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Performance Analysis of the
Fast-NLMS type Algorithm

M. Arezki, A. Namane and A. Benallal

Abstract—The performance analysis of Fast normalized
least-mean-square (FNLMS) algorithm is presented. We
propose to use convergence bounds on the adaptation step-size
obtained for the NLMS algorithm using the approximate mean-
square analysis and we will try to see how the FNLMS
algorithm affects the adaptation gain compared to the NLMS
algorithm. We provide a theoretical justification for this
algorithm by formulating a new stability condition. It will be
followed by an analytical analyze of the FNLMS algorithm
convergence and we show, both theoretically and
experimentally, its robustness.

Index Terms—Fast RLS, Estimation, Adaptive Filtering,
Propagation of Errors, Numerical Stability.

I. INTRODUCTION

ECENTLY, a new adaptive algorithm with fast

convergence and low complexity is proposed [1]. This
Fast Normalized Least Mean Square (FNLMS) algorithm
derived from the Fast Recursive Least Squares (FRLS)
algorithm where the adaptation gain is obtained by
discarding completely the forward and backward predictors.
In the following section, we propose to use convergence
bounds on the adaptation step-size obtained for the NLMS
algorithm using the approximate mean-square analysis [2]
and we will try to see how the FNLMS algorithm affects the
adaptation gain compared to the NLMS algorithm. We
provide a theoretical justification for this algorithm by
formulating a new stability condition. It will be followed by
an analytical analyze of the FNLMS algorithm convergence
and we show, both theoretically and experimentally, its
robustness.

Il. ADAPTIVE ALGORITHMS

The main identification block diagram of a linear system
with finite impulse response (FIR), by adaptive filtering
using an adaptation algorithm, is represented in Fig 1. The
output a priori error g, of this system at time n is:
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ELn=dy Y, @
where ¥, =w/[ X, , is the model filter output, x,, is a
vector containing the last L samples of the input signal x, ,
w, , is the coefficient vector of the adaptive filter and L is

the filter length. We assume that the desired signal from the
model is:

T
d, =v, +Wopt L XLn 2

where w,, is the unknown system impulse response
vector and v, is a stationary, zero-mean, and independent

noise sequence that is uncorrelated with any other signal.
The superscript " describes transposition.
The error signal &, can be used to adapt the adaptive filter

W, ., using some algorithm for filter adaptation. Several
different algorithms for filter adaptation have been
proposed. The filter is updated at each instant by feedback
of the estimation error proportional to the adaptation gain,
denoted as g, ,, and according to:

WL,n = WL,n—l + g L,n gn (3)
The different algorithms are distinguished by the adaptation
gain calculation.

A. NLMS and FRLS Algorithms

For the NLMS algorithm, the adaptation gain is given by:

u
=— £  x 4
gL,n L”x,n +Co L,n ( )

where x is referred to as the adaptation step, ¢, is a small

positive constant used to avoid division by zero in absence
of the input signal and =, , is the power of input signal [3].

The computational complexity of this algorithm is 2L
multiplications per sample.
For the FRLS algorithm, the adaptation gain is given by:

Jin :7/nkL,n (5)
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Fig. 1. System identification block diagram.
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where the variables y, and EL_n respectively indicate the

likelihood variable and normalized Kalman gain vector. This
latter is calculated, independently of the filtering part w_,,

by a FRLS algorithm using forward/backward linear
prediction analysis over the signal x, [4]. The calculation
complexity of a FRLS algorithm is of order L.

B. The Fast-NLMS type Algorithm

Recently, a new adaptive algorithm with fast convergence
and low complexity is proposed [1]. This algorithm FNLMS
derived from the FRLS algorithm where the adaptation gain
is obtained by discarding completely the forward and
backward predictors. Thus in this algorithm, we proposed a
simplified adaptation gain:

€

{k} B rraers (6)
q,

kL,n—l
where the prediction error e, is evaluated using a first order
prediction model:

€, =X, —a, Xy (7
where a, is a prediction parameter which minimizes the
cost function E{eﬁ}. An estimate of this parameter is given
by the following equation:

r
an — lx,n (8)
rOx,n + Ca

where 1, , is an estimate of the first lag correlation function
of X,, ., an estimate of the input signal power and c, is
a small positive constant used to avoid the possibility of a

dividing term very close to zero. The forward prediction
error variance is now evaluated by:

a, =Aa, 1+ eﬁ ©)
The small positive constant c, is added to the dividing term

Aa,_, to overcome divisions by small values as in the case

of the NLMS algorithm. Thus, we obtain an algorithm
similar to the NLMS algorithm in term of the computational
complexity; i.e. 2L multiplications per iteration. It is given in
Table I.

