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Abstract—Arrays of vertical pillars are encountered in a va-
riety of nanotechnological applications, e.g. in sensing systems.
If such an array of N pillars, with pillars characterized by
random strength thresholds σth, is subjected to a sufficiently
large axial load Fc, the pillars break in the form of cascades
of avalanches. Using a Fiber Bundle Model with a so-called
local load transfer rule from destroyed pillars to the intact
ones, we analyze distributions of Fc when thresholds σth are
independently drawn from the Weibull distribution, pk,λ(σth) =
(k/λ)(σth/λ)k−1 exp[−(σth/λ)k], where λ = 1 and k are the
scale and shape, respectively. Based on simulations we show that
distribution of Fc/N = σc can be well fitted by the Weibull pdf
pK,Λ(σc) = (K/Λ)(σc/Λ)K−1 exp[−(σc/Λ)K ], where K and Λ
are functions of k and N . Specifically, for N >> 1, the mean
< Fc/N >∼ ln(k).

Index Terms—avalanche, array of pillars, critical load, frac-
ture, probability distribution.

I. INTRODUCTION

A MODERN nanodevice may be composed of a large
number of identical parts that function as a unit. A

possible sequence of failures among these components de-
creases the device performance and may eventually lead to
a catastrophic avalanche of failures.

Majority of studies dealing with avalanches of failures
employ so-called load transfer models, as e.g., the Fibre
Bundle Model (FBM) or Random Fuse Model [1], [2], [3].
Especially the FBM, originally designed to describe loaded
fibre bundles, can be applied to model damage processes
in an array of vertical pillars regularly distributed on a flat
substrate.

In this work, the array of pillars is represented by a
collection of fibers and then analyzed within a static Fibre
Bundle Model framework [4], [5], [6], [7], [8], [9]. Breaking
of pillars from the support is a process involving avalanches
of fractures. This means that when a pillar breaks, its load is
transferred to the other intact elements and thus the probabil-
ity of subsequent fractures increases. Based on the results of
numerical simulations, we claim that the observed weakening
of the axial load Fc is related to a load transfer phenomenon
which is an inherent part of the fracture process in a bundle
of pillars [8]. In our numerical experiment a set of N = L×L
pillars, located in the nodes of the supporting square lattice, is
subjected to an axial load F . Defects significantly influence
the mechanical behaviour of materials under load. Due to
these defects, the pillar-strength-thresholds are modelled by
quenched random variables. The two most popular strength-
thresholds distributions are uniform distribution and Weibull
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Fig. 1. Schematic view of an array of pillars.

distribution. Strength-thresholds reflect multiple breaking
modes related by von Mises type, Coulomb-Mohr or other
failure criteria [10], [11]. The mechanism of load transfer is
a key aspect of the model and it can be classified into two
main groups: global (equal) load sharing (GLS) and local
load sharing (LLS). There are also mixtures of these rules
and other rules e.g., range variable rule, hierarchical model
[12], [13], [14]. In the GLS model, long-range interactions
are assumed as all the intact elements equally share a load of
a failed element. The GLS rule can be applied if the support-
pillar interface is perfectly rigid.

II. MATHEMATICAL MODEL AND COMPUTATION METHOD

In this work, we assume that the support-pillar inter-
face has a certain compliance, thus the load redistribution
becomes localized. We employ the LLS transfer mode -
within a short interval between consecutive fractures the
load carried by the broken pillar is transferred only to its
closest intact elements. Because of such a limited-range-
load-transfer, the distribution of load is not homogeneous
giving rise to appearance of regions of stress accumulation
throughout the entire system. The increasing stress on the
intact pillars leads to other failures, after which each intact
pillar bears growing load. If the load transfer does not trigger
further fractures, a stable configuration emerges meaning that
this initial value of F is not sufficient to provoke fracture
of the entire system, and its value has to be increased by
an amount δF . In the simulations we applied a quasi-static
loading procedure - if the system is in a stable state the
external load is uniformly increased on all the intact pillars
just to destroy only the weakest intact pillar.

A series of increases in the value of the external load gives
Fc which induces an avalanche of failures among all still un-
destroyed pillars. Application of quasi-static loading allows
one to obtain minimal load Fc necessary for destruction of
all the pillars in the system. In order to compare results for
different system sizes, critical loads Fc are scaled by the
appropriate initial system sizes σc = Fc/N .
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Fig. 2. Empirical probability density functions (pdf) of σc for arrays with
L = 100 (circles), L = 70 (squares) and L = 40 (diamonds). Weibull
index k = 2 for all presented pdfs. The solid lines represent skew-normally
distributed σc with the parameters computed from the simulations.

In this paper, pillar-strength-thresholds σth are drawn from
the Weibull distribution [15], [16]. The probability density
function of this distribution is given by

pk,λ(σth) = (k/λ)(σth/λ)k−1 exp[−(σth/λ)k] (1)

Parameters k > 0 and λ > 0 define the shape and scale
of this pdf. Shape parameter k (also called Weibull index)
controls the amount of disorder in the system. