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Abstract—The performance analysis of Fast normalized 

least-mean-square (FNLMS) algorithm is presented. We 

propose to use convergence bounds on the adaptation step-size 

obtained for the NLMS algorithm using the approximate mean-

square analysis and we will try to see how the FNLMS 

algorithm affects the adaptation gain compared to the NLMS 

algorithm. We provide a theoretical justification for this 

algorithm by formulating a new stability condition. It will be 

followed by an analytical analyze of the FNLMS algorithm 

convergence and we show, both theoretically and 

experimentally, its robustness. 

 
Index Terms—Fast RLS, Estimation, Adaptive Filtering, 

Propagation of Errors, Numerical Stability. 

 

I. INTRODUCTION 

ECENTLY, a new adaptive algorithm with fast 

convergence and low complexity is proposed [1]. This 

Fast Normalized Least Mean Square (FNLMS) algorithm 

derived from the Fast Recursive Least Squares (FRLS)   

algorithm where the adaptation gain is obtained by 

discarding completely the forward and backward predictors. 

In the following section, we propose to use convergence 

bounds on the adaptation step-size obtained for the NLMS 

algorithm using the approximate mean-square analysis [2] 

and we will try to see how the FNLMS algorithm affects the 

adaptation gain compared to the NLMS algorithm. We 

provide a theoretical justification for this algorithm by 

formulating a new stability condition. It will be followed by 

an analytical analyze of the FNLMS algorithm convergence 

and we show, both theoretically and experimentally, its 

robustness.   

II. ADAPTIVE ALGORITHMS  

The main identification block diagram of a linear system 

with finite impulse response (FIR), by adaptive filtering 

using an adaptation algorithm, is represented in Fig 1. The 

output a priori error n  of this system at time n is: 
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nnnL yd ˆ
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where nLnLny ,
T

1,
ˆ xw   is the model filter output, nL ,x  is a 

vector containing the last L samples of the input signal nx , 

nL,w  is the coefficient vector of the adaptive filter and L is 

the filter length. We assume that the desired signal from the 

model is:  

   nLLnn vd ,
T

,opt xw                                                        (2) 

where L,optw  is the unknown system impulse response 

vector and nv  is a stationary, zero-mean, and independent 

noise sequence that is uncorrelated with any other signal. 

The superscript 
T
 describes transposition. 

The error signal n  can be used to adapt the adaptive filter 

1, nLw  using some algorithm for filter adaptation. Several 

different algorithms for filter adaptation have been 

proposed. The filter is updated at each instant by feedback 

of the estimation error proportional to the adaptation gain, 

denoted as nL ,g , and according to: 

   nnLnLnL ,1,, gww                                                    (3) 

The different algorithms are distinguished by the adaptation 

gain calculation. 

A. NLMS and FRLS Algorithms 

For the NLMS algorithm, the adaptation gain is given by: 

nL

nx

nL
cL

,

0,

, xg






                                                  (4)              

where   is referred to as the adaptation step, 0c  is a small 

positive constant used to avoid division by zero in absence 

of the input signal and nx ,  is the power of input signal [3]. 

The computational complexity of this algorithm is 2L 

multiplications per sample. 

For the FRLS algorithm, the adaptation gain is given by:  

nLnnL ,,

~
kg                                                                  (5) 
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Fig. 1.  System identification block diagram. 
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where the variables n  and nL,

~
k  respectively indicate the 

likelihood variable and normalized Kalman gain vector. This 

latter is calculated, independently of the filtering part nL,w , 

by a FRLS algorithm using forward/backward linear 

prediction analysis over the signal nx  [4]. The calculation 

complexity of a FRLS algorithm is of order L.   

