
Performing Hierarchical Clustering on Distance
Matrices in OptiML

Lidija Fodor, Danijela Tešendić, Vladimir Kurbalija, and Srdjan Skrbic

Abstract—Since it became evident that domain-specific lan-
guages are able to follow the trends of language design evolving
demands, they became increasingly popular. This is resulting in
the need for a convenient host languages, that can satisfy and
ease the aspects of DSL development. Scala is highly flexible,
virtualised language, serving as a great ground for different
DSLs. In this paper, we used some of the languages, developed
on top of Scala, namely Lightweight Modular Staging, Delite
and OptiML, to start the development of our own data-mining
DSL. Our main aim is to develop a highly efficient DSL for
some important data-mining algorithms. As a starting point,
we implemented hierarchical clustering in OptiML, with Scala
code generation. We also performed testing, based on experi-
mental data, gained from a psychological experiment, related to
human behavior analysis and artificial agent development. We
compared the results of our hierarchical clustering, to results
gained from R on the same data set. This algorithm serves as
a starting point towards parallel code generation for a set of
data-mining algorithms.

Index Terms—Scala, OptiML, clustering, human behaviour,
R

I. INTRODUCTION

T IME series analysis represents an essential tool for
obtaining important data in business, as well as in

science. The conclusions derived from time series can serve
as a ground for important business decisions or signifi-
cant scientific results. For these reasons, it is important
to provide convenient tools for conducting the analysis.
Numerous environments are provided for this purpose, but
the most common limitation appearing is time consumption.
Time series datasets can be large and high-dimensional, and
the processing of such data can become significantly slow.
[12, 32]

The most evolving trend in language development is to
focus on Domain Specific Languages (DSLs), as they can
be easier to understand and use, and during development,
the focus is on the specific domain, instead of wide range of
aspects typical for general purpose languages. This way, the
end users of DSL can be focused to their work. M. Fowler
[16] explained DSLs in more details in his book "Domain
Specific Languages".

There are many different principles of DSL design and
development, but generally, we can think about DSL in
two ways: as internal (embedded) or external DSLs. An
external DSL is developed completely from scratch, where
all the different aspects of language specification, compiler
and libraries construction, development of IDEs, debug-
gers, profilers, documentation and many others need to be
included. This requires a huge effort, and long time to

Manuscript received December 1, 2016; revised December 22, 2016.
Authors are with the Department Mathematics and Informatics,

Faculty of Sciences, University of Novi Sad, Serbia, e-mail: srd-
jan.skrbic@dmi.uns.ac.rs

achieve the satisfying level of maturity. Internal DSLs, also
called embedded DSL, make the development process easier,
shorter and more reliable. An embedded DSL lives inside
of an another language, called host language, and relies
on it. This is a convenience for the the developers, but
introduces the question how to bridge the gap between the
DSL constructions on top and the architecture down below,
when the host language is present in the middle.

A DSL, developed in Scala-virtualized [1], called Light-
weight Modular Staging (LMS) [2] represents a completely
innovative way for embedded DSL development, as it relies
on multi-stage programming with code generation. On the
other hand, there is a DSL developed on top of LMS,
called Delite [3], that introduces the principle of generating
target architecture specific DSLs. Finally, a DSL for machine
learning, OptiML [4], is developed on top of Delite and
LMS. OptiML has implemented many useful algorithms, and
allows different kinds of manipulation over different built-in
data types.

Our initial goal was to develop a representative version
of kmeans algorithm [20], that can perform hierarchical
clustering, based on time-series distance matrices, using
different linkage criteria. We finished the implementation,
and performed some tests to prove the correctness of our
function. We are currently generating Scala code, but parallel
code generation is our priority in the future. Besides that,
we will also focus on including another useful data-mining
algorithms [7, 13, 14] to the DSL.

The motivation to develop particularly hierarchical clus-
tering was the test data we have, and the importance of
deriving meaningful conclusions. The time-series [5, 31]
data were generated from a set of experiments, observing a
Socially Augmented Microworld (SAM) [6], where an accent
is on detecting different behavior of human factors, based on
some instructions they got. The experiment is explained in
more detail in Section III-D. This paper makes the following
contributions:

• It introduces an implementation of hierarchical cluster-
ing, based on time series distance matrices. OptiML
already has a built in implementation of some important
data-mining functions, but they is not suitable for time-
series analysis.

