

Abstract—The increase of smartphone usage has led to the

tremendous growth of the mobile application (apps)

development. However, some of the developers overlook

security aspects that may leave apps to be infected with mobile

malware. An effective way to encounter mobile malware

infection is important to avoid the victim of the infected

smartphone to lose any confidential, contacts, messages,

pictures and any other important information in their

smartphone. Therefore, this paper presents a new mobile

malware classification based on call log exploitation to

encounter the mobile malware infection using the covering

algorithm. The system call has been used as the main feature

for the classification formation. The experiment was conducted

on 5560 Drebin dataset as for training dataset and 500 mobile

applications from Google Play Store as the testing dataset in a

controlled lab environment. Open source tools and dynamic

analysis were used in this experiment. 206 patterns have been

produced based on the proposed mobile malware classification.

Furthermore, we have evaluated our patterns with the mobile

apps from the Google Play Store, where 4% from the mobile

apps in Google Play Store matched with our mobile malware

patterns. This new mobile malware classification is beneficial to

distinguish between the benign and malicious mobile apps and

can be used as guidance for other researchers with the same

interest in mobile malware analysis field.

Index Terms—mobile malware, call log exploitation, system

call.

I. INTRODUCTION

he high demand for mobile apps has led to the boom in

the mobile apps development. Apps can be easily

downloaded either from the Android, Apple, Google Play

store or any third party stores and there is no guaranteed that

the apps are virus free. Mobile malware is specifically built

to attack apps in the smartphone systems. It relies on

exploits of particular operating system and mobile phone

software technology and majority of mobile malware targets

the Android platform. Most mobile apps asked the user for

permission to access information such as contacts, cameras,

Manuscript received July 18, 2016; revised August 9, 2016. This work

was supported by Ministry of Higher Education (Malaysia), FRGS grant:

[FRGS/1/2014/I CT04/USIM/02 /1].

Madihah Mohd Saudi is with the Faculty of Science and Technology

(FST), Universiti Sains Islam Malaysia (USIM), as an associate professor

and a research fellow in Islamic Science Institute, Universiti Sains Islam

Malaysia (USIM), Bandar Baru Nilai, Nilai, 71800, Malaysia. (e-mail:

madihah@usim.edu.my).

Nurlida Basir is a senior lecturer and with the Faculty of Science and

Technology (FST), Universiti Sains Islam Malaysia (USIM), Bandar Baru

Nilai, Nilai, 71800 (email: nurlida@usim.edu.my).

Nur Fadhilah Mohd is with the Information Security and Assurance

(ISA) programme Faculty of Science & Technology (FST), Universiti Sains

Islam Malaysia (USIM), 71800 Nilai, Negeri Sembilan, Malaysia.

messages and location and user just accepts this term and

condition and assumes the apps are secured and the data will

not be misused. Surprisingly, an article written by Tara

stated that Android app stores especially third-party ones are

flooded with mobile malwares [1]. Furthermore, 10 million

Android phones worldwide have been infected by auto-

rooting apps especially by the HummingBad, which is

known as one of the famous auto-rooting malware [2].

Nevertheless, several threats have been found where they

can seriously affect Android applications. One of the threats

is by repackaging the mobile malware with benign apps and

republish into application store [5]. Stagefright is an

example of this threat, where it embedded itself in audio file

[3]. As for call exploitation among the mobile malware

examples are DroidJack/SandoRAT and Android.Hehe

[12,13].

One of the common ways to infect the apps is via system

call. System call is used to call native functionalities of the

kernel in the smartphone system [4]. System calls supply

useful functions to application like network, file, or process

related with operations. There are several works that have

been carried out for mobile malware detection summarized

in Table 1 [6-10]. Based on Table 1, apart from system call,

API and permission are another 2 ways to exploit the

smartphone system.
TABLE 1

 SUMMARY OF RELATED WORKS.

Related

Work

Key

Feature For

Analysis

Advantage Challenges

Burguera

et al.

2011) [6]

System

Call

Detection of

genuine app

based on

system call

False-positive

more likely to

occur if the app

make use less

system call

Ham &

Lee

(2014)[7

]

System

Call

Improved

version of

Crowdroid

with better

detection of

malware

The existing

weakness in

Crowdroid is not

addressed, no

improvement on

similar issue.