I1l. PERFORMANCE ANALYSIS OF FNLMS ALGORITHM

In this section, the stability condition and error analysis
filtering part of the FNLMS algorithm will be presented.

A. The Stability Condition

We use convergence bounds on the adaptation step-size
4 obtained for the NLMS algorithm using the approximate

mean-square analysis [2] and we will try to see how the
FNLMS algorithm affects the adaptation gain compared to
the NLMS algorithm. For this purpose, we suppose that the
input signal is white Gaussian stationary signal and consider
that all recursive variables of the algorithm have reached
their true asymptotic values. In particular [6], we replace the
following slowing quantities by their asymptotic values:
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TABLE |
FNLMS ALGORITHM (2L)

Initialization:

Wi o=k g=0il0=Epino=0;
ag=A"Eg;yg=1; Eg>Lo? /100
Variables available at the discrete-time index n:
fix,n-1 5 Tox,n-17 @n-1 3 /n-1s kL,n—l; Wi n1
New information: x,,d, .

Mx,n = (1_23) Nx,n-1 +ﬂa Xn Xn-11

2.
Tox,n = (1_ﬂa) Tox,n-1 +la Xn
r1><,n
ay=—"—;
rOx,n +Cal

. 2.
€ =Xy —an Xnq; A =Aogg+eq;
- Adaptation Gain:

- e,
{k'-‘"} =| dan1+Cq |3
On

Kina
Xn € . Vn-1
5n:¢_% Xn-L 7n:n—
Aoty +Co 1+6, 7

- Filtering Part:
Zo=d =W X -0 gy =0y — W] X
n—4n Ln-1%L,n >+ ¢n —¥n L,n-12L,n

Win=Wrn-1t4oénn kL,n

a, = 10a
n~122 (10a)
~ X
Ky, z+ (10b)
EO'E +C0
1 1
}/ = = ~ 10C
"olek] x,, Lo? (102)
T
Aoy
+C,
1-1
where o7 =E{x§}. Using approximations (10), the
adaptation gain for the FNLMS algorithm is:
Jin = Mo 7nkL,n zGFXL,n (11)
where
Gy = o (12)

LoZ|1+ 2, COZ
(1-A)L Lo,
The error &, calculated by (1) is called a priori, because it
employs the coefficients before updating. The a posteriori
error is defined as:
&p = dn _W[,nXL,n (13)
and it can be computed after (1) and (3) have been
completed. Now, from (1) and (3), (13) can be written as:
&y = (1_XI,n gL,n)En (14)

The system can be considered stable if the expectation of the
a posteriori error magnitude is smaller than that of the a
priori error, which is logical since more information is
incorporated in &,. If the error &, is assumed to be

independent of the L most recent input data, which is
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approximately true after convergence, the stability condition
is:

[1-EfGex] x| <1 (15)
which yields

0<Gelol<2 (16)
from which we obtain the stability condition :

O<pp<2 an
with

L = o (18)
A Co
1+ +
@-)L Lo?

The influence of the power signal in the adaptation gain can
Co

2
X

be reduced by choosing <<1.

(o2

B. Error Analysis Filtering Part

The analysis uses the common independence assumption
that the current input signal vector is statistically
independent of the current coefficient vector of the adaptive
filter [5]. We define the weight-error vector at time n as:

AWL,n = Wopt,L _WL,n (19)
The output a priori error &, can be written as:

En=Vp+ XI,nAWL,n—l (20)
The recursion in (3) on the coefficient error vector is:

AWL,n = [I L _gL,nX-IL—,n ]AWL,n—l —0LnVh (21)

The mean behavior of the FNLMS coefficient error vector
can now be determined by taking the expected value of both
sides of (21) and using the independence assumption to
yield:
E{AWL,n}: [ .-G Rxx] E{AWL,n—l}
-Gg E{xLynvn} (22)

where R,, :E{xmx[‘n}. Moreover, the input signal is a

sequence of uncorrelated Gaussian variables R, = o2l , we
obtain:

E{AWL,n }: GAW E{AWL,n—l} (23)
where
G =[G af)zl—”—LF (24)

The steady-state solution of (23) is:
if Gy, <1 = E{Aw(w0)}=0,, from which we obtain the

steady-state mean coefficient vector of the FNLMS adaptive
filter as:

Efw (0)}=Wop (25)
The mean square error MSE(n) :E{Enz} can be written as:
MSE(n) = (o2 +tr[ Ry Efaw, , .aw! 4 }]) (26)

from which we obtain:

MSE(n) = o2 + 072 E{||Awm,1 |2} 7)
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where E{vﬁ}—az tr[. ] represents the trace operator and

=o?,
|| . || denotes the 2-norm vector.