• It represents the first step towards the creation of a
set of functions for time series analysis, and wider, for
different data-mining algorithms.

• It serves as a ground for developing a highly optimized
DSL for parallel execution.

The rest of the paper is organized as follows: Section
II, gives an overview of the related work, while Section
III-A gives a short description of the hierarchical clustering
algorithm. Section III-B is an overview of OptiML, Section
III-C describes the implementation of hierarchical clustering

Proceedings of the World Congress on Engineering 2017 Vol II 
WCE 2017, July 5-7, 2017, London, U.K.

ISBN: 978-988-14048-3-1 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2017



algorithm, and Section III-D includes the description of
experimental test data. Section III-E tells about the process
of testing the implementation. In Section III-F we analyse
the results of clustering, in terms of data-mining. In Section
IV, we discuss the directions for future work, and finally,
Section V gives some final conclusions.

II. RELATED WORK

The hierarchical clustering problem is an interesting task
in data-mining community, and there is a tendency to perform
it faster as much as possible. Müllner [25] proposed a
C++ library for hierarchical agglomerative clustering, for R
and Python. On the other hand, Murtagh et al. [27] gave
an exhaustive analysis of Ward method implementations
in hierarchical clustering. This is an important concept, as
one of our future goals will be to find the best way to
implement the algorithm, preserving the whole functionality.
An interesting idea is to perform hierarchical clustering with
prototypes, with an accent on the minimal linkage criterion,
introduced by Bien at al. [28].

The idea of parallel data-mining algorithms appeared
early. Jin and Agrawal [26] introduced a middleware, for
fast parallel data-mining application development, including
both shared and distributed memory. This middleware is
appropriate for a cluster of SMP workstations, and uses the
idea that mostly, the observed algorithms have very simple
structure.

An equally important aspect of an algorithm is the possi-
bility to exploit the domain knowledge of its use. Wagstaff
and Cardie [21] used this idea to improve the accuracy of
k-means algorithm. This concept is also worth considering
in our future work, by applying domain knowledge to hier-
archical clustering.

A lot of papers are related to enhancing the process of
data-mining, particularly the clustering algorithms. Kanungo
et al. [17] introduced an efficient implementation of k-means,
as a representative clustering algorithm. Pham et al. [18]
evaluated the process of choosing the right value for the
number of clusters, when performing k-means clustering.
When talking about performance, Arthur and Vassilivitskii
[19] gave an overview of the possible worst k-means running
time. This ideas serve as an important ground, as we are
also interested in improving the k-means algorithm, as part
of our DSL, and they can also be adopted to the hierarchical
clustering approach.

When considering the another aspect of this paper, related
to the evaluation of time-series data, it represents a topic of
interest to a large community of researchers. Zhang et al. [8]
used time-series analysis on Web search engine transaction
log. The usefulness of time-series data mining in making
some business decisions is described in the work of Schubert
and Lee [9], where some innovations in business data mining
techniques are described. The work of Faloutsos et al. [10]
caused a great progress in time-series mining concepts, where
Keogh [11] gave an overview of this progress.

Our ideas for further work are partly continuing and using
the described concepts. On the other hand, we will focus
on extending the present state of data-mining algorithms
execution, by introducing the concept of running them on
MPI clusters.

III. HIERARCHICAL CLUSTERING IN OPTIML

A. Hierarchical clustering

Hierarchical clustering [24] represents a data-mining al-
gorithm, that creates a hierarchy of clusters. Generally, two
types of hierarchical clustering are present: agglomerative
and divisive. The divisive strategy is a "top down" approach,
where all the observations are assumed to belong to one
cluster at the beginning. Later, they are divided to smaller
clusters. The agglomerative strategy is a "bottom up" ap-
proach, where each observation starts in its own cluster. The
clusters are later agglomerated, until the moment when just
one cluster is left.

In this paper, we used the agglomerative approach. It can
be described as follows: given a set of N observations e.g.
time-series, a distance matrix (NxN) is created, based on
some similarity method. The distance for each observation
is calculated with regard to all the other series,then:

• Performing the initial step: each observation is assumed
to belong to its own cluster, the distances between
clusters are the distances between the observations. At
this point, we have N clusters.

• Finding the most similar clusters and merging them to
one cluster.

• Calculating the distance between the newly created
cluster and the other clusters. There are different linkage
methods present, that define the way to calculate the
distance between clusters.