Gonzalez

et al.

(2015)

[8]

Meta-

informatio

n features

and n-

grams

Can

incrementally

process apps

without

training

period or

predefined

detection

patterns

Have a small

misclassification

error

A New Mobile Malware Classification for Call

Log Exploitation

Madihah Mohd Saudi, Nur Fadhilah Mohd and Nurlida Basir

T

Proceedings of the World Congress on Engineering 2017 Vol I
WCE 2017, July 5-7, 2017, London, U.K.

ISBN: 978-988-14047-4-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2017

Almin et

al (2015)

[9]

API calls Have a

system to

help user

identify

benign and

malign apps

during

installation

Limited to K-

means and Naïve

Bayesian

Sahs &

Khan

(2012)

[10]

Permission

Have 2

groups of

permissions

to detect the

malware

Not considering

system call and

API.

Therefore, this paper aims to investigate and evaluate how

mobile malware exploits system call for call log. Based on

the experiment conducted, a new mobile malware

classification based on system call for call log exploitation

for Android smartphone has been developed in this paper.

206 patterns have been developed based on the proposed

mobile malware classification. The proposed classification is

further evaluated with 500 mobile apps from Google Play

Store and 4% of the apps matched with patterns proposed.

This paper is organized into four sections. Section 2

presents the methodology used in this research. Section 3

presents the results discussion. Section 4 concludes and

summarizes the potential future work of this research paper.

II. METHODOLOGY

 In order to investigate and evaluate how mobile malware

exploit the system call and to develop a system call

classification based on the surveillance of the call log on a

smartphone; this research follows the framework as

illustrated in Figure 1 for data collection and analysis

processes. Two types of dataset used in this research are

training dataset and testing dataset. The training dataset was

downloaded from Drebin project where this dataset was

collected from the Play Store, different alternative Chinese

Markets, alternative Russian Markets and other Android

websites, malware forums and security blogs during August

2010 to October 2012. Additionally, it includes all samples

from the Android Malware Genome Project. After the

adware samples have been removed, the final dataset

contains 5,560 malware samples. Drebin dataset is one of

the largest malware datasets that has been used to evaluate

malware detection in Android [11]. Several top 24 families

of malware that contains in Drebin dataset are FakeInstaller,

DroidKungFu, Plankton, Opfake, GinMaster, BaseBridge

and DroidDream. On the other hand, the testing dataset was

downloaded from Google Apps Store. The testing dataset

was used to test the accuracy of the result produced by this

research. There were a total of 500 anonymous samples

downloaded from the most popular applications used among

the Android users.

A controlled laboratory environment is used as illustrated

in Figure 2. All the tools and software used in this

experiment are almost 80% open source application and

available on a free basis. To prevent any leakage of the

mobile malware to the public, outgoing connection is strictly

prohibited. Any antivirus that installed in the personal

computer also disabled to forbid the immediate elimination

of the application. Then, the Drebin dataset that mentioned

above were tested in this lab.

Dataset was downloaded from Drebin

System Call of an Application was monitored and

documented

Evaluated the System Call Classification with

applications from Google Play Store

Obtained System Call Classification

Dynamic Analysis Finished

Identified and Retrieved the Parent Processes of the

Android Application

Rootly Control the Emulator Device by using Android

Debug Bridge (ADB)

Data Analysis using Dynamic Technique (Strace

Module)

Tools were Installed

Set Up Laboratory Environment

Fig. 1. Overall Research Processes

Fig. 2. Tools

Proceedings of the World Congress on Engineering 2017 Vol I
WCE 2017, July 5-7, 2017, London, U.K.

ISBN: 978-988-14047-4-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2017

Dynamic analysis approach was used in this research to

accomplish the purpose of this research. This approach is

where the mobile malware sample is executed within a

controlled lab and its action and behavior is observed. The

behaviors of the application were monitored through system

calls. Figure 3 shows the example of system call that

captured in a running application. The steps of analysis

processes that are involved:

• Start Android Virtual Device from Genymotion

• Run Android Debug Bridge

• Install the application (adb install xxx.apk)

• Emulate the device (adb shell)

• Identify and retrieve the parent process of the Android

 application (ps)

• Entry the point to trace the running application’s

 system call (strace –p id –c)

Fig. 3. Examples of System Calls Executed

Method covering algorithm was applied to verify the results.

