
Abstract- In the oil and gas industries, many production wells 

have been hydraulically fractured to boost productivity. Much 

has been written regarding fracture propagation and 

treatment design optimization. The models already developed 

and applied in the industry include two-dimensional (2D) and 

three dimensional(3D) fracture propagation models. But the 

concern in the industry is the application of these models in 

view of large numbers of data required. This paper 

summarizes the efforts conducted towards the development of 

a new model and methodology for optimal design of hydraulic 

fracture treatments in oil industry. The motivation of this 

methodology is its capability to provide engineers with a near 

optimum design of fracturing job despite very little reservoir 

data availability. The unique design optimization method 

presented here is an application of soft-computing based on 

intelligent system. This method will accept available data on 

each well, which includes basic well information and 

production history, and provides engineer with a detail 

optimum hydraulic fracture design unique to that well, along 

with the expected post-fracture productivity using hybrid 

evolutionary computing strategies and fuzzy support vector 

machines. 

Index Terms-Hydraulic fracturing, Particle swarm 

optimization, Differential evolution, Hybrid Particle swarm 

optimization, Differential evolution, Productivity ratio, 

Treatment parameters. 

I. INTRODUCTION 

The concept of Evolutionary Computing method covers the 

process of searching for an optimal solution inspired by 

natural evolution. It can also be viewed as a family of trial 

and error problem solvers which can be considered as global 

optimization methods with a meta-heuristic or stochastic 

optimization concept, characterized by the use of a 

population of candidate solutions. Such methods include 

Genetic Algorithm, Particle Swarm Intelligence and 

Differential Evolution among others.  

       Hydraulic fracturing is a well-stimulation technique in 

which pressurized fluid made of water, sand and chemicals 

is pumped into a wellbore resulting to the creation of 

fractures. In most formations, a single vertical fracture is 

created which propagates in two directions from the 

wellbore. Initially the fluid which does not contain any 

propping agent (called pad) is injected to create a fracture 

that is wide enough to accept a propping agent. The 

propping agent usually serves the purpose to open the 

fracture once the pumping operations stops. 

Stimulation operations are widely used in the oil industry to 

enhance the productive potential of wells and hydrocarbon 

bearing formations. These operations act to increase 

productivity of a given formation by creating channels in 

reservoir rock or removal of the damage, thus facilitating the 

flow of fluids to be produced.  

         The design of a hydraulic fracture treatment in a 

particular formation involves the selection of appropriate 

fracturing fluids, propping agents’ concentrations, the 

injection rates and pressures. The proposed design is 

expected to give specific fracture geometry and 

conductivity, which is related to an enhanced production 

obtained from the fractured well. This implies that there are 

a significant number of possible fracture geometries arising 

from several possible combinations of the design parameters 

involved and their nonlinear interactions and this will result 

in a different post-fracture well production performance. 

         The hydraulic treatment design model started as far 

back as 1955 with Howard and Fast who published the 

mathematical model for 2D fracture propagation. Much has 

been written in the literature regarding fracture propagation 

and treatment design optimization. These include Perkins-

Kern-Nordgren(PKN) and Kristonouch-Geertsma 

Daneshy(KGN) models. Today, with the advent of high 

powerful computers, 3D fracture propagation models have 

been developed.[1] 

          Specifically on fracture design optimization, Ralph 

and Veatch[2] introduced the basic concepts of hydraulic 

fracture treatments cash flow analysis by applying the net 

present value as a valuable tool for obtaining the optimal 

design of hydraulic fracture treatment. An optimal hydraulic 

fracture treatment design yields maximum net present value 

of the cash flow after the treatment, considering cash in- 

flows and the treatment costs.  
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 Poulsen and Soliman [3] used fluid volume and propping 

agent concentration as design variables in the optimization 

process. The 2-dimensional fracture propagation model 

accounting for propping agent transport and sedimentation 

was adopted. No formal optimization procedure was used 

but sensitivity analysis aimed at minimizing the difference 

between calculated and desired fracture length and 

conductivity was adopted.  

Balen et al.[4] used the fracturing fluid, injected fluid 

volume and propping agent concentration, pumping rate, 

and propping agent types as design variables. In their work, 

a two-dimensional fracture propagation model for predicting 

fracture geometry and a cash flow model was used. The 

optimization procedure was based on a sensitivity analysis 

of the design variables with respect to net present value. 