• Repeating the process, until there is just one cluster
present.

The linkage methods, implemented in this work are:
single, complete, average, mcquitty, median, centroid and
ward. For our test cases however, we used single, complete
and average linkage:

• single linkage - the distance between two clusters is
the shortest distance between two observations in each
cluster.

• complete linkage - the distance between two clusters is
the longest distance between two observations in each
cluster

• average linkage - the distance between two clusters is
the average distance between each observation in one
cluster to every observation in the other cluster.

We chose these three linkage criteria as the possibly most
appropriate, based on previous experience with similar data.
At the end, we tested the implementation of hierarchical
clustering against these three linkage criteria, compared the
results and draw some conclusions discussed later.

B. OptiML

OptiML is a DSL itself, meant for machine learning
purposes. It has built in complex data types, including
vectors and matrices, and also optimized operations on them.
This representations are very convenient for representing
the data for data-mining algorithms. OptiML relies on code
generation, provided by LMS, and is also able to generate
parallel code, as it is tightly connected to Delite.

Scala-virtualized is a language, highly applicable to DSL
development. It includes a minimal set of extensions to
regular Scala, using the principles of language virtualization.

Proceedings of the World Congress on Engineering 2017 Vol II 
WCE 2017, July 5-7, 2017, London, U.K.

ISBN: 978-988-14048-3-1 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2017



These concepts enable the creation of efficient, embedded
DSLs. The main idea is that each language construction is
defined as a method call, so the DSL developer can reuse it,
and redefine its behavior.

LMS is a framework built in Scala-virtualized. It is meant
for DSL development, using staging and code generation
approaches. It is lightweight, as it is in a form of a library.
LMS represents an innovation over earlier approaches, as
it does not use quotations to distinguish between binding
times, but instead uses types. It introduces staged types,
marked with Rep, that wrap the basic type, and hence change
the binding time of a value. The approach of generative
programming with staging is an important aspect to bridge
the gap between performances and high-level DSL code,
resulting in specific DSLs, with decent execution times,
caused by eliminating abstractions during staging.

Delite is a framework and runtime for building embed-
ded DSL, that are suitable for execution on heterogeneous
hardware. Currently, Delite can generate Scala, C++, CUDA
and OpenCL code. Delite is embedded in LMS, and supports
primitives for parallel operations, for higher level operations
definitions.

We used OptiML to implement the algorithm for cluster-
ing, while generating Scala code. We tested this version of
our DSL, to prove its correctness.

C. Implementing hierarchical clustering in OptiML

For this paper, we used the well known form of hierar-
chical clustering algorithm. However, many other interesting
opportunities exist, and it will be one of the challenges to
explore in the future.

We implemented the hierarchical clustering algorithm in
OptiML, that consists of a rich architecture of components,
described in the previous section. OptiML’s built-in data
types are extremely convenient for representing the data for
the clustering. We used a DenseMatrix instance to represent
a distance matrix, read from a file. Further, the nearest
neighbour indices and distances are stored in DenseVector
instances. The distance matrices were calculated earlier,
using the FAP system, described in [15]. These matrices are
stored in csv files. OptiML has the capability to create a
distance matrix for two vectors or matrices, by means of a
predefined function. However, this function supports a few
basic distance measures [12], not including the ones we are
interested in. For this reason, we are using the already avail-
able data, stored in mentioned csv files. Similarly, OptiML
includes a function for nearest neighbour calculation, but it
works on whole rows in a matrix, calculating the distance of a
row, related to other rows of a matrix. It uses the function for
distance calculation, based on a predefined distance metric
abs. In our case, we need a calculation of nearest neighbours,
based on the distance matrix, and we included this concept to
the algorithm.The process of clustering is performed, accord-
ing to the description of hierarchical clustering algorithm,
using the wide range of available, optimized functions on
DenseMatrix and DenseVector.

The process of staging, ensures that the initial code is
being transformed to an intermediate representation. Opti-
mizations are applied at different levels. At the end, we can
execute the generated Scala code. We plan to spread this idea,

TABLE I: A part of CSV file with DTW distance matrix, for
path series for "learning track"

Exper1navigat1 Exper1navigat2 Exper2navigat1
0 18008.35 2759.605

18008.35 0 7192.057
2759.605 7192.057 0
5916.756 3472.793 3530.143
6758.235 4829.235 3382.454

with an aim to generate parallel code. The first step will be to
explore the possibility of OptiML to generate CUDA code.
Our next step will be to generate and execute MPI code,
in order to enable fast and reliable parallel execution of the
algorithm on large data sets.