Covering Algorithm operates by adding tests into the rules

that is under construction to create a rule with maximum

accuracy. It involves finding an attribute to split on but the

criterion for the best attribute is an attribute-value pair to

maximize the probability of the desired classification.

III. RESULTS AND DISCUSSION

A new system call classification is produced after reviewing

the full pattern of the system calls that generated by the

application based on the classification of system call for call

logs financial exploitation that produced from the previous

study by [11]. Total patterns of system call that produced

from 5560 samples are 206 patterns. Table II indicates

examples of 20 patterns that were generated based on the

system calls for the applications and it represents by number

and alphabet to create a pattern. These system calls are

related with call logs. These numbers and alphabets

representation are used in Table III. Among these 68 system

calls, a few system calls have been identified to use some of

the calls for exploitation and these identified system calls are

used as the input to generate patterns in Table III.

A new classification system call for call logs exploitation

is developed based on 206 identified patterns. To validate

these patterns, a testing was carried out by using 500

anonymous dataset gathered from Google Play Store from

different game, tools, personalisation and antivirus

applications. The accuracy of the system call classification

for call logs was evaluated and the result of the testing

dataset is presented in Table IV. There are 20 mobile

applications (apps) that matched with the proposed patterns

which consist of 5 different categories which are 6 apps for

games, 4 apps for tools, 8 apps for games, 1 app for

communication and 1 app for personalization. The names for

the matched apps are written as anonymous and sanitized to

avoid conflict of interest with any parties.

TABLE II

SYSTEM CALLS FOR MOBILE APPLICATIONS

TABLE III.

 20 PATTERNS GENERATED

No Pattern

R1 z4+z5+z8+z10+z11+z12+z14+z17+z20+z56+z58+z59

R2 z3+z27+z59

R3 z3+z4+z5+z21

R4
z3+z4+z5+z6+z7+z8+z10+z11+z12+z13+z14+z16+z17

+z18+z19+z20+z21+z26+z28+z41+z56+z58+z59+z62

R5
z3+z4+z5+z6+z7+z8+z10+z11+z12+z13+z14+z16+z17

+z18+z20+z21+z28+z32+z56+z58+z59+z62+z66

R6

z3+z4+z5+z6+z7+z8+z10+z11+z12+z13+z14+z16+z17

+z18+z20+z21+z28+z39+z40+z42+z56+z57+z58+z59+

z62+z66

R7
z3+z4+z5+z6+z7+z8+z10+z11+z12+z13+z14+z16+z17

+z18+z20+z21+z28+z42+z56+z58+z59+z62+z66

R8
z3+z4+z5+z6+z7+z8+z10+z11+z12+z13+z14+z16+z17

+z18+z20+z21+z28+z56+z58+z59+z62+z66

R9
z3+z4+z5+z6+z7+z8+z10+z11+z12+z13+z14+z16+z18

+z20+z26+z34+z36+z37+z41+z45+z56+z58+z59+z62

R10 z3+z4+z5+z6+z7+z8+z9+z10+z11+z12+z13+z14+z16+

No System Call No System Call

z1 clock_gettime z35 sendmsg

z2 epoll_wait z36 socket

z3 Recvfrom z37 bind

z4 Sendto z38 getsockname

z5 Futex z39 unlinkat

z6 Gettimeofday z40 renameat

z7 Writev z41 madvise

z8 getuid32 z42 pwrite

z9 Read z43 fdatasync

z10 Ioctl z44 getdents64

z11 Write z45 setsockopt

z12 Close z46 getpriority

z13 Openat z47 lseek

z14 mmap2 z48 _llseek

z15 Newfstatat z49 setpriority

z16 Mprotect z50 pipe2

z17 Dup z51 socketpair

z18 fcntl64 z52 readlinkat

z19 epoll_ctl z53 nanosleep

z20 Munmap z54 getrlimit

z21 Pread z55 wait4

z22 rt_sigprocmask z56 brk

z23 sched_yield z57 fchown32

z24 Getsockopt z58 getpid

Z25 Ppoll z59 gettid

z26 Clone z60 lstat64

z27 rt_sigreturn z61 recv

z28 Faccessat z62 stat64

z29 fstat64 z63 sigprocmask

z30 Prctl z64 cacheflush

z31 Fchmodat z65 select

z32 Fsync z66 umask

z33 Mkdirat z67 pipe

z34 Connect z68 fork

Proceedings of the World Congress on Engineering 2017 Vol I
WCE 2017, July 5-7, 2017, London, U.K.