 Hareland et al.[5,6,7] adopted fluid injection rate and 

fracturing fluid as design variables and a pseudo three-

dimensional fracture propagation model together with a 

post-fracture production and cash flow models. The 

optimization procedure was similar to that used by Balen et 

al  

Rueda et al. used the injected fluid volume, fracturing fluid 

type, propping agent type, and pumping rate as treatment 

design variables. The two-dimensional fracture propagation 

model for the prediction of fracture closure behavior, and a 

post-fracture production model coupled with cash flow 

model were used in their work. The optimization was a 

mixed integer linear programming (MILP) problem and 

solved accordingly.  

Mohaghegh et al.[8] used the fluid volume injected, 

propping agent concentration, and fluid injection rate as 

design variables. In their work used a three dimensional 

fracturing simulator for predicting fracture propagation and 

closure behavior, and prop pant transport and sedimentation 

were adopted. The optimization procedure used was a 

Genetic Algorithm.  

This paper presents a methodology called hybrid 

evolutionary computing and fuzzy support vector machines  

for the optimal design of hydraulic fracture stimulation 

treatments and prediction of post–fracture deliverability. 

This methodology includes the construction of an objective 

function, whose evaluation involves the analytical solution 

of mathematical model. Using evolutionary computing 

approaches (Particle Swarm Optimization (PSO), 

Differential Evolution (DE), hybrid DEPSO) promising 

solution domains are searched considering the information 

provided. The proposed optimization methodology provides 

a global evolutionary optimization, hence avoiding the 

potential problem of convergence to a local minimum in the 

objective function. 

 

II. OVERVIEW OF PARTICLE SWARM 

OPTIMIZATION (PSO) 

Particle swarm optimization (PSO) is an evolutionary 

computation technique, first introduced by Kennedy and 

Eberhart.[9,10,11] The main idea is used to model a group 

social behavior such as the way birds travel when trying to 

find sources of food, or fish schooling. The flowchart of the 

method is given in Fig.1.0. c1 and c2 are two positive 

constants, called the cognitive and social parameter 

respectively; ri1 and ri2 are random numbers uniformly 

distributed within the range [0, 1]. In each iteration, Eq. (1) 

is used to determine the i-th particle's new velocity, while 

Eq. (2) provides the new position of the i-th particle by 

adding its new velocity, to its current position. The 

performance of each particle is measured according to a 

fitness function, which depends on the problem. The role of 

the inertia weight w is considered important for the PSO's 

convergence behavior. The inertia weight is employed to 

control the impact of the previous history of velocities on 

the current velocity.  Thus, the parameter w regulates the 

trade-off between the global (wide-ranging) and the local 

(nearby) exploration abilities of the swarm. A large inertia 

weight facilitates exploration (searching new areas), while a 

small one tends to facilitate exploitation, i.e. fine-tuning the 

current search area. A proper value for the inertia weight w 

provides balance between the global and local exploration 

ability of the swarm, and, thus results in better solutions.  

PSO is initialized with a group of random particles 

(solutions) and then searches for optima by updating 

generations. In every iteration, each particle is updated by 

following two "best" values. After finding the two best 

values, the particle updates its velocity and positions with 

following equations (1) and (2). 

v[n+1] = v[n] + c1 * rand() * (pbest[n] - X[n]) + c2 * 

rand()*(gbest[n]-X[n])                                   (1)   

 

X[n+1]=X[n]+v[n+1]                                     (2)  

 

v[n] is the particle velocity, X[n] is the current particle 

(solution). pbest[n] and gbest[n] are defined as stated before. 

rand () is a random number between (0,1). c1, c2 are 

learning factors and usually c1 = c2 = 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Flow diagram illustrating the particle swarm 

 

The procedure describing proposed PSO approach is as 

follows. 

1. Initializing PSO with population size, inertia 

weight and generations. 
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2. Evaluating the fitness of each particle. 

3. Comparing the fitness values and determines the 

local best and global best particle. 

4. Updating the velocity and position of ea particle till 

value of the fitness function converges. 