D. The experimental data

The test data are collected from a set of experiments,
performed during Human Factors Research at Humboldt
University Berlin. The experimental lab system includes two
components: a microworld, and a supervisor. The microworld
here is called Socially Augmented Microworld (SAM), as
it maps a real world environment, including also a social,
human component. More precisely, two participants are
included in each experiment and their assignment is to
perform a cooperative tracking task. The participants need
to manipulate an object along a track, showed on a monitor
in front of them, using a joystick. The cooperative tracking
is achieved by the fact that each joystick contributes to 50
% of motion. A very important aspect is that the participants
got different instructions for performing the navigation, but
they are not aware of this. One of them is instructed to focus
on speed, and the other to perform accurately. This way, the
participant focus on different aspects. The process of tracking
is also supervised by an operator, who is responsible for
encouraging the performances of the navigators.

The state of SAM is logged at the interval of 39 seconds.
The system records the data about the navigation performed
by the participants. For this purpose, the individual perfor-
mance of each navigator was observed first, in order to track
the cooperative mode later. This kind of data can serve as a
great ground for deriving conclusions about different social
and psychological aspects of personalities. The patterns,
extracted from these kind of data, could later be used for
artificial agents creation.

In total, 26 test sessions were performed, each with
assigned team of two navigators. Each session consisted of
11 trials, where the four of them are related to solo mode,
where each of the navigators is performing on two different
tracks, namely learning track and test track. Three trials are
related to cooperative mode, and the last four to cooperative
mode with a supervisor. For this paper, we consider only the
first four steps.

The log files are in form of csv files, and contain all the
necessary information, including the total time elapsed from
the beginning of the step, x and y coordinates of the object
on the track, the total distance crossed from the beginning
of the step, the distance crossed in the last measuring and so
on. Based on the log files, three different kinds of time-series
were extracted, using the FAP system: path, acceleration and

Proceedings of the World Congress on Engineering 2017 Vol II 
WCE 2017, July 5-7, 2017, London, U.K.

ISBN: 978-988-14048-3-1 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2017



deviation time-series. The path series represents the crossed
distance data, the acceleration series stores the information
about the acceleration or deceleration at each point related
to the previous point, and the deviation series represents the
deviation from the calculated ideal motion on the track.

These time-series were used to run similarity measures, by
the FAP system. Three similarity measures were selected:
DTW (Dynamic Time Warping) [23], EDR (Edit Distance
on Real sequence) [22] and ERP (Edit distance with Real
Penalty) [29]. They represented the base for creating the
distance matrices. The reason for choosing these similarity
measures lies in their nature. The DTW similarity measure
can be successfully applied to such data, where the time-
series are not synchronized at the time axis. DTW enables
distorting one or both series, that do not have to be of the
same length. This was the reason why DTW looked promis-
ing for this domain. When talking about EDR, it should be
mentioned that it represents a really robust approach, when
talking about data containing some distortions. EDR solves
this problems, using the principles of comparing two strings,
or calculating the similarities between moving objects. On
the other hand, ERP is interesting to us, as it combines some
properties of Lp norms with local time shifting.

At the end, 18 distance matrices were generated, for the
three mentioned similarity measures, 2 types of tracks and 3
types of time-series. Table 1 shows a part of one resulting
distance matrix, where the whole matrices are of size 52x52,
since there were 26 session with two navigators. These
matrices represent the input data for testing the hierarchi-
cal clustering algorithm. Additionally, we will make some
conclusions, based on the results of clustering.

E. Testing the hierarchical clustering algorithm

In order to test the correctness of resulting clustering, we
compared the results, with the results obtained from GNU
R [30] for the same distance matrices. The algorithm was
tested for all 18 test files, with three different linkage criteria:
single, complete and average. This means that 54 test were
performed in total. We created matrices of agglomerations
as the results of hierarchical clustering, as R also uses them
to represent the hierarchical clustering results in form of a
dendrogram. We decided to use R for comparison, as it is
freely available and easy to use.

The resulting matrices were compared to the matrices from
R. It turned out that they were identical. Also, to make the
comparison easier and to visualize the results, we generated
dendrograms for both our and R’s results. We put our results
of clustering to an R script file, and created the dendrograms
using R. Then, we performed clustering completely in R,
based on the distance matrices.

