
 

 

Abstract— This research aims at of the polyethylene extrusion 

process in plastic industry using the framework of Process 

Analytical Technology (PAT) utilizing fuzzy-neural approach. 

Two pipe's quality responses, weight, and thickness where 

chosen as both are main features of manufacturer interest. 

Initially, the individual moving range (I-MR) control charts 

are established for each response which illustrates that the 

process is incapable. Nine process factors are studied utilizing 

the L27 array. The fuzzy-neural approach is, therefore, 

proposed and then implemented to optimize process settings. 

Confirmation experiments are finally conducted at the 

combination of optimal factor settings. It is found that the 

estimated mean values for weight and thickness are close to 

their corresponding targets. Moreover, the estimated standard 

deviations for the pipe's weight and thickness are reduced 

significantly using the optimal factor settings. As a result, the 

estimated process capability indices are significantly enhanced 

for both responses.  
 

Index Terms— PAT Framework, Extrusion Process, Process 

Capability, Multiple Responses. 

I. INTRODUCTION 

Due to inexpensive raw materials, ease of processing, 

greater flexibility in the design of components, and 

attractive properties, the demand for plastic products has 

dramatically increased. In such products in order to meet 

customer expectations, manufacturers should continually 

optimize plastic manufacturing processes in a cost-effective 

manner [1-2]. Among the heavily-used plastic products is 

the Unplasticized Poly Vinyl Chloride (uPVC) pipe used in 

pressure and non-pressure applications; such as, transfer 

water, protection electrical, communications wires and other 

applications. The main manufacturing processes involved in 

producing uPVC pipes are the injection and extrusion 

processes. In order to cut huge quality costs, optimizing the  

performance of plastic process becomes a real challenge to 

product/process engineers.  

 
A. Process Analytical Technology 

     Process Analytical Technology (PAT) is a system for 

designing, analyzing, and controlling plastic manufacturing 

through timely measurements of critical quality and 

performance attributes of raw and in-process materials and 

processes, to ensure final product quality [3-4]. The PAT’s 

goal is to enhance the understanding and controlling of the 

manufacturing process to improve quality and efficiency.  
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B. Fuzzy logic 

       

Typically, the fuzzy logic principle is widely-applied to deal 

with vague and unsure information for optimizing 

performance using multiple quality characteristics [5]. The 

Mamdani systems in fuzzy logic involve mathematical 

expressions that have a linear function [6]. Generally, a 

fuzzy system shown in Fig. 1 includes the fuzzifier, fuzzy 

rules, and the defuzzifier that transforms the fuzzy input 

values into a comprehensive output measure [7]. 

 

 

Fig. 1. A schematic of fuzzy logic system. 

C.  Artificial Neural Networks 

 

The Artificial Neural Networks (ANNs) are soft computing 

techniques used to emulate some functions of the human 

behavior, by having a finite number of layers with different 

neurons being as the computing elements [8]. The most 

popular type of ANNs consists of input, hidden, and output 

layers. The input and output layers represent the nodes, and 

the hidden layer represents the relationship between the 

input and output layers.  In ANNs, the Radial Basis 

Function Neural Network (RBFNN) shown in Fig. 2 can 

approximate the desired outputs predicted without a need to 

have a mathematical formula of the relationship among the 

outputs and the inputs [9]. 

 

 
Fig. 2. Architecture of the RBFNN. 
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Previous research attempted to improve uPVC pipes' quality 

and enhance extrusion process's productivity. For example, 

Mu et al. [10] developed an optimization approach for 

processing design in the extrusion process of plastic profile 

with metal insert. Mamalis et al. [11] optimized processing 

parameters of Tube -extrusion of polymeric materials. This 

research utilizes the fuzzy logic and RBFNN techniques in 

the PAT framework to optimize the parameters of plastic 

extrusion process. Research results may contribute to reduce 

huge quality and production costs.  

II. MATERİALS AND METHODS   

The pipes' manufacturing line starts by mixing the raw 

material, which consists mainly of uPVC particles. Within 

the barrel, raw material is subjected to extremely high 

temperatures until it starts to melt. Depending on the type of 

thermoplastic, barrel temperatures can range between 400 

and 530 degrees Fahrenheit. Once the molten plastic 

reaches the end of the barrel, it is forced through a screen 

pack and fed into the feed pipe that leads to the die, which 

is designed and built based on the dimensions desired in the 

pipe and the shrink rate of the type of plastic being used. 