 

III. DIFFERENTIAL EVOLUTION(DE) 

 

Differential Evolution, like other evolutionary computation 

methods, starts with an initial population that is generally 

randomly initialized. After determining the population, a 

new candidate individual is generated by applying mutation 

and crossover operators [12,13]. The mutation operator 

creates mutant candidate by perturbing a randomly selected 

candidate with the difference of two other randomly selected 

candidates. This candidate then becomes the input of 

selection operator and is examined if the candidate is better 

than the current member. If it is better, it will enter the next 

generation otherwise the current member remains in the 

population[20]. 

 

IV. HYBRID DIFFERENTIAL EVOLUTION WITH 

PARTICLE SWARM OPTIMIZATION 

ALGORITHM(DEPSO) 

 
The proposed DE-PSO as mentioned earlier is a hybrid 

version of DE and PSO. DE-PSO starts like the usual DE 

algorithm up to the point where the trial vector is generated. 

If the trial vector satisfies the specified condition, then it is 

included in the population otherwise the algorithm enters the 

PSO phase and generates a new candidate solution. The 

method is repeated iteratively till the optimum value is 

reached. The inclusion of PSO phase creates a perturbation 

in the population, which in turn helps in maintaining 

diversity of the population and producing a good optimal 

solution. [14,15,16] 

 

V.         OVERVIEW OF SUPPORT VECTOR 

MACHINES 

Vapnik proposed the support vector machines(SVMs) which 

was based on statistical learning theory. The governing 

principles of support vector machines is to map the original 

data x into a high dimension feature space through a non-

linear mapping function and construct hyper plane in new 

space.  The problem of regression can be represented as 

follows. Given a set of input-output pairs Z = {(x1, y1), (x2, 

y2), . . . ,(xℓ, yℓ)}, construct a regression function f that 

maps the input vectors x € X onto labels y € Y . The goal is 

to find a classifier f €F which will correctly predict new 

samples. There are two main cases to consider when we use 

a separating hyper-plane: 

1. A linearly separable case 

2. The data might not be linearly separable. 

SVMs tackle the first problem by finding the hyper-plane 

that realizes the maximum margin of separation between the 

classes. A representation of the hyper-plane solution used to 

classify a new sample xi is: 

                 Y=f(x)=wi(x)+b              (3) 

Where wi,(x)  is the dot-product of the weight vector w and 

the input sample, and b is a bias value. The value of each 

element of w can be viewed as a measure of the relative 

importance of each of the sample attributes for the 

prediction of a sample. Various research studies have shown 

that the optimal hyperplane can be uniquely constructed 

through the solution of the following constrained quadratic 

optimization problem. 

          Minimise1/2||w||+C ξ𝑙
𝑖=1 I                                                    (4a) 

subject to _ yi(||w||+ b) ≥ 1 − ξi, i= 1, . . . , ℓ 

ξi≥0,i=1,...,ℓ                                                                 (4b) 

In linearly separable problem, the solution minimizes the 

norm of the vector w which increases the flatness(or reduces 

the complexity) of the resulting model and hence the 

generalization ability is improved. With non-linearly 

separable hard-margin optimization, the goal is simply to 

find the minimum ||w|| such that the hyperplanef(x) 

successfully separates all ℓ samples of the training dataset. 

The slack variables ξi are introduced to allow for finding a 

hyperplane that misclassifies some of the samples (soft-

margin optimization) because many datasets are not linearly 

separable. The complexity constant C >0 determines the 

trade-off between the flatness and the amount by which 

misclassified samples are tolerated. A higher value of C 

means that more importance is attached to minimizing the 

slack variables than to minimizing||w||. Instead of solving 

this problem in its primal form of (4a) and (4b), it can be 

more easily solved in its dual formulation by introducing 

Langrangian multiplier α [17,18]: 

Maximize W(α)= αi𝑙
𝑖=1 +½  αiαjyiyj xi, xj      𝑙

𝑖 ,𝑗=1 (5a) 

Subject to C≥αi≥0, αiyi𝑙
𝑖=1 =0                                  (5b) 

In this solution, instead of finding w and b the goal now is 

find the vector α and bias value b, where each αi represents 

the relative importance of a training sample I in the 

classification of a new sample. To classify a new sample, 

the quantity f(x) is calculated as: 

f(x)= αiyiK xi, xj sv
𝑖=1 +b                                    (6) 

where b is chosen so that yif(x) = 1 for any I with C > αi>0. 