ISBN: 978-988-14047-4-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2017

z17+z18+z19+z20+z21+z23+z24+z26+z27+z28+z31+z

32+z33+z34+z36+z37+z38+z39+z40+z41+z42

+z43+z44+z45+z46+z47+z48+z56+z57+z58+z59+z60+

z62+z66

R11

z3+z4+z5+z6+z7+z8+z9+z10+z11+z12+z13+z14+z16+

z17+z18+z19+z20+z21+z23+z24+z26+z28+z31+z32+z

33+z34+z36+z39+z40+z41+z44+z45+z47+z56

+z58+z59+z60+z62

R12

z3+z4+z5+z6+z7+z8+z9+z10+z11+z12+z13+z14+z16+

z17+z18+z19+z20+z21+z23+z24+z26+z28+z31+z32+z

34+z36+z37+z38+z39+z40+z42+z43+z45+z47

+z56+z57+z58+z59+z60+z62+z66

R13

z3+z4+z5+z6+z7+z8+z9+z10+z11+z12+z13+z14+z16+

z17+z18+z19+z20+z21+z23+z24+z26+z28+z36+z37+z

38+z41+z44+z45+z47+z56+z58+z59+z60+z62

R14

z3+z4+z5+z6+z7+z8+z9+z10+z11+z12+z13+z14+z16+

z17+z18+z19+z20+z21+z23+z26+z27+z28+z31+z32+z

33+z34+z36+z37+z39+z40+z41+z42+z43+z44

+z45+z47+z48+z56+z57+z58+z59+z60+z62+z66

R15

z3+z4+z5+z6+z7+z8+z9+z10+z11+z12+z13+z14+z16+

z17+z18+z19+z20+z21+z23+z26+z27+z28+z31+z32+z

33+z34+z36+z37+z39+z40+z41+z45+z56+z58

+z59+z60+z62

R16

z3+z4+z5+z6+z7+z8+z9+z10+z11+z12+z13+z14+z16+

z17+z18+z19+z20+z21+z23+z26+z27+z28+z34+z36+z

37+z41+z45+z47+z56+z58+z59+z62

R17

z3+z4+z5+z6+z7+z8+z9+z10+z11+z12+z13+z14+z16+

z17+z18+z19+z20+z21+z23+z26+z28+z31+z32+z33+z

39+z40+z41+z42+z43+z56+z57+z58+z59+z60

+z62+z66

R18

z3+z4+z5+z6+z7+z8+z9+z10+z11+z12+z13+z14+z16+

z17+z18+z19+z20+z21+z23+z26+z28+z31+z32+z33+z

39+z40+z41+z47+z56+z58+z59+z60+z62

R19

z3+z4+z5+z6+z7+z8+z9+z10+z11+z12+z13+z14+z16+

z17+z18+z19+z20+z21+z23+z26+z28+z31+z32+z33+z

39+z40+z41+z56+z58+z59+z60+z62

R20

z3+z4+z5+z6+z7+z8+z9+z10+z11+z12+z13+z14+z16+

z17+z18+z19+z20+z21+z23+z26+z28+z31+z32+z33+z

41+z47+z56+z58+z59+z60+z62

TABLE IV

 20 APPLICATIONS MATCHED WITH THE PROPOSED PATTERNS

Testing

Dataset

Category

Type

A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

A11

A12

A13

A14

A15

A16

A17

A18

A19

A20

Games

Games

Games

Games

Games

Games

Tools

Tools

Tools

Games

Games

Games

Games

Games

Games

Games

Games

Tools

Communication

Personalisation

IV. CONCLUSION

This research has successfully developed a new system

call classification for exploiting call logs and very beneficial

in identifying mobile malware exploitation in mobile

applications. In future, this new system calls classification

and patterns can be used as an input to develop a new model

to detect mobile attacks exploitation via call logs.

