
 

  

Abstract—A data stream is a continuous, time-ordered 

sequence of data items. Data stream mining is the process of 

applying data mining methods to a data stream in real-time in 

order to create descriptive or predictive models for the process 

that generates the data stream. The characteristics of a data 

stream typically change with time. These changes give rise to 

the need to continuously make revisions to, or completely 

rebuild predictive models when the changes are detected. 

Rebuilding and changing the predictive models needs to be a 

fast process because stream data may arrive at a high speed. 

Manual labeling of training data before creating new models 

may not be able to cope with the speed at which model revision 

needs to be performed. This paper presents experimental 

results for the performance of methods for the automated 

selection of high quality training data for predictive model 

revision for predictive modeling using Naïve Bayes ensemble 

classification. The experimental results demonstrate that the 

use of two base model combination algorithms for the 

ensembles, results in a high level of confidence in the 

predictions. Secondly, the periodic revision of the ensemble 

using the base models created from the automatically selected 

training data produces revised ensemble models with high 

predictive performance. 
 

Index Terms—data mining, data stream mining, Naïve Bayes 

classification, ensemble classification, instance labeling 

 

I. INTRODUCTION 

data stream is a continuous, time-ordered sequence of 

data items [1]. Data stream mining is the process of 

applying data mining methods to a data stream in real-time 

in order to create descriptive or predictive models for the 

process that generates the data stream [1], [2], [3]. The 

characteristics of a data stream typically change with time. 

The changes are categorised as distribution changes and 

concept changes [2], [4]. These changes give rise to the need 

to continuously make revisions to, or completely rebuild 

predictive models when the changes are detected. 

Rebuilding and changing the predictive models needs to be a 

fast process because stream data may arrive at a high speed. 

Traditional methods of manually labeling training data 

before creating new models may not be able to cope with the 

speed at which model revision needs to be performed.  

Lutu [5] has proposed a predictive modeling framework 
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for automated instance labeling, in stream mining. The 

purpose of this paper is to report on extensions of the work 

reported by Lutu [5]. Experimental studies are reported on 

methods for the periodic revision of classification ensemble 

models in order to ensure that the stream instances that are 

classified by ensemble models are assigned class labels with 

a high level of confidence. This is necessary in order to 

ensure that high quality automatically labeled and selected 

training data is used for the creation of new base models 

which can be used for ensemble revision. The experimental 

results demonstrate that the use of two base model 

combination algorithms for the ensembles, results in a high 

level of confidence in the predictions. Secondly, the periodic 

revision of the ensemble using the base models created from 

the automatically labeled and selected training data produces 

revised ensemble models with high predictive performance. 

The rest of the paper is organised as follows: Section II 

provides background to the reported research. Section III 

presents the proposed ensemble model revision approach. 

Sections IV and V respectively provide the experimental 

methods and experiment results. Section VI concludes the 

paper. 

II. BACKGROUND 

A. Modeling activities for predictive data stream mining 

Predictive data stream mining involves the creation of 

classification or regression models. For classification 

modeling, training data with class labels is used to create the 

model. A real-life data stream does not have a finite size or 

static behaviour. This means that a data stream cannot be 

stored in its entirety, and the instance classes cannot be 

correctly predicted by a model that is created as a once-off 

activity. This makes it necessary to continuously or 

periodically revise the predictive model using training data 

that is reasonably recent.  

Two major approaches that are used for predictive data 

stream mining are the ‘sliding window’ approach and the 

ensemble approach. An ensemble model consists of several 

base models whose predictions are combined into one final 

prediction using a combination algorithm [6]. The initial 

modeling activities for either approach involve selecting 

training data instances, selecting relevant predictive features, 

creating the initial model, and testing the model. Thereafter, 

the model is used to provide predictions for data stream 

instances as they arrive, and the predictive performance is 

monitored to determine when the model should be revised or 
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replaced in its entirety. Data streams typically exhibit the 

phenomena of concept change and distribution change. 