Then, a new sample xs is classed as negative if f(xs) is less 

than zero and positive if f(xs) is greater than or equal to 

zero. Samples xi for which the corresponding αi are non-

zero are called as support vectors since they lie closest to the 

separating hyperplane. Samples that are not support vectors 

have no influence on the decision function.  

Training an SVM entails solving the quadratic programming 

problem of (5a) and (5b). There are many standard methods 

that are be applied to SVMs, these include the Newton 

method, conjugate gradient and primal-dual interior-point 

methods, but this study used the Sequential Minimal 

Optimization. In SVMs, kernel functions are used to map 

the training data into a higher dimensional feature space via 

some mapping υ(x) and construct a separating hyperplane 

with maximum margin. This yields a non-linear decision 

boundary in the original input space. Typical types of 

kernels are: 

− Linear Kernel: K(x, z) =  x, z  
− Polynomial Kernel: K(x, z) = (1 +  x, z )d 

− RBF Kernel: K(x, z) = exp(−||x−z||2/2σ2 ) 

− Sigmoid Kernel: K(x, z) = tanh(γ* x, z  − θ) 

This condition ensures that the solution of (5a) and (5b) 

produces a global optimum. The functions that satisfy 

Mercer’s conditions can be as kernel functions. As 

promising as SVM is compared with ANN as regards 

generalization performance on unseen data, the major 

disadvantage is its black box nature. The knowledge learnt 

by SVM is represented as a set numerical parameters value 

making it difficult to understand what SVM is actually 

computing. 
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VI.          FUZZY LOGIC OVERVIEW 

 

Fuzzy Logic which was introduced by Lotfi A. Zadeh was 

based on fuzzy sets in 1965 [19,20,21]. The basic concept of 

fuzzy logic is to consider the intermediate values between 

[0,1] as degrees of truth in addition to the values 1 and 0. 

The following sections will briefly discuss the general 

principles of fuzzy logic, membership functions, linguistic 

variables, fuzzy IF-THEN rules, combining fuzzy sets and 

fuzzy inference systems (FISs). 

Fuzzy inference systems (FISs) are otherwise known as 

fuzzy-rule-based systems or fuzzy controllers when used as 

controllers. A fuzzy inference system (FIS) is made up of 

five functional components. The functions of the five 

components are as follows: 

1. A fuzzification is an interface which maps the crisp inputs 

into degrees of compatibility with linguistic variables. 

2. A rule base is an interface containing a number of fuzzy 

if-then rules. 

3. A database defines the membership functions (MFs) of 

the fuzzy sets used in the fuzzy rules. 

4. A decision-making component which performs the 

inference operation on the rules. 

5. A defuzzification interface which transforms the fuzzy 

results of the inference into a crisp output. The qualified 

consequents are combined to produce crisp output according 

to the defined methods such as: centroid of area, bisector of 

area, mean of maximum, smallest of maximum and largest 

of maximum etc. This final step is also known as 

defuzzification. The major disadvantage of standard fuzzy 

logic is the curse of dimensionality nature for high 

dimensional input space. For instance, if each input variable 

is allocated m fuzzy sets, a fuzzy system with n inputs and 

one output needs on the order of mn rules. 

 

VII. EXTRACTING FUZZY RULES FROM 

SUPPORT VECTOR MACHINE 

 

In this fuzzy SVM section, we will first give an insight into 

how to extract fuzzy rules from Support Vector Machine 

(SVM), and then explain the process of optimizing the fuzzy  

 rules and highlight an algorithm that will convert SVM into 

interpretable fuzzy rules. This method has both good 

generalization performance and ability to work in high 

dimensional spaces of support vector machine algorithm 

with high interpretability of fuzzy rules based models. 