After leaving the extrusion die, the pipe passes through 

precision sizing sleeves with an external vacuum. The puller 

or haul off is used to pull off the pipe through sizing and 

cooling operations. To expedite the cooling process, the 

newly formed plastic receives a sealed water bath. Once it 

has passed a certain length, it will trip a sensor (electric eye) 

triggering a cutting operation on the pipe. The cut is made 

by a cutter that moves forward at the rate of pipe extrusion 

to offset the motion of the pipe moving forward so that the 

end of the pipe will remain perpendicular to the pipe wall 

after it is cut. The PAT framework is then implemented as 

follows. 

 

i.  Identifying critical process attributes 

 

The pipe quality can be described by several physical 

parameters; such as, accurate pipes weight and thickness. 

Pipe's average thickness and average weight are considered 

the most vital quality characteristics. Typically, the pipe is 

composed of PVC and additives, such as UV inhibitors, 

anti-oxidants, or colorants. Accurate pipe's weight for a 

homogeneous powder mixture ensures that each produced 

pipe contains sufficient amount of resin stated in the 

standards. The specification of the pipe’s weight is 1666 ± 

14 grams/meter. Thus, the average weight is considered as 

nominal-the-best (NTB) type. The thickness is also a 

significant measure to the uniformity of the pipe and the 

resulted defects; an accurate thickness is an indicator to a 

good surface finish. Therefore, pipe's thickness will be used 

as an indicator to measure if it can hold the pressure on its' 

inner wall and does not cause pipe's fracture. The 

specifications of the pipe's thickness are 3200 ± 200 

Micrometer. The pipe thickness is measured using a Vernier 

caliper, while the pipe weight is measured using a weighing 

device.  

 

ii. Real-time monitoring 

 

A control chart is one of the primary monitoring techniques 

of statistical Process control. A normality test for the current 

data is conducted before proceeding in establishing the 

control charts. The p values of 0.379 and 0.857 are found 

for the pipe's average weight and thickness, respectively, 

which confirms that the normal distribution is a satisfactory 

model for each response.  The data is collected for the pipe's 

thickness and weight. I-MR control charts for the averages 

of pipe's weight and thickness are constructed and depicted 

in Fig. 3. In this figure, the calculated LCL, CL, and UCL 

values for I chart are 1634.13, 1664.6, and 1695.07 g/m, 

respectively, while their respective values for the MR chart 

are estimated 0.0, 11.46, and 37.44 g/m. For the average 

thickness, the LCL, CL, and UCL of the I chart are 

respectively calculated as 2906.7, 3156.0, and 3405.3 µm, 

while their values for  the MR chart are estimated 0.0, 93.8, 

and 306.4 µm, respectively. Observing the I-MR charts, 

neither point falls beyond the control limits nor is a 

significant pattern observed within the control limits for 

both the pipe's average weight and thickness. Consequently, 

the I-MR charts are concluded in statistical control. 

A vital part of an overall quality-improvement program is 

the process capability analysis by which the capability of a 

manufacturing process can be measured and assessed. The 

pC  is estimated as shown in Eq. (1). 
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Furthermore, the actual process capability index, 
pkC , 

attempts to take the target, T, into account. The actual 

capability index, 
pkC , can be expressed mathematically by: 
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A criterion for selecting an optimal design is known 

as ˆ
pkMC and is used as a capability measure for a process 

having multiple performance measures. ˆ
pkMC is a proposed 

system capability index for the process which is the 

geometric mean of performance measure ˆ
pkC  values. 
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where m is the number of quality characteristics.                  

A summary of all the statistical data gathered in the 

measuring phase for both quality characteristics is listed in 

Table 1. 

 
Table 1. Statistical summary for both quality responses.  

 

Response LSL Target USL ̂  ˆ
pkC  ˆ

pkMC  

Weight 

(gm) 

1652 1666 1680 10.16 0.41  

0.51 

Thickness 

(μm) 

3000 3200 3400 83.11 0.63 

 
In Table 1, it is found that the process is found incapable for 

both responses. Therefore, process optimization is required. 

 

iii. Optimization and Prediction 

 

The quality characteristics are the pipe's weight (WE, g/m) 

and pipe thickness (TH, µm). Both quality characteristics 
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are the nominal-the-best (NTB) type responses. Based on 

technical knowledge, nine three-level process factors are 

studied. The appropriate array is the L27 orthogonal array 

shown in Table 2. 
 