Concept change refers to changes in the description of the 

class variable values and may be classified as concept drift 

which is a gradual change of the concept, or concept shift 

which is a more abrupt change of the concept [1], [2], [3], 

[7].  Distribution change, on the other hand, refers to 

changes in the data distribution of the data stream. Concept 

and distribution change strategies typically involve 

continuous monitoring of model performance and data 

characteristics [7]. For predictive data stream mining, 

concept drift and distribution changes are typically handled 

through continuous or periodic revision of the predictive 

model. Concept shift (sudden concept change) is handled 

through complete replacement of the current model.  

A parallel activity to model usage and monitoring is the 

labeling of new training data which is then used to test the 

model performance, and to create new models for model 

revision or model change. Masud et. al [3], Zhu et. al [8] and 

Zhang et. al [9] have all observed that, for predictive stream 

mining, manual labeling of data is a costly and time 

consuming exercise. In practice it is not possible to manually 

label all stream data, especially when the data arrives at a 

high speed. It is therefore common practice to label only a 

small fraction of the data for training and testing purposes. 

Masud et. al [3] have proposed the use of ensemble 

classification models based on semi-supervised clustering, 

so that only a small fraction (5%) of the data needs to be 

labeled for the clustering algorithm. Zhu et. al [8] have 

proposed an active learning framework for solving the 

instance labeling problem. Active learning aims to identify 

the most informative instances that should be manually 

labeled in order to achieve the highest accuracy. 

B. Ensemble models for stream mining 

Several ensemble classification methods for stream 

mining have been reported in the literature. Examples of 

ensemble frameworks that have been reported in the 

literature are the streaming ensemble algorithm (SEA) [10], 

the accuracy-weighted ensemble (AWE) [11], and the 

dynamically weighted majority (DWM) ensemble [12]. Lutu 

[5] has proposed an ensemble framework for stream mining 

based on Naïve Bayes ensemble classification [13],[14]. The 

framework consists of an online component and an offline 

component. The online component uses Naïve Bayes 

ensemble base models to make predictions for newly arrived 

data stream instances. The offline component consists of 

algorithms to combine base model predictions, determine the 

reliability of the ensemble predictions, select training data 

for new base models, create new base models, and determine 

whether the current online base models need to be replaced. 

Two objectives of this framework are (1) to remove the need 

for manual labeling of training instances, and (2) to  

determine when model revision should be performed. 

C. Naive Bayes ensemble classification 

Naïve Bayes classification has been reported in the 

literature as one of the ‘ideal’ algorithms for stream mining, 

due to its incremental nature [15]. The Naïve Bayes 

classifier assigns posterior class probabilities for the query 

instance x  based on Bayes theorem. The training dataset for 

a classifier is characterised by d  predictor variables 

dX,...,X1  and a class variable C . The training dataset 

consists of n  training instances, and each instance may be 

denoted as  ( jc,x ) where )x,...,x( d1=x   are the values of 

the predictor variables, and }c,...,c{c Kj 1∈ is the class 

label.  Given a new query instance  )x,...,x( d1=x  Naïve 

Bayes classification involves the computation of the 

probability )|cPr( j x of the instance belonging to each class 

jc  as [13], [14] 
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The values of continuous-valued variables are typically 

converted into categories through the process of 

discretisation. The quantities )cPr( j
 for the classes, and  

)c|xPr( ji , for the predictor variables, are  then estimated 

from the training data. For zero-one loss classification, the 

class jc  with the highest probability )|cPr( j x is selected as 

the predicted class for instance  x . 

Feature selection involves the identification of features 

(predictor variables) that are relevant and not redundant for 

a given prediction task [16]. Liu and Motoda [16], Kohavi 

[17], John et al. [18], and Lutu [19] have discussed the 

merits of conducting feature selection for Naïve Bayes 

classification. One straight-forward method of feature 

selection, is the use the Symmetrical Uncertainty ( SU ) 

coefficient as discussed by Lutu [19]. The SU  coefficient 

for a predictor variable X and the class variable C is 

defined in terms of the entropy function as [16], [20] 
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is the joint entropy for X and C  [16], [20]. The SU  

coefficient takes on values in the interval [0,1] and has the 

same interpretation as Pearson’s product moment correlation 

coefficient for quantitative variables [16]. White and Liu 

[20], and Lutu [19] have observed that the entropy functions 

and the joint entropy function in (2) can be computed from a 

contingency table.  

A 2-dimensional contingency table is a cross-tabulation 

which gives the frequencies of co-occurrence of the values 

of two categorical variables X  and Y . For Naïve Bayes 

classification and feature selection, X  is the feature and the 
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second variable is C , which is the class variable. Various 

statistical measures can be derived from a contingency table. 

The main reason why Naïve Bayes (NB) classification was 

selected for the framework reported by Lutu [5] is because 

model creation is a simple and fast activity. For each 

predictive feature, a single contingency table of counts for 

the feature values and class labels provides all the data 

needed for the computation of the quantities for the terms in 

(1) and (2). Additionally, the class entropy measure for 

making decisions on base model selection, as discussed in 

Section III, can be easily computed from the contingency 

tables. 

III. PROPOSED APPROACH TO ENSEMBLE REVISION 

A. Automated instance labeling and selection for Naïve 

Bayes classification 

The framework proposed by Lutu [5] uses three measures 

for assessing the performance of the ensemble base models. 

These measures are: Certainty, Reliability, and Incoherence. 

Certainty measures the frequency that all base models in the 

ensemble have predicted the same class. Reliability 

measures the frequency that one class is predicted by the 

majority of base models in the ensemble. Incoherence 

measures the frequency that each base model in the 

ensemble has predicted a different class from the other base 

models. The studies reported in this paper are an extension 

of the studies reported by Lutu [5]. The extensions involve 

refinements to the prediction categories and the criteria for 

making decisions on ensemble model revision. For the 

studies reported by Lutu [5], the ensemble predictions were 

based on the majority vote by the base models. A major 

refinement is to use two methods to determine the class label 

for a query instance. Given a query instance x , each base 

model of the ensemble provides a probabilistic score for 

each class. The scores provided by the base models are 

typically stored in a decision matrix with one row for each 

base model and one column for each class [6]. Various 

combination methods are available for determining the 

ensemble prediction. For the studies reported in this paper, 

the mean score for each class is computed and the class 

selected based on the score is the one with the highest mean 

score value. Additionally, each base model provides a 

prediction based on the class scores. This is the class with 

the highest score. The class with the majority vote (by the 

base models) is also used to determine the prediction 

category. A prediction is treated as valid if the class selected 

by the mean score value is the same as the one selected by 

the majority vote. 

The information provided by the score-based predictions 

and by the majority vote predictions, for the valid 

predictions, is used as a basis for determining the prediction 

categories. Table I provides a summary of the revised 

prediction categories, which are: Certain, Reliable, 

WeaklyReliable, and NotReliable. Only those predictions 

that are valid are assigned the categories Certain,  Reliable 

or WeaklyReliable. For the proposed automated instance 

labeling approach, the instances that are assigned the 

categories Certain and Reliable are selected as the training 

data for building NB base models that can be used to replace 

the current base models when the need arises. The 

contingency tables for the new base model can be 

incrementally created off-line as the training data is being 

generated. At the end of a time period two major activities 

are conducted. The first activity is to determine if the newly 

created base model has any predictive value. This 

assessment is based on the class entropy of the training data 

used to create the contingency tables for the model, and the 

number of selected (relevant) features. The second activity is 

to assess the predictive performance of the current ensemble 

on the data for the time period, and then make a decision on 

whether the new base model should replace one of the 

current base models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B. Base model selection for ensemble revision 

Various measures of ensemble performance are defined in 

terms of the instance counts for the prediction categories, 

and the total number of predictions for a given time period. 

The measures are defined as follows: 

 

 

 

 

 

 

 

 

 

The proposed approach handles distribution changes, 

concept drift and sudden concept change proactively. 