2
Let the filter misalignment be defined as ||Avan

, we
can derive the expected misalignment for the next sample as

Mis(n) = E{ “AW,_'n

2
} . For that, we need to determine the

next expressions:

E{AWLVHAW[M }:

E{[I L g L,nX[,n ]AWL,n—l AW-If,n—l [I L™ g L,nXI,n ]T }
- E{[I L—9 L,nX[,n ]AWL,n—l g[,nvn }

- E{Vn gL,nAWI,n—l[I L _gL,nX[,n ]T } + E{g L,ngI,nVr%} (28)

Using the independence assumption and approximations
(10), we obtain:

E{AWLVHAW[M }:
(-Geo?fElaw, aw] [+ GE o2 o2 1, 29)
By using (24), the recursive expression (29) becomes:
E{AWLVHAW[M }:
2

2 O,
Giw E{AWL,n—lAW[,n—l }+ (1_ GAW) O'_\; I L (30)
By taking the trace of both sides of (29), we can write the

misalignment at time n as:

2
Mis(n) = G2, Mis(n-1)+ (-G, | 2L L 31)

X
The stability of the recursion (30) is guaranteed if G,,, <1.
We define the normalized mean square error NMSE(n) and
the normalized misalignment Nmis(n) as follow:

NMSE(n) = {E jz J (32)
2
Nmis(n) = E{"W—Lnuz} (33)
Wopt,L"

By using the independence assumption, we obtain:

2 2 E 2
Uv +Gx WL,n—l

NMISE(n) = ———"— ! (34)
Oy +Gx Wopt,L"
2 2
Nmis(n) = G2, Nmis (n—1) + ﬁzﬂﬁz L (35)
O Wopt,L"

Let us consider the signal to noise ratio SNR,, =0 /0;,

2
2 2 2
where o-y:E{yn}:o-X "Wopu_” . After convergence, the

expressions (34) and (35) become:

1+ ﬂ L
1+G,,
NMSE(w0) = ———2/ (36)
1+SNR,,
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1-G

. L
Nmis(oo) =| ——aw | — 37
() [1+GAWJSNROM (37)

IV. SIMULATIONS

In this section, we present some simulation results to
verify the proposed mean theoretical results derived in this
paper.

For the FNLMS algorithm, we use two different forgetting
factors. The first one A4 is chosen according to condition
(18). We have noticed in practice that the FLNMS algorithm
remains stable even for very small values of 4. The second
forgetting factor A, can be adjusted according to the degree
of non-stationarity of the input signal; i.e., very close to one
for stationary signal and calculated at least over a
rectangular window of 15ms for the speech signal. The
initial values for variances and regularisation constants are
set to a value comparable with the input signal power o-x2 ;
ie. co=c,= E =1L
We try to estimate an impulse response w,,, of length
L=256 the same length is used for the adaptive filter w_,.

The input signal x, used in our simulation is a white
Gaussian noise, with mean zero and variance equal to 1. The
reference signal d, is obtained by convolving w with

and adding a white Gaussian noise signal with an

optL

Xn

SNR,,; of 50 dB. Performance of the estimation is measured
by the normalized mean square error NMSE(n) and the
normalized misalignment Nmis(n).

Figure 2, presents the NMSE(n) determined from

simulation and from the theoretical expression in (34). From
this plot, we observe that simulation and theoretical curves
agree very well.

Figure 3, shows the convergence of the normalized
misalignment Nmis(n)as obtained from the theoretical

analysis (35) and from simulation results. It can be seen that,
for long adaptive filter, there is a good agreement between
the actual behavior of the algorithm and that predicted by the
theoretical expression.

Figure 4, shows theoretical and experimental values for
different values of the SNR,. These results and the
previous ones have confirmed and validated the good

properties of our proposed analysis of the FNLMS
algorithm.

] R S S AR The |
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Fig. 2. Comparison of theoretical and simulation curves of the NMSE(n) .
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Fig. 3. Comparison of theoretical and simulation curves of the Normalized
Misalignment Nmis(n) .
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Fig. 4. Comparison of theoretical and simulation curves of the Normalized
Misalignment for different values of the SNR, ;.

V. CONCLUSION

We have analyzed the numerical properties of the FNLMS
algorithm by using the common independence assumption
that the current input signal wvector is statistically
independent of the current coefficient vector of the adaptive
filter. We also consider that all variables of the algorithm
have reached their true asymptotic values. In particular, we
replace the following slowing quantities by their asymptotic
values. The condition of stabilization was shown to be
capable of maintaining a good convergence performance by
way of computer simulations.
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