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Abstract—In this paper, an adaptive constrained unscented 

Kalman filter (ACUKF) has been used for nonlinear structural 
system identification. The proposed algorithm takes into 
account state constraints and calculates online the 
measurement noise covariance matrix. The proposed method 
has been compared to the well-known unscented Kalman filter 
(UKF) for parameter estimation of a SDOF nonlinear 
hysteretic system. Numerical results show that the ACUKF is 
more robust to measurement noise level than the UKF, 
providing better state estimation and parameter identification. 

 
Index Terms— Constrained unscented Kalman filter, 

Adaptive Kalman filter, Nonlinear system identification, 
Structural dynamics. 
 

I. INTRODUCTION 

The Kalman filter (KF) approach has been often adopted in 
several engineering applications to estimate the state of a 
given system from recorded measurements [1-4]. The 
unscented Kalman filter (UKF) is one of the KF-based 
algorithms widely adopted for the structural dynamics 
identification and there are numerous successfully 
applications of this method in literature [5, 6]. 
However, the application of UKF to highly nonlinear 
structural systems can provide not satisfactory results [7]. 
In this paper, the UKF algorithm has been improved with 
respect to two fundamental aspects: the ability to take into 
account state constraints and the ability to adaptively 
calculate the measurement noise covariance matrix.  
The proposed adaptive constrained unscented Kalman filter 
(ACUKF) takes into account bounds of state variables and 
this is particularly useful as remediation for inaccurate 
system modelling which is often the case of real-world 
applications [7-9]. In addition, the ACUKF provides an 
adaptive identification of the measurement noise covariance 
matrix. It is well-known that an improper selection of 
process and measurement noise covariance matrices may 
cause a large estimation error or even the divergence of the 
whole system [10]. Generally, finding a suitable value of the 
process and measurement noise covariance matrices by the 
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classical method is time consuming. Moreover, 
measurement noise covariance can vary in actual application 
due to electromagnetic interference between sensors and 
other electrical instruments. The major function of the 
proposed adaptive algorithm is to get the measurement noise 
covariance matrix based on the filter learning history [10]. 
This allows to get better performance in the estimation. 
In this paper, the ACUKF and the UKF have been applied 
to a highly nonlinear hysteresis system based on the 
normalized Bouc-Wen model for the numerical evaluation 
of both methods. Several tests have been performed in order 
to investigate the robustness of the two techniques to the 
measurement noise level. 

The paper is organized as follows: a description the 
ACUKF is given in Section 2. The mathematical 
particularization of the ACUKF for the nonlinear hysteresis 
model is given in Section 3. Simulation results are presented 
in Section 4.  

II. ADAPTIVE CONSTRAINED KALMAN FILTER 

Consider the following continuous nonlinear state space 
description with discrete measurements sampled at regular 
intervals with sampling period t  
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where nRx   is the n-dimensional vector of system state, f  
and h  are nonlinear functions, u  is the input vector, w  is 

the process noise with covariance Q , mRy  is the m-

dimensional vector of measurement, v  is the Gaussian 
white measurement noise with covariance R  and k is the k-
th time step. The main task is to estimate the system state, 
i.e., calculate the mean as well as the covariance of system 
state at the (k+1)-th step, based on the state estimation at the 
k-th step and the measurements at the current (k+1)-th step.  

Given the filtered state estimates kk  | x̂ ,which have been 

obtained using all the measurements made up to time tk, and 
the input ku , the predicted state estimates kk  | 1ˆ x can be 

obtained as  
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In addition, bound constraints are imposed to the states as 
 

UL xxx                            (3) 

where xU and xL are the upper and lower bound of 
constrained vectors, respectively. 