Additionally, the approach aims to ensure that frequent 

model revisions result in high confidence predictions. A 

major time period T  (e.g. after 30,000 instances are 

received) is used for making decisions about ensemble 

model revision to handle possible distribution changes and 

concept drift.  Additionally, a minor time period t  (e.g. after 

3,000 instances) is used to monitor the possibility of sudden 

concept change. Rule 1 is used at the end of each minor time 

period, to check for sudden concept change. 

 

 

 

Measures of ensemble performance: 
Surrogate Accuracy = ( count (Certain) + count(Reliable) )    

                                                              /    ( TotalPredictions) 

Certainty         = count (Certain)  / TotalPredictions 

Reliability        = count (Reliable)  / TotalPredictions 

WeakReliability  = count (Weakly Reliable)  / TotalPredictions 

NonReliability       = count (Not Reliable)  /  TotalPredictions 

Agreement            = count(  predictions where base modelprediction 

                                              is the same as ensemble prediction) 

TABLE I 

PREDICTION CATEGORIES 

Mean score range 

for predicted class 

Vote for 

predicted class category 

3 out of 3 Certain 

2 out of 3 Certain 

0.8 to 1.0 

(score >= 0.8) and  

(score <= 1.0) 
1 out of 3 NotReliable 

3 out of 3 Reliable 

2 out of 3 Reliable 

0.6 to 0.8 

(score >= 0.6) and  

(score <   0.8) 
1 out of 3 NotReliable 

3 out of 3 WeaklyReliable 

2 out of 3 WeaklyReliable 

0.5 to 0.6 

(score >= 0.5) and  

(score <   0.6) 
1 out of 3 NotReliable 

3 out of 3 NotReliable 

2 out of 3 NotReliable 

0.0 to 0.5 

(score >= 0.0) and  

(score <   0.5) 
1 out of 3 NotReliable 
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When sudden concept change is detected, then the current 

ensemble should be abandoned, and a new ensemble should 

be created using manually labeled data. Ensemble 

performance is assessed at the end of each major time period 

iT , to determine whether the most recently created base 

model should replace one of the current base models. If the 

new base model has zero class entropy (i.e. all training 

instances are of the same class) then no replacement decision 

is made, otherwise, Rule 2 is used to determine the need for 

base model replacement. 

 

 

 

 

 

 

 

 

IV. EXPERIMENTAL METHODS 

The KDD Cup 1999 dataset available from the UCI KDD 

archive [21] was used for the studies. The dataset consists of 

a training dataset and a test dataset. The 10% version of the 

training dataset was used for the experiments. This dataset 

consists of 494,021 instances, 41 features and 23  classes. 

The 23 classes may be grouped into five categories: 

NORMAL, DOS, PROBE, R2L and U2R which can then be 

used as the classes [22]. A new feature (called ID) was 

added to the dataset with values in the range [1, 494021] as 

a pseudo timestamp. Fig. 1 shows a plot of the class 

distribution for this data stream. The data stream exhibits an 

extreme imbalance of the class distribution over time. It is 

clear from Fig. 1 that the classes DOS and NORMAL are the 

majority classes.  

 

 

The algorithms for feature selection, Naïve Bayes 

classification, and base model prediction combination, were 

implemented as a GNU C++ application. Details of the 

required data structures have been presented by Lutu [19]. 

The decisions on concept change detection and model 

revision were made through manual inspection of the model 

performance measures followed by the application of Rule 1 

or Rule 2 presented in Section III. These decisions can easily 

be automated in C++ program code. 

V. EXPERIMENTS FOR STREAM MINING 

A. Objectives of the experiments 

Exploratory experiments were conducted to answer the 

following questions: (1) Do the Certain and Reliable 

categories lead to the selection of a high percentage of 

correctly labeled training data? (2) Are the Certainty and 

Reliability measures good estimators of predictive accuracy? 

(3) Do the proposed methods for ensemble model revisions 

result in improvements in Certain and Reliable predictions? 