B. The Fast-NLMS type Algorithm 

Recently, a new adaptive algorithm with fast convergence 

and low complexity is proposed [1]. This algorithm FNLMS 

derived from the FRLS algorithm where the adaptation gain 

is obtained by discarding completely the forward and 

backward predictors. Thus in this algorithm, we proposed a 

simplified adaptation gain: 
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where the prediction error ne  is evaluated using a first order 

prediction model: 

1 nnnn xaxe                                                            (7) 

where na  is a prediction parameter which minimizes the 

cost function  2E ne . An estimate of this parameter is given 

by the following equation: 

anx

nx

n
cr

r
a




,0

,1
                                                              (8) 

where nxr ,1  is an estimate of the first lag correlation  function 

of nx , nxr ,0  an  estimate of the input signal power and ac  is 

a small positive constant used to avoid  the possibility of a 

dividing term very close to zero. The forward prediction 

error variance is now evaluated by: 

2
1 nnn e                                                             (9) 

The small positive constant 0c  is added to the dividing term 

1n  to overcome divisions by small values as in the case 

of the NLMS algorithm. Thus, we obtain an algorithm 

similar to the NLMS algorithm in term of the computational 

complexity; i.e. 2L multiplications per iteration. It is given in 

Table I.  

III. PERFORMANCE ANALYSIS OF FNLMS ALGORITHM 

In this section, the stability condition and error analysis 

filtering part of the FNLMS algorithm will be presented.   

A. The Stability Condition 

We use convergence bounds on the adaptation step-size 

  obtained for the NLMS algorithm using the approximate 

mean-square analysis [2] and we will try to see how the 

FNLMS algorithm affects the adaptation gain compared to 

the NLMS algorithm. For this purpose, we suppose that the 

input signal is white Gaussian stationary signal and consider 

that all recursive variables of the algorithm have reached 

their true asymptotic values. In particular [6], we replace the 

following slowing quantities by their asymptotic values: 
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where  22 E nx x . Using approximations (10), the 

adaptation gain for the FNLMS algorithm is: 

nLnLnnL G ,F,0,

~
xkg                                              (11) 

where 
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The error n  calculated by (1) is called a priori, because it 

employs the coefficients before updating. The a posteriori 

error is defined as: 

nLnLnn d ,
T

, xw                                                        (13) 

and it can be computed after (1) and (3) have been 

completed. Now, from (1) and (3), (13) can be written as: 

  nnLnLn  ,
T

,1 gx                                                  (14) 

The system can be considered stable if the expectation of the 

a posteriori error magnitude is smaller than that of the a 

priori error, which is logical since more information is 

incorporated in n . If the error n  is assumed to be 

independent of the L most recent input data, which is 

TABLE I 

FNLMS ALGORITHM (2L) 

Initialization: 

LLL 0
~

0,0,  kw ; 00,0 Er  ; 00,1 r ;  

00 EL  ; 10  ; 100/2
0 xLE   

Variables available at the discrete-time index n: 

1,1 nxr ; 1,0 nxr ; 1,1,11 ;
~

;;  nLnLnn wk  

New information: nn dx , . 
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2
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- Filtering Part: 
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approximately true after convergence, the stability condition 

is: 

  1E1 ,
T

,F  nLnLG xx                                                 (15) 

which yields 

20 2
F  xLG                                                             (16) 

from which we obtain the stability condition :  

20 F                                                                    (17) 

with 
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The influence of the power signal in the adaptation gain can 

be reduced by choosing  1
2

0 
xL

c


. 

B. Error Analysis Filtering Part 

The analysis uses the common independence assumption 

that the current input signal vector is statistically 

independent of the current coefficient vector of the adaptive 

filter [5]. We define the weight-error vector at time n as: 

nLLnL ,opt,, www                                                   (19) 

The output a priori error n  can be written as: 

1,
T

,  nLnLnn v wx                                                  (20) 

The recursion in (3) on the coefficient error vector is: 

  nnLnLnLnLLnL v,1,
T

,,, gwxgIw                         (21) 

The mean behavior of the FNLMS coefficient error vector 

can now be determined by taking the expected value of both 

sides of (21) and using the independence assumption to 

yield: 

     1,F, EE  nLxxLnL G wRIw  

                                                         nnL vG ,F E x       (22) 

where  T
,,E nLnLxx xxR  . Moreover, the input signal is a 

sequence of uncorrelated Gaussian variables Lxxx IR
2 , we 

obtain: 

   1,, EE   nLnL G ww w                                          (23) 

where 

 
L

GG x
F2

F 11


 w                                          (24) 

The steady-state solution of (23) is: 

if 1wG      L0)(E w , from which we obtain the 

steady-state mean coefficient vector of the FNLMS adaptive 

filter as: 

   LL ,opt)(E ww                                                      (25) 

The mean square error  2E)( nnMSE   can be written as: 

 )(nMSE    T
1,1,

2 Etr   nLnLxxv wwR             (26) 

from which we obtain: 

)(nMSE  2

1,
22 E  nLxv w                                (27) 

where   22E vnv  ,   .tr  represents the trace operator and 

. denotes the 2-norm vector. 