Suppose a set of training dataset denotes the input space 

patterns. Their main concept is to construct a hyperplane 

that acts as a decision space such that the margin of 

separation between positive and negative samples is 

maximized. This is generally referred as the Optimal 

Hyperplane". This property is achieved as the support vector 

machines are an approximate implementation of the method 

of structural risk minimization[17]. Despite the fact that a 

support vector machine does not provide domain-specific 

knowledge, it provides good generalization ability, a unique 

property among the different types of machine learning 

techniques. Instead of solving this problem in its primal 

form of (4a) and (4b), it can be more easily solved in its dual 

formulation by introducing Langrangian multiplier α: as 

highlighted in section II. The crucial step in fuzzy SVM is to 

build a reliable model on training samples which can 

correctly predict class label and extract fuzzy rules from 

SVM. On the other hand, fuzzy rule-base which consists of 

set of IF-THEN rules constitutes the core of the fuzzy 

inference. Suppose there are m fuzzy rules, it can be 

expressed as following forms: 

Rule j: If x1 isAj1 AND x2 isAj2 AND ………xn is. Ajn 

THEN bj                                                                         (7) 

Where xk is the input variables; bj is the output variable of 

the fuzzy system; and Ak are linguistic terms characterized 

by fuzzy membership functionsaj
k

. If we choose product as 

the fuzzy conjunction operator, addition for fuzzy rule 

aggregation, and height defuzzification, then the overall 

fuzzy inference function is 

    F(x) =

 bj  aj
kn

k=1
m
j=1 (xk )

  aj
kn

k=1
m
j=1 (xk )

            (8) 

where F(x) 

is the output value when the membership function achieves 

its maximum value. If on the other hand, the input space is 

not wholly covered by fuzzy rules, equation(7) may not be 

defined. To avoid this situation, Rule0 can be added to the 

rule base 

   Rule0: If A0
1 AND A0

2 AND ………. A0
n THEN b0  

 

    F(x) =

b0+ bj  aj
kn

k=1
m
j=1 (xk )

1+  aj
kn

k =1
m
j=1 (xk )

             (9) 

 

In regression analysis, F(x) shows the predicted value of 

each input x and since the denominator is always positive, 

predicted value of  each input is computable by 

Label(x) =(b0 +  bj  aj
kn

k=1
m
j=1  xk         (10) 

In order to let equation (6) and (10) are equivalent, at first 

we have to let the kernel functions in (6) and the 

membership functions in (10) are equal. The Gaussian 

membership functions can be chosen as the kernel functions 

to satisfy the Mercer condition[22,23,24]. Besides, the bias 

term of the expression (6) should be zero. If the Gaussian 

function is chosen as the kernel function and membership 

functions, and the number of rules equals the number of 

support vectors then (6) and (10) becomes equal and then 

output of fuzzy system (10) is equal to the output of SVM 

(6). A membership function 𝞵(x) is reference function if and 

only if 𝞵(x)=𝞵(-x) and 𝞵(0)=1. A reference function with 

location transformation has the following property for some 

locations mj € R 

aj
k xk = ak(xk − mj

k) 

A translation invariant kernel k is given by 

K(x,mj)= ak(xk − mj
k)n

k=1   

Examples of reference functions are as shown in Table I 
 

 TABLE 1 

 REFERENCE FUNCTIONS 

 

 Reference functions 

Symmetric Triangle 𝞵(x)=Max(1- 𝑔 |x|,0)   𝑔>0 

Gaussian 𝞵(x)=𝑒−𝑔𝑥2
𝑔>0 

Cauchy 𝞵(x)=
1

1+𝑔𝑥2
𝑔>0 

Laplace 𝞵(x)=𝑒−𝑔|𝑥|𝑔>0 

Hyperbolic Secant 𝞵(x)=
2

𝑒𝑔|𝑥|+𝑒−𝑔|𝑥|
𝑔>0 
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VIII. METHODOLOGY 

 

The system is divided into two parts: as it makes use of 

different evolutionary strategies for hydraulic fracturing 

design optimization and prediction of post fracturing well 

performance. 

a. Hydraulic Fracturing design  using evolutionary 

computing approach(PSO, DE, Hybrid DE-PSO) 

Every individual of the population represents a potential 

solution of the oil/gas production problem. The evolution is 

guided by a strategy of selection of the individuals, with the 

intention of improving their "fitness", a measure based on 

the identified restrictions in the operational scenario 

determined by the fuzzy system. The optimization strategy 

involves construction of objective function which 

necessitates finding solution to hydraulic fracturing 

propagation model. 

b. Prediction of post fracturing well performance 

using fuzzy support vector machines. 