(4) Are the Certainty, Reliability, WeakReliability, 

NonReliability measures useful for forecasting possible 

concept change?  

B. Creation of the initial base models 

The top 90,000 instances of the KDD Cup 1999 data 

stream were used for the creation of the three base models 

MW1, MW2 and MW3 for the initial ensemble. The 

instances were divided into three batches of training 

instances for each Naïve Bayes base model. The base 

models were tested on the data for the time period W4 (90K-

120K). Table II shows the properties of the training data, 

and the test results for the initial ensemble base models.   

 

 

 

 

 

 

 

 

 

C. Experimental results 

The initial ensemble model {MW1, MW2, MW3} was 

used to provide predictions for the data stream instances 

starting at time period W4 (90K-120K). For each prediction 

period iW , the instances that were assigned the Certain or 

Reliable category were selected as training data and the base 

model iMW  was created from this training data. 

Additionally, a decision was made whether or not to replace 

one of the current base models, using the logic of Rule 2. 

Tables III and IV show the description of the ensemble 

models and the ensemble performance, for the time periods 

W4,…,W17 (90K to 494K). For the time periods W6 to 

W11, the base models are exactly the same. This is because 

all the instances for these time periods belong to the DOS 

class. The entries in column 3 of Table III show that base 

model replacements were done at the beginning of time 

periods W5, W6 and W13. The results of columns 3, 4 and 5 

of Table IV show that, for the periods W5 to W15, the 

values for Certainty, Surrogate Accuracy and ‘real’ 

Accuracy are consistently high. Additionally, the Surrogate 

Rule 2:   
If  (class entropy for the new base mode is greater than 0) then 

     If    (base model has the lowest Agreement)   AND  

            (base model has lowest no. of selected features)  AND  

            (base model has lower class entropy than new base model)  

            AND  (base model has fewer or equal number of selected 

            features as new base model)  

 then replace base model with the new base model. 

TABLE II 

PROPERTIES OF THE TRAINING DATA FOR THE INITIAL ENSEMBLE BASE 

MODELS 

 

Model 

name 

Time 

period 

Train-

ing  set 

size 

 

Class 

Entropy 

Rele-

vant 

features 

Testing 

accuracy 

on W4 data 

MW1 0K-30K 30,000 0.604 12 60.0 

MW2 30K-60K 30,000 1.139 17 97.9 

MW3 60K-90K 30,000 1.099 14 61.2 
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Fig. 1.  Class distribution for the KDD Cup 1999 data stream 

 (adopted from [5] ) 

Rule 1:   

If  (Certainty < specified value) AND  

     (Surrogate Accuracy < specified value)  AND  

     (WeakReliability > specified value) AND   

     (Agreement for at least one base model < specified value) 

then flag sudden concept change 
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Accuracy values are generally very close to the (real) 

Accuracy values.  For the period W16, the values for 

Certainty, Surrogate Accuracy and ‘real’ Accuracy suddenly 

plummet to much lower levels. This is an indication of 

sudden concept change. Based on the above observations, 

the answer to the question: ‘Are the Certainty and Reliability 

measures good estimators of predictive accuracy?’ is ‘yes’. 

The reader will recall that Surrogate Accuracy is defined in 

terms of Certainty and Reliability. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table V shows the values of the performance measures 

for the time periods W5 to W17. The values for the Certain 

and Reliable categories for the periods W5 to W15 (120K to 

450K clearly indicate that the class labels assigned to 

instances in these categories are generally correct (can be 

trusted). This implies that the automatically labeled and 

selected training data for the ensemble is of good quality.  

 

 

 

 

 

 

 

 

 

 

 

 

 

However, the values for the period W16 (450K-480K) 

indicate that the assigned class labels for the Reliable 

category cannot be trusted as they have a very low level of 

‘correctness’ and so, the instances for this time period 

should not be selected as training data. This situation is 

detected as concept change which is discussed below. So, do 

the Certain and Reliable categories lead to the selection of a 

high percentage of correctly labeled training data? Based on 

the foregoing observations, the answer to this question is 

‘yes’. The percentage of correctly labeled training data is in 

the region of 95%, which implies a noise level in the region 

of 5%. 

Table VI shows the properties and prediction behaviour of 

all the base models that were used in the periodically revised 

ensemble. It can be deduced from Table III that at the end of 

W4, the decision was made to replace MW1 with MW4, to 

obtain the ensemble {MW2, MW3, MW4}. Based on the 

values in Table VI and Rule 2 of Section III, the reason for 

the replacement is because MW1 has the smallest number of 

selected features and lowest Agreement level. Additionally, 

MW1 has lower class entropy than MW4, and fewer selected 

features than MW4. At the end of W5, the decision was 

made to replace MW3 with MW5, to obtain the ensemble 

{MW2, MW4, MW5}. At the end of W12, the decision was 

made to replace MW4 with MW12, to obtain the ensemble 

{MW2, MW5, MW12}. The reasons for these replacements 

can be easily deduced from the values in Table VI and Rule 

2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table VII provides a comparison of the initial ensemble 

and the periodically revised ensemble in terms of Certainty 

and Reliability.  The results of columns 2 and 4 indicate that 

Certainty% is much higher for the periodically revised 

ensemble, starting with the first revision in W5 (120K-

150K). Based on this observation, the answer to the 

question: ‘Do the proposed methods for ensemble model 

revisions result in improvements in certain and reliable 

predictions?’, is ‘yes’.  

Additional analysis was conducted on the prediction 

results of the ensemble {MW2, MW5,  MW12} for the W16 

(450K-480K) prediction period. Tables VIII and IX show 

the details of the incremental performance of the ensemble 

TABLE VI 

PROPERTIES OF THE BASE MODELS USED IN THE PERIODICALLY 

REVISED ENSEMBLE 

Agreement%  with 

ensemble prediction 

in time period: 
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W4 

 

 

W5 

 

 

W12 

MW1 0K-30K 30,000 0.604 12 59.7 - - 

MW2 30K-

60K 

30,000 1.139 17 98.4 97.0 91.7 

MW3 60K-

90K 

30,000 1.099 14 61.5 72.7 - 

MW4 90K-

120K 

29,815 0.831 22 - 91.7 94.1 

MW5 120K-

150K 

29,147 1.214 41 - - 96.4 

MW12 330K-

360K 

29,403 0.844 22 - - - 

 

TABLE III 

DESCRIPTION OF THE CONTINUOUSLY REVISED ENSEMBLE 

Ensemble Prediction 

Window  

Prediction 

time period base models name 

W4 90K-120K MW1, MW2, MW3 E1 

W5 120K-150K MW2, MW3, MW4 E2 

W6, ..,W11 150K-330K MW2, MW4, MW5 E3 

W12 330K-360K MW2, MW4, MW5 E3 

W13 360K-390K MW2, MW5, MW12 E4 

W14 390K-420K MW2, MW5, MW12 E4 

W15 420K-450K MW2, MW5, MW12 E4 

W16 450K-480K MW2, MW5, MW12 E4 

W17 480K-494K MW2, MW5, MW12 E4 

 

TABLE V 

ASSESSMENT OF ENSEMBLE PREDICTION CATEGORIES 

Certain Reliable Prediction 

period 

name 
Certainty

% 

Correct% Relia-

bility% 

Correct

% 

W5 62.1 56.5 35.0 33.5 

W6,..,W11 100 100 0 - 

W12 91.2 90.7 6.9 4.6 

W13 97.9 97.6 0.9 0.13 

W14 99.9 99.9 0.05 0.04 

W15 99.9 99.9 0.03 0.01 

W16 22.1 21.9 46.1 0.4 

W17 87.5 86.0 7.8 0.5 

 

TABLE IV 

PREDICTIVE PERFORMANCE OF THE CONTINUOUSLY REVISED 

ENSEMBLE 

 

Prediction 

window   

 

ensemble 

name 

 

Certainty

% 

Surrogate 

Accuracy

% 

‘real’ 

Accuracy

% 

W4 E1 19.7 99.4 99.4 

W5 E2 62.1 97.2 90.4 

W6,..,W11 E3 100 100 100 

W12 E3 91.2 98.0 95.5 

W13 E4 97.9 98.8 97.7 

W14 E4 99.9 99.9 99.9 

W15 E4 99.9 99.9 99.9 

W16 E4 22.1 68.1 22.3 

W17 E4 87.5 95.2 86.7 
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for minor time periods consisting of 3,000 instances each. 