Table 2. The controllable factors and their levels. 

Process factor  Level 

 1 2 3 

x1: T1 (˚C) 190 195 200 

x2: T2 (˚C) 180 185 190 

x3: T3 (˚C) 165 170 175 

x4: T4 (˚C) 165 170 175 

x5: T5 (˚C) 160 165 170 

x6: T6 (˚C) 170 175 180 

x7: T7 (˚C) 165 170 175 

x8: T8 (˚C) 225 230 235 

x9: Screw speed (rpm) 700 800 900 

 
In the Taguchi method, the orthogonal array (OA) consists 

of columns that represent the controllable factors to be 

studied. While, the rows represent the combination of factor 

levels at which experiments are held. Let 
ij  denotes the 

signal-to noise ratio for the jth response at experiment i 

calculated for the nominal-the-best (NTB) type response as: 

2 210log[ / ] ; 1,..., 27i i iy s i   
                                  (4)

 

where
_

iy and is are the estimated average and standard 

deviation in experiment i of each response, respectively. In 

this research, nine three-level factors are considered, and 

thus the L27 array shown in Table 3 will be utilized for 

conducting experimental work. Each experiment is 

conducted at the combination of factor levels with two 

replicates. Then, the weight and thickness values are 

measured and listed in Table 4. Finally, the 
ij values are 

computed at experiment i for each response j; i=1,…, 27, 

j=1,2. The obtained results are also displayed in Table 3. 
 

(a) Optimization of process settings 

 

The two quality characteristics are converted into a single 

response using fuzzy logic. Its input variables are the 

ij values, whereas the COMi values are the output. The 

minimum and maximum values of 
ij for each quality 

characteristic are shown in Table 4.  
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Fig. 3. The I-MR control charts at initial factor settings. 
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The fuzzy logic method is built by setting the inputs and 

output as shown in Fig. 4. The rules that represent the 

association between the input variables in the fuzzy model 

that are represented as 
ij for each quality characteristic and 

the output are setas shown in Table 5. Then the three fuzzy 

subsets are assigned to the output value (the COM value) as 

also shown in Fig. 4.The output of the non-fuzzy value (the 

COM value) is calculated by using the COG Defuzzification 

method. The COMi values obtained from fuzzy logic at each 

experiment are shown in Table 6. The complete data set for 

the COM value is then generated using RBFNN by setting 

the orthogonal array as an input matrix and the COM values 

as an output matrix. The results are displays in Table 7. 

Finally, the COM averages are calculated at each factor 

level as shown in Table 8, where the combination of 

optimal factor levels is x1(1)x2(1)x3(1) x4(2)x5(1) x6(3) x7(3) x8(2) 

x9(3), which is identified by selecting the level that 

maximizes COM average for this factor. 

 

Table 3. The calculated 
ij values in the L27 array. 