Furthermore, this research can be used as guidance for other

researcher to extend their work in mobile malware analysis.

REFERENCES

[1] Tara Seals. (2016, 22 Jan). Android App Stores Drenched with

Malware, [Online]. Available: http://www.infosecurity-

magazine.com/news/android-app-stores-drenched-with/

[2] Dan Goodin. (2016, 8 Jul). 10 million Android phones infected by

all-powerful auto-rooting apps. [Online]. Available:

http://arstechnica.com/security/2016/07/virulent-auto-rooting-

malware-takes-control-of-10-million-android-devices/ (Accessed 9

August 2016).

[3] Andrew Tarantola (2015, 10 Jan), Stagefright by now spreads using

maliciouc audio files. [Online]. Available:

https://www.engadget.com/2015/10/01/stagefright-bug-now-spreads-

through-malicious-audio-files/(Accessed 9 August 2016).

[4] F. Tchakounté, P. Dayang. (2013). System Calls Analysis of

Malwares on Android. International Journal of Science and

Technology, Volume 2 No. 9, September, [Online]. Available:

www.journalofsciencestechnology.org/archive/2013/sep_vol/551379

7455.pdf(Accessed 9 August 2016).

[5] Zhou, W., Zhou, Y., Jiang, X., & Ning, P. (2012). Detecting

repackaged smartphone applications in third-party android

marketplaces. Proceedings of the Second ACM Conference on Data

and Application Security and Privacy - CODASKY '12.

[6] I. Burguera, U. Zurutuza & S.N. Tehrani.(2011). Crowdroid :

Behavior-Based Malware Detection System for Android, SPSM '11

Proceedings of the 1st ACM workshop on Security and privacy in

smartphones and mobile devices pp. 15–25]

[7] Y. J. Ham and H.-W. Lee. (2014). “Detection of Malicious Android

Mobile Applications Based on Aggregated System Call Events,” Int.

J. Comput. Commun. Eng., vol. 3, no. 2, pp. 149–154.

[8] H. Gonzalez, N. Stakhanova, and A. A. Ghorbani, (2015).

“DroidKin : Lightweight Detection of Android Apps Similarity.”
Lecture Notes of the Institute for Computer Sciences, Social

Informatics and Telecommunications Engineering. Volume 152, pp

436-453.

[9] Almin, S. B., & Chatterjee, M. (2015). A Novel Approach to Detect

 Android Malware. Procedia Computer Science, 45, 407-417.

[Online].Available: http://www.sciencedirect.com/science/article/

pii/S1877050915004135 (Accessed 9 August 2016).

[10] Sahs, J., & Khan, L. (2012). A Machine Learning Approach to

 Android Malware Detection. 2012 European Intelligence and

Security Informatics Conference, pp 141-147.[Online] Available:

 http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6298824&

url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3

Farnumber%3D6298824 (Accessed 9 August 2016).

[11] H. Albanna, M. M. Saudi, N. Basir (2015). A systematic Review

 Analysis of Root Exploitation for Mobile Botnet Detection.

Advanced Computer and Communication Engineering Technology,

Lecture Notes in Electrical Engineering. Volume (362). pp 113-122.

[12] Hitesh Dharmdasani (2014). Android.Hehe: Malware Now

Disconnects Phone Calls.[Online] Available:

https://www.fireeye.com/blog/threat-research/2014/01/android-hehe-

malware-now-disconnects-phone-calls.html

[13] Peter Coogan (2014). DroidJack RAT: A Tale of How Budding

Enterpreneurism Can Turn to Cybercrime. [Online] Available:

http://www.symantec.com/connect/blogs/droidjack-rat-tale-how-

budding-entrepreneurism-can-turn-cybercrime (Accessed 9 August

2016).

Proceedings of the World Congress on Engineering 2017 Vol I
WCE 2017, July 5-7, 2017, London, U.K.

ISBN: 978-988-14047-4-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2017

http://www.sciencedirect.com/science/article/
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6298824&