Various authors have used 2D, 3D/P-3D hydraulic 

fracturing models in their research work. In this paper, an 

analytical solution of 2D PKN-C fracture model was 

adopted. The basic solution for estimating the extent of the 

fracture takes into account the effects of fluid leakage into  

the formation and fracture propagation is derived from 

Carter equation(10). On basis of material balance,[25,26,27] 

Carter formulated the fracture model by assuming that at 

any injection time t, the injection rate entering the fracture is 

equal to the sum of the different leak-off rates plus the 

growth rate of the fracture volume. Hence, we have 

 

qi= 
𝐶𝐿

 𝑡−𝜏
(

𝑡

0

𝑑𝐴

𝑑𝑡
)𝑑𝜏 + 𝑤

𝑑𝐴

𝑑𝑡
+ 𝐴

𝑑𝑤

𝑑𝑡
                     (10) 

 

where qi=total injection rate bbl/min 

CL=Overall leak-off coefficient 

τ=Opening time at which filtration starts 

W=fracture width 

The analytical solution using Laplace Transforms of 

equation (10) is given by  

A(t)=
𝑤𝑞𝑖

4𝜋𝐶𝐿
2  exp 𝑥2 𝑒𝑟𝑓𝑐 𝑥 +

2𝑥

 𝜋
− 1              (11) 

 

χ =
2CL 𝜋𝑡

𝑤
 

The problem in this paper is an optimization problem with 

many design variables and evaluation of objective function 

The design variables include: 

 Injection time, mins 

 Volume of propping agent, gal 

 Fracture Area, ft2 

 propping agent concentration, Ib/gal 

 Propping agent required, Ib 

 Surface Injection pressure, Psi 

 Hydraulic horsepower, Hp 

 Fluid loss coefficient, ft/ 𝑚𝑖𝑛 

The objective function is  

Total fracture cost= (Fluid cost + Pumping cost) 

To calculate the total fracture treatment cost for a specific 

formation, evaluation of the fracture propagation model to 

determines the fluid cost and pumping costs are required. 

The design with lowest total cost yields optimum fracture 

design. Having obtained an optimal design, the post-fracture 

performance prediction model is derived using the fuzzy 

support vector machines highlighted in section(VII).  

 

IX. APPLICATION EXAMPLE 

This section gives an example of hydraulic fracturing 

design. Consider a well with characteristics as shown in 

Table II.  
TABLE II 

  

 

It is required to determine an optimum hydraulic fracturing 

treatment in order to obtain maximum production rate. 

The optimized hydraulic fracturing design parameters are as 

shown below (20/40 mesh sand, Lease oil fracturing fluid): 

 

X. RESULTS AND DISCUSSION 

Figure 2 shows the prediction of productivity ratio after 

fracturing using FuzzySVM with Cauchy kernel and 

membership function. The productivity ratio is 3.6 so that if 

the initial production was 240bbl/day, the production after 

fracturing is 864bbl/day. 

Figure 3 also show the performance comparison of DEPSO 

with DE and PSO for fitness function in Eq.(13) for 40 

generations and varying particle size. As it can be seen 

DEPSO is preferred to DE, PSO. However, DE and DE-

PSO seem to begin to converge as from the particle size 

greater than 60. The optimized fracturing design is as shown 

in Table III. The prediction performance of productivity 

ratio after fracturing using FuzzySVM with Cauchy and 

Gaussian kernel and membership functions are shown in 

Table IV.  The training dataset are as provided in the 

TableV. The testing dataset given in table VI is therefore 

used for validation and prediction of the productivity ratio 

which in turn is used to predict the production rate after 

fracturing. 

 
PSO/DE PARAMETERS FOR HYDRAULIC FRACTURING PROBLEM 

 

Parameter                                     Value 

C1                                                       1.2 

C2                                                       0.8 

CR                                                      0.5 

Well Depth ( ft)    5000.00 

Tubing size (in)                            2.0 

Oil Production rate (q)  bbl/day    240 

Oil gravity 35 

Productivity Index(J) bbl/day*Psi 15 

Reservoir Pressure Psi 1900 

Surface Temperature 0F 72 

Bottom Hole Temperature 0F 200 

Oil formation volume factor  (Bo)            1.25 

Porosity 0.135 

Initial Reservoir Pressure 1900 

Reservoir outer boundary rad, re ft 660 

Well bore radius rw ft 0.0333 

Casing diameter in 4.982 

Perforation diameter, in 0.375 

A TYPICAL HYDRAULIC FRACTURING DESIGN WELL DATA 
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TABLE III 

OPTIMIZED HYDRAULIC FRACTURING DESIGN 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
                                                                                               TABLE V  