Exp. i x1 x2 x3 x4 x5 x6 x7 x8 x9 Wi11 Wi12 Ti21 Ti22 1i  2i  
Mean 

Weight 

Mean 

Thickness 

1 1 1 1 1 1 1 1 1 1 1595.0 1606.0 3180.2 3182.3 46.27 66.62 3181.25 1600.5 

2 1 1 2 1 2 2 2 2 2 1673.0 1667.0 3102.1 3104.2 51.90 66.57 3103.13 1670.00 

3 1 1 3 1 3 3 3 3 3 1678.0 1675.0 3203.0 3197.0 57.96 57.55 3200.00 1676.5 

4 1 2 1 2 1 1 1 2 2 1612.0 1613.0 3170.2 3173.6 67.16 62.51 3171.88 1612.5 

5 1 2 2 2 2 2 2 3 3 1647.0 1642.0 3038.8 3042.5 53.35 61.40 3040.63 1644.5 

6 1 2 3 2 3 3 3 1 1 1663.0 1657.0 2977.1 2979.2 51.85 66.21 2978.13 1660.00 

7 1 3 1 3 1 1 1 3 3 1601.0 1609.0 2839.0 2836.0 49.06 62.53 2837.5 1605.00 

8 1 3 2 3 2 2 2 1 1 1688.0 1692.0 3218.3 3213.0 55.53 58.60 3215.63 1690.00 

9 1 3 3 3 3 3 3 2 2 1701.0 1699.0 3323.2 3333.1 61.60 53.58 3328.13 1700.00 

10 2 1 1 3 1 2 3 1 2 1670.0 1675.0 3010.3 3008.5 53.50 67.28 3009.38 1672.5 

11 2 1 2 3 2 3 1 2 3 1644.0 1646.0 3010.3 3008.5 61.31 67.28 3009.38 1645.00 

12 2 1 3 3 3 1 2 3 1 1660.0 1665.0 3207.2 3199.1 53.45 54.91 3203.13 1662.50 

13 2 2 1 1 1 2 3 2 3 1664.0 1666.0 3180.0 3182.5 61.42 65.10 3181.25 1665.00 

14 2 2 2 1 2 3 1 3 1 1633.0 1637.0 3100.0 3112.5 55.24 50.92 3106.25 1635.00 

15 2 2 3 1 3 1 2 1 2 1627.0 1623.0 2982.0 2993.0 55.19 51.69 2987.5 1625.00 

16 2 3 1 2 1 2 3 3 1 1665.0 1670.0 3199.2 3182.1 53.47 48.41 3190.63 1667.50 

17 2 3 2 2 2 3 1 1 2 1742.0 1738.0 3342.0 3358.0 55.78 49.43 3350.00 1740.00 

18 2 3 3 2 3 1 2 2 3 1647.0 1648.0 3011.2 3026.3 67.35 49.03 3018.75 1647.50 

19 3 1 1 2 1 3 2 1 3 1604.0 1606.0 2932.0 2930.5 61.10 68.83 2931.25 1605.00 

20 3 1 2 2 2 1 3 2 1 1658.0 1652.0 3143.3 3144.2 51.82 73.87 3143.75 1655.00 

21 3 1 3 2 3 2 1 3 2 1612.0 1608.0 2977.7 2966.1 55.11 51.15 2971.88 1610.00 

22 3 2 1 3 1 3 2 2 1 1597.0 1583.0 2785.4 2789.6 44.12 59.45 2787.50 1590.00 

23 3 2 2 3 2 1 3 3 2 1613.0 1617.0 2860.0 2865.0 55.13 58.17 2862.50 1615.00 

24 3 2 3 3 3 2 1 1 3 1654.0 1646.0 3078.6 3065.1 49.30 50.18 3071.87 1650.00 

25 3 3 1 1 1 3 2 3 2 1670.0 1675.0 3113.0 3112.0 53.50 72.87 3112.5 1672.50 

26 3 3 2 1 2 1 3 1 3 1666.0 1674.0 3142.9 3144.6 49.40 68.35 3143.75 1670.00 

27 3 3 3 1 3 2 1 2 1 1642.0 1648.0 3096.5 3091.0 51.77 58.01 3093.75 1645.00 

 
 

 

Fig. 4. Membership functions for quality responses. 
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Table 4. The max and min values of 
ij . 

Response 
min 

ij  
High 

(%) 

Low 

(%) 

max 

ij  
High 

(%) 

Low 

(%) 

Weight (gm) 44.12 0 100 67.35 100 0 

Thickness (μm) 
48.41 0 100 73.87 100 0 

 

Table 5. The fuzzy rules. 

ij  
COM 

Weight Thickness  

LOW LOW Low 

LOW HIGH Medium 

HIGH LOW Medium 

HIGH HIGH High 

 
Table 6. The COMi values. 

Exp. i 
COMi Exp. i COMi Exp. i COMi 

1 0.482 10 0.522 19 0.624 

2 0.507 11 0.617 20 0.528 

3 0.493 12 0.432 21 0.435 

4 0.577 13 0.586 22 0.420 

5 0.483 14 0.436 23 0.473 

6 0.504 15 0.438 24 0.339 

7 0.465 16 0.410 25 0.540 

8 0.480 17 0.439 26 0.501 

9 0.495 18 0.500 27 0.438 

 

Table 7. The full data set for the com value. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table 8. The COM averages for the full factorial design. 

 

 
 

 

 

 

 

 

 

 
 

Table 9. The COM averages for the full factorial design. 

