2 is the number of elements in each channel). Due
to the filter size of convolutional layer 1 covering the full
LID-feature dimension, the height of feature maps after it
are set to unity. Elements in feature map fA are defined as
fAd(t) (d = 1 . . .KA, t = 1 . . . N2) and in feature map fB
the element could be fBk(t) (k = 1 . . .KB , t = 1 . . . N2).
After the softmax operation, fB becomes γ, which can be
viewed as the posterior of corresponding LID-senones at
frame level, with its elements defined as γk(t) (k = 1 . . .KB ,
t = 1 . . . N2). Following the mechanism of bilinear pooling,
using the feature map fA and its corresponding posterior
γ, the bilinear pooling models the first order LID-senone
statistics,

fAB(k) =
1

N2

N2∑
t=1

γk(t) · fA(t) (2)

With feature maps fA and fB , the bilinear pooling can
also model the second order LID-senone statistics with
vectorization expression

fAB =
1

N2
fA

T · fB (3)

If fA and fB come from the same layer in the CNN, this
would be the standard formula to calculate O2P (e.g. eqn.(2)
in [21]).

The high-order LID-senone statistics can not only cover a
wide speech context, but also extract the relationship along
its feature dimension. Typically, i-vector methods do not
learn the feature extractor functions, with only the parameters
of the encoder being learnt. Furthermore, even though an
i-vector is compact, its training procedure is not end-to-
end. The advantages of LID-net2 and LID-bilinear-net are
to learn the feature extractor and encoder simultaneously,
allowing the whole network to be easily fine-tuned. Owing
to the flexibility of CNNs, the input feature maps of bilinear
pooling can be either from the same or different layers. We
believe that bilinear pooling from different input layers can
further improve performance since the information that they
contain is to some extent complementary.

D. Training Procedure

Due to the large quantity of training parameters, many of
which are in the full connection layers, and the fact that LID-
net, LID-net2 and LID-bilinear-net share a structure for their
front end, we initialize the network with the trained LID-net
parameters, then train the two new networks from this. The
process is namely: (1)

1) Train a 6 layer DNN (48 × 21-2048-2048-50-2048-
2048-3020) with an internal bottleneck layer using a
large scale ASR corpus (SwitchBoard);

2) Transfer parameters from the first 3 layers to DNN
layer1-layer3 of LID-net and train LID-net;

3) Transfer all layer parameters below the SPP layer to
LID-net2 and LID-bilinear-net and train the two new
networks separately.

Steps (1) and (2) are the same as for LID-net so detailed
information can be found in [19]. Step (3) is described below.
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III. EXPERIMENTAL EVALUATION

A. Experiments Setup

To evaluate the effectiveness of the proposed network,
we conduct extensive experiments with the NIST LRE09
corpus comprising 23 languages. Equal error rate (EER)
and Cavg are used to measure performance. Due to the
evaluations being performed on 30s, 10s and 3s temporal
scales, when training the two shorter scales, we randomly
extract shorter speech segments from the 30s training dataset
during each epoch. For comparison, the following system are
implemented.

DBF/i-vector: This is the state-of-the-art baseline system
used for comparison. The i-vector method uses DBF as front-
end features and back-end modeling from a well-trained
DNN trained on ASR data. LDA and WCCN compensate
the variability, and cosine distance is used to obtain the final
score.

LID-net: The end-to-end network in [19] is used for
comparison. This only employs zeroth order Baum-Welch
statistics from LID-senones.

LID-net2: The first new network proposed in this paper,
where high-order statistics of LID-senones are obtained
through second order pooling (O2P) of posteriors pooled
from the CNN convolution layer prior to the fc mapping
network.

LID-bilinear-net: As above but instead of using outputs
from a single convolution layer, this network utilizes poste-
riors pooled from two different CNN layers.

Each network is trained and tested independently for 30s,
10s and 3s duration data. For LID-net and variants, cosine
distances on corresponding language posteriors are directly
utilized to obtain scores without LDA and WCCN.

B. Configuration of new networks

Three separate copies of each system are trained for
the different time scales (3s, 10s and 30s). Each have 6
convolutional layers. The feature maps from CNN layers
1-5 have 512 channels and the feature maps after layer
6 are evaluated with between 64 and 512 channels. Each
convolutional layer is followed by a batch normalization
layer [24] and first and second order LID-senone statistics
are evaluated. The feature map f is obtained before the
batch normalization while the feature map γ is extracted
from a convolutional layer output followed by a softmax
operation. The input of the LID-senone pooling process could
be from either the same or different feature maps. In LID-
net2, these are obtained from after convolutional 6; whereas
LID-bilinear-net performs bilinear pooling with input feature
maps from convolutional layers 5 and 6.