Results are shown for the first six minor time periods. The 

results show that (1) Certainty, Surrogate Accuracy and  

‘real’ Accuracy decrease steadily until concept change 

occurs in the minor time period 459K-462K, (2) 

WeakReliability suddenly increases when concept change 

occurs, and (3) Agreement for one of the base models 

(MW2) suddenly decreases significantly when  concept 

change occurs. So, to answer the question: “Are the 

Certainty, Reliability, WeakReliability, NonReliability  

measures good at forecasting possible concept change?”, 

the answer is “yes”. The above observations support the 

claim that the measures are good indicators of concept 

change. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VI. CONCLUSIONS 

The objectives of the research reported in this paper were 

to assess the usefulness of the proposed methods for 

automated selection of high quality training data for Naïve 

Bayes base model creation and ensemble revision for 

predictive data stream mining. The experimental results 

reported in Section V have demonstrated that , for the KDD 

Cup 1999 dataset, the use of two base model prediction 

combination algorithms for the ensembles, results in a high 

level of confidence in the class labels for the automatically 

selected training data. Secondly, the periodic revision of the 

ensemble using the base models created from the selected 

training data produces revised ensemble models with high 

predictive performance. Thirdly, the proposed measure of 

Surrogate Accuracy provides meaningful information about 

ensemble model predictive performance. 
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TABLE VIII 

INCREMENTAL PERFORMANCE FOR W16 PREDICTIONS: CERTAINTY 

AND RELIABILITY 

Prediction 

time period 

Certainty 

% 

Reliabi-

lity% 

Weakly 

Reliabi-

liy% 

Non 

Reliability% 

450K-453K 69.2 21.0 2.0 7.9 

453K-456K 58.4 25.1 1.4 15.1 

456K-459K 64.47 23.9 2.4 9.2 

459K-462K 28.5 41.9 27.8 1.9 

462K-465K 0.0 56.6 41.5 1.9 

465K-468K 0.0 60.2 37.7 2.0 

 

TABLE VII 

COMPARISON OF INITIAL AND PERIODICALLY REVISED ENSEMBLES 

Initial 

ensemble performance 

Continuously revised 

ensemble performance 

 

Prediction 

 period 
Certainty

% 

Reliability

% 

Certainty

% 

Reliability

% 

W4 19.7 79.7 19.7 79.7 

W5 30.9 65.2 62.1 35.0 

W6,..,W11 0 100 100 0 

W12 11.7 85.7 91.2 6.9 

W13 2.1 96.0 97.9 0.9 

W14 1.3 98.6 99.9 0.05 

W15 0.6 99.3 99.9 0.03 

W16 18.8 73.7 22.1 46.06 

W17 55.3 39.6 87.5 7.77 

 

TABLE  IX 

INCREMENTAL PERFORMANCE FOR W16 PREDICTIONS:  ACCURACY 

AND AGREEMENT 

Agreement% Prediction 

time period 

Surrogate 

Accuracy 

% 

Accuracy 

% MW2 MW5 MW12 

450K-453K 90.1 70.53 90.5 71.8 90.8 

453K-456K 83.5 58.47 83.5 60.2 84.6 

456K-459K 88.40 65.37 89.4 67.5 89.5 

459K-462K 70.4 28.6 28.5 98.1 98.1 

462K-465K 56.6 0.0 0.0 98.1 98.1 

465K-468K 60.2 0.0 0.0 98.0 98.0 
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