 

 

 

 

 

 

 

Run no. 
x1 x2 x3 x4 x5 x6 x7 x8 x9 

COMi 

1 1 1 1 1 1 1 1 1 1 0.4820 

2 1 1 1 1 1 1 1 1 2 0.5127 

3 1 1 1 1 1 1 1 1 3 0.5341 

4 1 1 1 1 1 1 1 2 1 0.5124 

5 1 1 1 1 1 1 1 2 2 0.5321 

6 1 1 1 1 1 1 1 2 3 0.5385 

. . . . . . . . . . . 

. . . . . . . . . . . 

. . . . . . . . . . . 

19681 3 3 3 3 3 3 3 3 1 0.5332 

19682 3 3 3 3 3 3 3 3 2 0.5324 

19683 3 3 3 3 3 3 3 3 3 0.5332 

Factor Level 

 1 2 3 

x1 0.529 0.521 0.527 

x2 0.531 0.523 0.526 

x3 0.531 0.526 0.525 

x4 0.528 0.522 0.524 

x5 0.531 0.526 0.525 

x6 0.521 0.526 0.529 

x7 0.524 0.526 0.529 

x8 0.522 0.528 0.526 

x9 0.525 0.526 0.531 

Response Condition ̂  ̂  
ˆ

pkC  

Average weight Initial 1664.6 10.16 0.41 

 Online 1669 3.45 1.06 

Average thickness Initial 3156 83.11 0.63 

 Online 3244.4 5.54 9.36 
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(b) Response Prediction  

 

The weight and thickness averages are predicted at the 

combination of optimal factor levels 

x1(1)x2(1)x3(1)x4(1)x5(1)x6(3)x7(3)x8(2)x9(3) and then the results are 

shown in Table 10. It is found that the predicted average 

weight at the optimal factor levels is 1720.2 ± 17.6 gm, 

while the predicted average thickness is 3188.515 ± 84 μm. 

 

(c) Process adjustment and online sampling 

 

The process parameters are set at the combination of 

optimal factor settings. During operation, an online 

sampling is conducted and then the weight and thickness 

averages are measured. It is found that the injection process 

exhibits statistical control for both responses. Fig. 5 

displays the estimated capability indices for both responses.  

III RESULTS AND DİSCUSSİON 

The anticipated improvements in both responses are 

summarized in Table 9, where it is found that: 

- For the pipe's weight, the estimated mean, ̂ , at the 

combination of initial (optimal) factor settings is 

equal to 1664.6 (1669), which is close to the target 

weight value of 1666. The estimated standard 

deviation, ̂ , at initial factor settings of 10.16 is 

reduced significantly to 3.45. As a result, the 

estimated process capability index, ˆ
pkC , is 

significantly improved from 0.41 to 1.06.  

- For the pipe's thickness, the ̂  at initial (optimal) 

factor settings is equal to 3156 (3244.4), which is 

close to the target weight value of 3200. Moreover, 

the ̂  at initial factor settings of 83.11 is reduced 

significantly to 5.54 using the optimal factor 

settings. Consequently, the estimated ˆ
pkC  is 

significantly enhanced from 0.63 to 9.36.  

-  Due to the improvement in individual capability 

indices, the multiple process capability index, 

MCpk, index is increased from 0.51 to 3.15, which 

indicates that the process becomes highly capable 

for both quality responses concurrently. 

 

IV CONCLUSİONS 

This paper adopted the Process Analytical Technology 

(PAT) to improve the performance of extrusion process 

with two main quality responses; pipe's weight and 

thickness. The main findings of this research is that using 

Statistical Control Charts to assess process condition at the 

combination of factor settings demonstrates that the 

extrusion process is in control while the capability analysis 

shows poor process performance. Thus, the L27 array is 

utilized to provide experimental design, the fuzzy-neural for 

identifying optimal factor settings and regression models to 

predict process performance. Confirmation experiments 

showed that the process means are close to target values of 

weight and thickness. Moreover, the estimated standard 

deviation of 10.16 for the pipe's weight at initial settings is 

reduced significantly to 3.45 at the optimal factor settings. 

For the pipe's thickness, the estimated standard deviation at 

initial settings of 83.11 is significantly reduced to 5.54 

using optimal settings. As a result, the estimated process 

capability index is significantly enhanced from 0.41 to 1.06 

for weight and it is significantly increased for thickness 

from 0.63 to 9.36. The multiple process capability index is 

increased from 0.51 to 3.15. The main conclusion drawn out 

of this research is that the gained improvements in extrusion 

process performance using PAT framework will result in 

significant savings in quality and production costs. 
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