Figure 1 illustrates examples of obtained dendrograms.
The plotting itself is still not supported in our DSL, but
is planned for future work. Therefore, we used R’s plot
function to show the results, as explained earlier. As we
checked the results for all 54 series, we concluded that our
implementation of hierarchical clustering works correctly.
Based on the resulting dendrograms, we can make some
conclusions about the suitability of particular kind of series,
similarity and linkage method.

F. Analysing the results of hierarchical clustering
After we implemented the algorithm for hierarchical clus-

tering, we applied it on our data, gained from a series
of experiments. This application was useful to prove the
algorithm is correct, but more importantly, we can actually
make some conclusions based on the resulting dendrograms.

Firstly, we need to define what is expected. At the de-
scription of the experiments, we pointed out that each exper-
imental step included two navigators, instructed differently.
In each team, the first navigator was instructed to concentrate
on speed, where the second navigator was instructed to focus
on accuracy. As a result, we would expect this trend shown
on dendrograms to certain extent. When talking about path
time-series, the accurate navigators should traveled a shorter
distance, than the fast ones, but of course, this depends on
personal skills also. The acceleration series should show
the same trend. On the other hand, the deviation series are
created under the assumption that a faster navigator does not
care so much to stay on track as the accurate one, so the
faster navigator should have larger values for deviation.

When we look at the dendrograms, we can conclude that
the most appropriate similarity measure for all the three
types of time-series is ERP, as it gives the closest results,
according to expectations. Lets look at three different linkage
criteria for the same ERP distance matrix, and compare them.
Figure 3 shows complete, single and average linkage for ERP
deviation series on test path.

The single linkage criterion seems to be the worst, as
it does not show the existence of two types of navigators.
Instead, it creates clusters for pairs of navigators on low
level. Sometimes, these clusters include differently instructed
navigators. The best outcome would be if we could cut the
dendrogram on the level where there are two clusters, and
get accurate navigators as dominant in one cluster, and fast
navigators in the other. This is not the case here, as it seems
that separation to two clusters gives one cluster with just one
navigator inside, and one with all the others.

If we look at the average linkage criterion, the cutting
on the level of two clusters will give the same result as with
single linkage. But at lower levels, there are more meaningful
information than for single linkage. Some of the clusters
show the domination of one type of navigator. However, we
still cannot recognize the existence of two types of trends.

The complete linkage method seems the most promising.
The situation with two topmost clusters is the same as with
the other criteria. It seems that this navigator was performing
extremely different than the others, so he cannot be con-
nected with them. We can still try to find two clusters at the
second level, where we omit this specific navigator. Here,
the dendrogram is truly divided into two parts. The clusters
are not of equal sizes, and we cannot clearly distinguish the
types of navigators, but it can be concluded that in the cluster
on the right side, the accurate navigators are more common.
For this reason, the complete linkage criterion is the most
promising for this kind of use, and it will be used for further
work, in combination with the ERP similarity measure.

Further work will be related to testing this tools with
similar problem sets. The conclusions can be significant
for artificial agents development. The second direction will
go towards performance improvement for this and similar
algorithms.

Proceedings of the World Congress on Engineering 2017 Vol II 
WCE 2017, July 5-7, 2017, London, U.K.

ISBN: 978-988-14048-3-1 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2017



Fig. 1. Dendrograms for average, complete and single linkage, for ERP
deviation series for test path.

IV. FUTURE WORK

Our main goal is to develop a small and efficient DSL
for a set of widely used data-mining algorithms. This work
is the first step towards this idea. We have two challenges
to master. The fist one is to expand our DSL with other
needed algorithms for data analysis. This should include in
the first place, logistic regression and k-means clustering. The
k-means algorithm is already implemented and is currently
under testing.

The second request is to make the DSL as more as possible
efficient. There is a lot of tools present, that can perform
data analysis on different manners. However, one of the
most common problems is related to large data sets, that can
results with a few days long execution of the analysis. Our
idea is to connect the trend of parallel program execution
with data-mining algorithms. We plan to achieve this, by
generating firstly CUDA code, that represents an already
available option in OptiML. The second step will be to
transform the program to be applicable for executing on MPI
clusters. This way, we could shorten the execution time of
data-mining algorithms drastically, and provide a transparent
way achieving parallelization with MPI.