Let the filter misalignment be defined as 
2

,nLw , we 

can derive the expected misalignment for the next sample as 
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,E)( nLnMis w . For that, we need to determine the 

next expressions: 
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Using the independence assumption and approximations 

(10), we obtain: 

  T
,,E nLnL ww  

    LvxnLnLx GG Iww
222

F
T

1,1,

22
F E1                  (29) 

By using (24), the recursive expression (29) becomes: 
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By taking the trace of both sides of (29), we can write the 

misalignment at time n as: 

  LGnMisGnMis
x

v
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2
22 1)1()(
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
ww                      (31) 

The stability of the recursion (30) is guaranteed if 1wG .  

We define the normalized mean square error )(nNMSE  and 

the normalized misalignment )(nNmis as follow: 
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By using the independence assumption, we obtain: 
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Let us consider the signal to noise ratio 
22

out / vySNR  , 

where   2

,opt
222 E Lxny y w  . After convergence, the 

expressions (34) and (35) become: 
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IV. SIMULATIONS  

In this section, we present some simulation results to 

verify the proposed mean theoretical results derived in this 

paper.  

For the FNLMS algorithm, we use two different forgetting 

factors. The first one    is chosen according to condition 

(18). We have noticed in practice that the FLNMS algorithm 

remains stable even for very small values of  . The second 

forgetting factor a  can be adjusted according to the degree 

of non-stationarity of the input signal; i.e., very close to one 

for stationary signal and calculated at least over a 

rectangular window of 15ms for the speech signal. The 

initial values for variances and regularisation constants are 

set to a value comparable with the input signal power 2
x ; 

i.e. 0c = ac = 0E =1. 

We try to estimate an impulse response Lopt,w  of length 

L=256 the same length is used for the adaptive filter nL,w .   

The input signal nx  used in our simulation is a white 

Gaussian noise, with mean zero and variance equal to 1. The 

reference signal nd  is obtained by convolving Lopt,w   with 

nx  and adding a white Gaussian noise signal with an 

outSNR  of 50 dB. Performance of the estimation is measured 

by the normalized mean square error )(nNMSE   and the 

normalized misalignment )(nNmis .  

Figure 2, presents the )(nNMSE  determined from 

simulation and from the theoretical expression in (34). From 

this plot, we observe that simulation and theoretical curves 

agree very well. 

Figure 3, shows the convergence of the normalized 

misalignment )(nNmis as obtained from the theoretical 

analysis (35) and from simulation results. It can be seen that, 

for long adaptive filter, there is a good agreement between 

the actual behavior of the algorithm and that predicted by the 

theoretical expression. 

Figure 4, shows theoretical and experimental values for 

different values of the outSNR . These results and the 

previous ones have confirmed and validated the good 

properties of our proposed analysis of the FNLMS 

algorithm. 

V. CONCLUSION 

We have analyzed the numerical properties of the FNLMS 

algorithm by using the common independence assumption 

that the current input signal vector is statistically 

independent of the current coefficient vector of the adaptive 

filter. We also consider that all variables of the algorithm 

have reached their true asymptotic values. In particular, we 

replace the following slowing quantities by their asymptotic 

values. The condition of stabilization was shown to be 

capable of maintaining a good convergence performance by 

way of computer simulations.  
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Fig. 4. Comparison of theoretical and simulation curves of the Normalized  

Misalignment for different values of the outSNR .  

 
Fig. 2. Comparison of theoretical and simulation curves of the )(nNMSE .     

 
Fig. 3. Comparison of theoretical and simulation curves of the Normalized  

Misalignment )(nNmis . 
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