 TRAINING DATA 

 

 

 
 

Fig 2 A plot of the experimental and predicted data versus  

the input data  

 
TABLE IV  

FUZZYSVM PERFORMANCE WITH DIFFERENT KERNEL 

FUNCTION 
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Wells

Post Fracture Performance

Original Data Predicted Data

Design  

Parameters 

PSO DE DE-PSO Conventional 

Technique 

Injection time, 

mins 

203.6 155 197.0 209.4 

Injection Rate, 

bbl/min 

20.8 27.4 21.5 20.8 

Volume of 

proppant, gal 

 

170018.3 170018.3 170182 174537.7 

Fracture Area ft2 199854 

 
199954 
 

193028 
 

198800 

Proppant conc. 

Ib/gal 

1.00 

 

1.046 
 

1.008 1.0125 

Sand Required, 

Ib 

177747 177747 171590 176721 

Surface Inj. 

pressure, Psi 

4804 5178.5 4841 4803 

Hydraulic 

horsepower, Hp 

2452 3470 2548 2443 

Fluid loss 

coeff., ft/ 𝑚𝑖𝑛 

0.0024285 0.0024
285 

0.002428

5 

0.0024285 

Total Treatment 

cost $ 

428346.2 427937 427579 438380 

Efficiency 7.5 8.7 8.5 7.1 

Well 

Name 

Fracturing 

Fluid 

Coefficient 

Injection 

Rate 

Total 

Injection 

Volume 

Sand 

Required 

Fracture 

Area 

Sand 

Concentr

ation 

Surface 

Injection 

Pressure 

Pre Frac 

Production 

Rate 

HorsePo

wer 

Required 

Fracturing 

Total Cost 

Producti

vity 

Ratio 

Eyak2 0.0364646 28.1993 1249.782 33545.8 37253.6 1.63 4814.60 230 3326.33 5896.39 4.2 

Eyak3 0.00111 36.1 40000 17600 198900 2.23 3263 280 2886 19500      4 

Eyak4 0.00144 30 30000 200200 75140 2.63 3300 240 2677 20450 3.4 

Eyak5 0.0012 35.9 40000 121000 193000 2.00 1511 230 1329 22300 3.8 

Eyak6 0.0011 30.9 126000 88000 100000 1.056 3058 210 2320 23755 5.1 

Method/ 

kernel 

function 

Samples Fuzzy 

rules 

C Gama RMSE Acc

urac

y% 

FuzzySVM(G

auss)  

5 3 2.0 0.1 0.387 81.6 

Fuzzy 

SVM(Cauchy) 

5 3 1.9 0.45 0.366 85.0 

                               Fig.3 Performance of PSO, DE and DE-PSO    Optimization Algorithm 
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TABLE V I 

TESTING DATA 
Well 

Name 

Fracturing 

Fluid 

Coefficient 

Injection 

Rate 

Total 

Injection 

Volume 

Sand 

Require

d 

Fracture 

Area 

Sand 

Concent

ration 

Surface 

Injection 

Pressure 

PreFrac 

Productio

n Rate 

HorseP

ower 

Requir

ed 

Fracturing 

Total Cost 

Producti

vity 

Ratio 

Eyak2 0.0364646 28.1993 1249.782 33545.8 37253.63 1.63 4814.604 230 3326. 

325 

5896.391 4.2 

Eyak3 0.00111 36.1 40000 17600 198900 2.23 3263 280 2886 19500 4 

Eyak4 0.00144 30 30000 200200 75140 2.63 3300 240 2677 20450 3.4 

Eyak5 0.0012 35.9 40000 121000 193000 2.00 1511 230 1329 22300 3.8 

Eyak6 0.0011 30.9 126000 88000 100000 1.056 3058 210 2320 23755 5.1 

Eyak8 0.0024285 21.5 174538 171590 193028 1.046 4841 240 2548 427579 ? 
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