V. CONCLUSION

In this paper, we introduced the idea to develop a DSL
in OptiML, meant for data-mining algorithms. We provided
an initial form with the hierarchical clustering algorithm
implemented. We also described a real case study used for
testing and the obtained results. Finally, we revealed the
idea to include MPI code creation, in collaboration with the
described tools.

ACKNOWLEDGMENT

This research was supported by the Ministry of Education,
Science, and Technological Development of the Republic
of Serbia under project ON174023 and SCOPES project
No. IZ74Z0-160453. The authors would like to thank also
to DAAD (German Academic Exchange Service) and to
colleagues from Humboldt University, Berlin, for making
available dataset used in this paper. Special thanks are due to
Vojin Jovanović for his valuable feedback and suggestions.

REFERENCES

[1] A. Moors, T. Rompf, P. Haller, M. Odersky. Scala-
virtualized. In Proceedings of the ACM SIGPLAN 2012
workshop on Partial evaluation and program manipula-
tion, 2012, pp. 117-120

[2] T. Rompf, M. Odersky. Lightweight modular staging:
A pragmatic approach to runtime code geenration and
compiled DSLs. In Proceedings of the ninth international
conference on Generative programming and component
engineering. GPCE ’10, 2010

[3] A. K. Sujeeth, K. J. Brown, H. Lee, T. Rompf, H. Chafi,
M. Odersky, K. Olukotun. Delite: A Compiler Archi-
tecture for Performance-Oriented Embedded Domain-
Specific Languages, ACM Transactions on Embedded
Computing Systems (TECS), vol 13, no 4s, article no.
134, 2014, doi: 10.1145/2584665

[4] A. K. Sujeeth, H. Lee, K. J. Brown, T. Rompf, H.
Chafi, M. Wu, A. R. Atreya, M. Odersky, K. Olukotun.

Proceedings of the World Congress on Engineering 2017 Vol II 
WCE 2017, July 5-7, 2017, London, U.K.

ISBN: 978-988-14048-3-1 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2017



OptiML: An Implicitly Parallel Domain-Specific Lan-
guage for Machine Learning. In Proceedings of the 28th
International Conference on Machine Learning (ICML-
11), 2011, pp. 609-616

[5] V. Kurbalija, H-D. Burkhard, M. Ivanovic, C. Mayer,
J. Nachtwei, L. Fodor. Time-series mining in a psy-
chological domain. In proceedings of the Fifth Balkan
Conference in Informatics, 2012, pp. 58-63

[6] H-D. Burkhard, L. Jahn, S. Kain, C. Meyer,
J.Muetterlein, J. Nachtwei, N. Niestroj, S. Rougk and
M. Schneider. Artificial Subjects in the Psychological
Experiment "Socially Augmented Microworld (SAM)".
In Proceedings of International Workshop CS&P 2011,
pp. 54-66

[7] J. Han and M. Kamber. Data Mining: Concepts and
Techniques. Morgan Kaufmann Publishers, CA, 2005

[8] Y. Zhang, B. J. Jansen and A. Spink. Time-series analysis
of a Web search engine transaction log. Information
Processing and Management, vol 45, no 2, 2009, pp.
230-245

[9] S. Schubert and T. Lee. Time Series Data Mining with
SAS R©Enterprise Miner. In Proceedings of SAS Global
Forum 2011 conference, 2011

[10] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos.
Fast Subsequence Matching in Time-Series Databases.
In Proceedings of the 1994 ACM SIGMOD international
conference on Management of data, 1994, pp. 419-429

[11] E. J. Keogh. A Decade of Progress in Indexing and
Mining Large Time-series Databases. In Proceedings of
the 32nd international conference on Very large data
bases, 2006, pp. 1268-1268

[12] H. Ding, G. Trajcevski, P. Scheuermann, X. Wang, E.
Keogh. Querying and Mining of Time-series Data: Ex-
perimental Comparison of Representations and Distance
Measures. In Proceedings of the VLDB Endowment, vol
1, no 2, 2008, pp. 1542-1552

[13] C. A. Ratanamahatana, J. Lin, D. Gunopulos, E. Keogh,
M. Vlachos and G. Das. Data mining and knowl-
edge discovery handbook 2010, Part 6, pp. 1049-1077,
DOI=10.1007/978-0-387-09823-4_56

[14] D. Pfoser, Y. Tao, K. Mouratidis, M. A. Nascimento,
M. Mokbel, S. Shekhar and Y. A. N. Huang. Advances
in Spatial and Temporal Databases (SSTD), 12th Inter-
national Symposium, 2011

[15] V. Kurbalija, M. Radovanović, Z. Geler and M.
Ivanović. A framework for time-series analysis. In Pro-
ceedings of the 14th international conference on Artifi-
cial intelligence: methodology, systems, and applications
(AIMSA’10), 2010, pp. 42-51

[16] M. Fowler. Domain specific languages. Addison-Wesley
Professional, 2010

[17] T. Kanungo, D. M. Mount, N. S. Netanyahu, C.
D. Piatko, R. Silverman, A. Y. Wu. An Efficient k-
Means Clustering Algorithm: Analysis and Implementa-
tion, IEEE transactions on pattern analysis and machine
intelligence, vol. 24, no. 7, 2002, pp. 881-892

[18] D. T. Pham, S. S. Dimov, C. D. Nguyen. Selection of K
in K-means clustering. In Proceedings of the Institution
of Mechanical Engineers, Part C: Journal of Mechanical
Engineering Science, vol. 219, no. 1, 2005, pp. 103-119.

[19] D. Arthur, S. Vassilivitskii. How slow is the k-Means
Method? In Proceedings of the twenty-second annual
symposium on Computational geometry, 2006, pp. 144-
153

[20] G. Hamerly and C. Elkan. Learning the k in k-means.
Advances in neural information processing systems 16,
2003, pp. 281-288

[21] K. Wagstaff, C. Cardie. Constrained K-means clustering
with background knowledge. In Proceedings of the Eigh-
teenth International Conference on Machine Learning,
2001, pp. 577-584

[22] L. Chen, M. T. Ozsu, V. Oria. Robust and Fast
Similarity Search for Moving Object Trajectories. In
Proceedings of the 2005 ACM SIGMOD international
conference on Management of data, 2005, pp. 491-502

[23] D. J. Berndt, J. Clifford. Using Dynamic Time Warping
to Find Patterns in Time Series. In Proceedings of KDD
Workshop, 1994, pp. 359-370

[24] A.K. Jain, M.N. Murty, P.J. Flynn. Data clustering: a
review. ACM Computing Surveys (CSUR), vol. 31, no.
3, 1999, pp. 264-323, doi:10.1145/331499.331504

[25] D. Müllner. Fastcluster: Fast hierarchical, agglomera-
tive clustering routines for R and Python, Journal of
Statistical Software, vol. 53, no. 9, 2013, pp. 1-18

[26] R. Jin, G. Agrawal. A Middleware for Developing
Parallel Data Mining Applications. In Proceedings of the
first SIAM conference on Data Mining, 2001, pp. 1-18

[27] F.Murtagh, P. Legendre. Ward’s Hierarchical Clustering
Method:Clustering Criterion and Agglomerative Algo-
rithm. Journal of classification, vol. 31, no. 3, 2014, pp.
274-295, doi: 10.1007/s00357-014-9161-z

[28] J. Bien, R. Tibshirani. Hierarchical Clustering With Pro-
totypes via Minimax Linkage. Journal of the American
statistical Association, vol. 106, no. 495, 2011, pp. 1075-
1084

[29] L. Chen and R. T. Ng. On the marriage of lp-norms
and edit distance. In Proceedings of the Thirtieth inter-
national conference on Very large data bases-Volume 30.
VLDB Endowment, 2004, pp. 792-803

[30] R Development Core Team. The R language definition.
R Foundation for Statistical Computing, http://cran.r-
project.org/doc/manuals/R-lang.html

[31] V. Kurbalija, C. von Bernstorff, J. Nachtwei, M.
Ivanović, HD. Burkhard. Matching observed with empir-
ical reality-What you see is what you get? Fundamenta
Informaticae, IOS Press, vol. 129, no. 1-2, 2014, pp. 133-
147, doi: 10.3233/FI-2014-965

[32] V. Kurbalija, M. Radovanović, Z. Geler, M. Ivanović.
The influence of global constraints on similar-
ity measures for time-series databases. Knowledge-
Based Systems, vol. 56, 2014, pp. 49-67, doi:
10.1016/j.knosys.2013.10.021

Proceedings of the World Congress on Engineering 2017 Vol II 
WCE 2017, July 5-7, 2017, London, U.K.

ISBN: 978-988-14048-3-1 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2017