Indicating with kk  | x̂ the filtered state estimates at time 

instant ‘k’ and kk  | P  the corresponding estimate error 

covariance matrix and denoting with 
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as the directions along which the sigma points are 

selected, according to the standard UKF,  the step sizes for 
all sigma points, for the simple case when only bound 
constraints are considered, can be performed as follows [9]:  
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where the subscript j represents the j-th element of the 

vector x . In the absence of bounds, the above choice of 
sigma points are identical to those used in UKF. If the 
current estimate is close to the bounds, then the above choice 
ensures that none of the sigma points violate the bounds on 
state variables. The weights of all of sigma points are 
adjusted by using a linear weighting method proposed in 
[11]: 
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The replacement of sigma points results in a first-order 
accuracy for the unscented transformation of mean value if 

5.0 , that is the value adopted in this paper. 
Each sigma point ikk , | Χ  is transformed through the state-

space equation in order to obtain sigma point of state 
prediction ikk , | 1Χ , the mean of the predicted state estimate 

kk  | 1ˆ x and its error covariance matrix kk  | 1P , as well as the 

calculation of the predicted measurement sigma points 

ikk , | 1Υ , the mean kk  | 1ˆ y  and covariance matrix 

kkyy  | 1, P of predicted measurement and the cross 

covariance matrix kkxy  | 1, P , according to the standard UKF 

method.  
The transformed sigma points are calculated with Kalman 
updating equation 
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in accordance with the method proposed in [8]. 
With ikk ,1 | 1 Χ  calculated by (8), the state update 1 | 1ˆ  kkx  

and its covariance 1 | 1  kkP  can be calculated using the 

following equations: 
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It can be proved that the above equations give exactly the 
same result of updated mean and covariance with the 
standard UKF [7].  
The adaptation of matrix R is described as follows: 
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where dk is a scaling parameter, b denotes a forgetting factor 
and usually between 0.95 and 0.995, and ek refers to the 
error between the actual measurement and the filter 
estimation in the kth step. Through the adaptive algorithm, 
the measurement noise covariance matrix can be computed 
step by step online [10]. Thus, the system estimation cannot 
be restricted by the initial noise covariance, and can adapt 
the variable system well. 

III. SDOF NONLINEAR HYSTERETIC SYSTEM 

Consider a single degree of freedom (SDOF) nonlinear 
hysteretic system subject to an acceleration input. The 
hysteresis force is mathematically described by the 
normalized Bouc-Wen model (NBWM) [12]; 

 
)()()()( txmtFtxctxm g                                     (11) 

 
where m is the mass, x(t) is the displacement, c is the linear 
viscous coefficient, F(t) is hysteretic component and )(txg  

is the excitation acceleration; the overdot indicates 
derivative with respect to time. The restoring force F(t), 
based on the normalized Bouc-Wen model, is: 
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where the parameters of the normalized form of the Bouc-
Wen model are ρ, σ, n, kf, kw with the following constraints: 
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Moreover, it is demonstrated that w(t) is bounded in the 
range [-1, 1] [13].  

An augmented state vector x is defined as 
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Then the state space equation is formulated based on (11) 

and (12) as fallows 
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where u is the base excitation.  
The derivatives of the NBWM parameters are all zero 
because they are assumed to be constant. A discrete time 
form of (15) is given by 
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where a process noise w has been added. 
If the acceleration response and excitation are measured, 

the observation equation can be expressed as  
 

vxxy g   ,                               (17) 

 
where x  is the acceleration of the suspended mass and v 

represents the measurement noise. 
The function h (see (1) for reference) can be written as 

follows 
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The bound constraints of the ACUKF are  
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in accordance with (13) and considering that w(t) is 
bounded in the range [-1, 1].  Consequently, the application 
of the ACUKF to the NBWM is particular suitable to 
constrain both the parameter values and the state variable w, 
improving accuracy and robustness of the hysteresis 
estimation. 
 

IV. SIMULATION TESTS 

Simulations have been performed by assigning to the model 
previously described the Chi-Chi earthquake acceleration. 
The acceleration time history has a duration of 20 s with its 
maximum scaled value equal to 3 m/s2.  
Two white noises equal to 0.12 m2/s4 (TEST 1) and 0.22 
m2/s4 (TEST 2) have been superimposed to the simulated 
mass acceleration and the ground input acceleration, at t = 5 
s for the purpose of exploring the identification robustness 
with respect to a sudden variation of the measurement noise. 
The ACUKF and the UKF have been parameterized in the 
same way and the initial value of R has been fixed to the 
measurement noise level before t = 5 s, equal to 0.012 m2/s4 
for both tests. 
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Figs. 1-6 show the estimated parameters compared with the 
exact ones, for the TEST 1.   