C. Experiments on LID-net and DBF/i-vector

Before training the new networks, we must train the corre-
sponding LID-net first. This also has six convolutional layers,
and must also be trained with 64 to 512 channels in the
feature map after layer 6 for comparison. The performance of
various LID-net configurations is shown in Table I alongside
the current state-of-the-art DBF/i-vector system. The notation
LID-net-64 means the feature map after CNN layer 6 has 64
channels.

TABLE I
COMPARISON OF PERFORMANCE BETWEEN LID-NET AND

DBF/I-VECTOR IN EER (%) FOR ALL SYSTEMS AND SCALES.

EER 3s 10s 30s

DBF/i-vector 10.79 3.05 1.48

LID-net-64 7.76 2.92 1.54
LID-net-128 7.58 2.89 1.55
LID-net-256 7.57 2.66 1.46
LID-net-512 7.79 2.81 1.50

Fig. 2. Histogram of 3s EER performance for same-layer pooling (LID-
net) and cross-layer pooling (LID-bilinear-net) incorporating both first and
second order statistics.

Thanks to the end-to-end nature of LID-net, it achieves
better performance than the baseline DBF/i-vector system
over all scales. In general, the shorter the segment, the greater
the advantage for LID-net. The compelling improvement
achieved by LID-net at almost all scales lends confidence
to the ability of the discriminative training procedure. As far
as we concerned, the discriminative model can handle the
variance of speakers, channels and noise in short utterances
better than a generative model. However the number of
channels should not be too small or too large, as too many
trained parameters leads to over-fitting whereas too few
parameters cannot model the LID-senones effectively.

D. Evaluation on LID-net2 LID-bilinear-net

After transferring trained LID-net parameters to the corre-
sponding LID-net2 and LID-bilinear-net systems, we re-train
using the same training data, and verify whether higher order
statistics from the pooling improves performance. Focusing
only on the most difficult 3s utterances, we conducted ex-
tensive experiments to explore the mechanism for computing
the statistics through same- or cross-layer pooling.

Fig. 2 shows EER performance for various systems and
feature dimensions on 3s utterances. Results are shown for
both LID-net2 and LID-bilinar-net, with the latter computed
using either first or second order statistics. Comparing with
Table I we first see that both systems outperform LID-
net (EER=7.57 for 3s utterances), demonstrating clearly the
robustness that is gained by using higher-order LID-senone
statistics. Cross-layer bilinear pooling performs better than
same-layer pooling, and we argue that computing statistics
across layers provides some degree of complementary infor-
mation as well as perhaps some improvement in robustness.
This is demonstrated by LID-bilinear-net outperforming LID-
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net2 in every condition. We thus evaluate LID-bilinear-net
more fully.

TABLE II
COMPARISON OF PERFORMANCE OF CROSS LAYER LID-BILINEAR-NET

FOR ALL SCALES IN EER (%) WITH DIFFERENT DIMENSIONS.

EER 3s 10s 30s

DBF/i-vector 10.79 3.05 1.48

64-relu 6.94 2.40 1.48
128-relu 7.05 2.33 1.59
256-relu 7.09 2.32 1.58
512-relu 6.86 2.43 1.51

Table II includes 3s, 10s and 30s LID-bilinear-net re-
sults, for different numbers of channels in the output layer.
Performance is good compared to Table I, although the
30s result seems to be data-limited rather than architecture-
limited (LID-bilinear-net and LID-net2 have more param-
eters to train than LID-net through having an additional
fully connected output layer). Note that the bilinear pooling
method demonstrates its compactness: just 64 channels in
LID-bilinear-net outperforms both the DBF/i-vector and the
LID-net systems for shorter utterances in terms of EER.

IV. CONCLUSION

This paper has introduced two novel end-to-end neural net-
works, named LID-net2 and LID-bilinear-net. Both systems
share their trained lower DNN layer parameters with LID-
net, a previous DNN/CNN network that did not incorporate
bilinear pooling and could only utilize zeroth order statistics.
In all systems, DNN layers are first used to extract LID-
features from acoustic training features, then LID-senones
obtained by CNN through several convolutional layers which
span a time context. LID-senones are thought to be discrimi-
native to languages in the way that senones are discriminative
to phonetic content. The LID-senone derivation is followed
by a pooling layer that spans from frame to utterance level,
from which high-order (first and second order) statistics are
computed. In LID-net2 these are dervied from convolutional
layer 6 whereas in LID-bilinear-net they are computed cross-
layer from feature maps of convolutional layers 5 and 6.
Each system is trained end-to-end via back-propagation with
LID labels. The performance of each LID-net variant is
better than state-of-the-art DNN/i-vector systems, and the
two novel networks in this paper perform best of all, with
LID-bilinear-net demonstrating the highest performance and
greatest degree of robustness.
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