 
Fig. 1. Estimation of parameter c, TEST 1. 

 
Fig. 2. Estimation of parameter kf, TEST 1. 

 

 
Fig. 3. Estimation of parameter kw, TEST 1. 

 

 
Fig. 4. Estimation of parameter ρ, TEST 1. 

 
Fig. 5. Estimation of parameter σ, TEST 1. 

 
Fig. 6. Estimation of parameter n, TEST 1. 

 
The results clearly show that the ACUKF demonstrates a 
better robustness with respect to measurement noise level. 
Indeed, after a variation of R the parameters estimated with 
the ACUKF method are very close to exact ones. In 
contrast, the estimated parameters with the UKF degrades 
with the variation of R, as it is possible to note in the figures 
above. 
Fig. 7 presents the estimation of the measurement noise my 
means of the ACUKF. 

 
Fig. 7. Measurement covariance estimation with the ACUKF, TEST 1. 

 
Fig. 8 shows the estimated displacements and exact one 
obtained by numerical integration. 
 

 
Fig. 8. Suspended mass displacement estimation, TEST 1. 
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Results of Fig. 8 highlight that the estimation error of the 
UKF is greater than the one of the ACUKF, especially after 
the sudden variation of the measurement noise. 
The main results of TEST 2 are presented in the following. 
In this case, the measurement noise level is greater than the 
one of TEST 1.  
For comparison purpose, Figs. 9-14 show the estimated 
parameters compared with the exact ones, for the TEST 2.   

 
Fig. 9. Estimation of parameter c, TEST 2. 

 

 
Fig. 10. Estimation of parameter kf, TEST 2. 

 

 
Fig. 11. Estimation of parameter kw, TEST 2. 

 
Fig. 12. Estimation of parameter ρ, TEST 2. 

 
Fig. 13. Estimation of parameter σ, TEST 2. 

 
Fig. 14. Estimation of parameter n, TEST 2. 

 
The UKF, after a variation of the measurement noise level 
(at t=5 s), provides poor results in terms of parameter 
estimation. For example, some parameters assume values 
out of their bounds without a physical meaning.  
Estimated displacement diagrams presented in Fig. 15 
clearly show the effectiveness of the ACUKF and the 
divergence of the UKF that cannot handle measurement 
noise variation.    

 
Fig. 15. Suspended mass displacement estimation, TEST 2. 

 
The estimation of the measurement noise my means of the 
ACUKF is shown in Fig. 16. 
 

 
Fig. 16. Measurement covariance estimation with the ACUKF, TEST 2. 

 
Also for TEST 2, the ACUKF performs better than the 
UKF, indeed, the ACUKF provides a displacement 
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estimation practically superimposed to the exact one, also 
after a sudden variation of the measurement noise.  
Simulation results show that the method ACUKF takes into 
account state constraints and it is robust to variations of R 
due to its adaptive property. 
 

V. CONCLUSION 

The design of a novel adaptive constrained unscented 
Kalman filter (ACUKF) is presented in this paper. The 
performance of the ACUKF is compared with that one of 
the unscented Kalman filter (UKF) for a state estimation and 
the parameter identification applied to a SDOF nonlinear 
hysteretic system. The nonlinear behaviour has been 
mathematically described by the normalized Bouc-Wen 
model. The estimation capabilities and the robustness of 
both methods have been evaluated for different 
measurement noise levels. The numerical results have 
shown the ability of the ACUKF to identify a sudden 
variation of noise level, demonstrating its robustness. The 
ACUKF has provided more accurate estimation results than 
the UKF, also improving the convergence capability of the 
standard UKF. The ACUKF could be adopted in adaptive 
control methodologies where a real-time nonlinear system 
identification is required.    
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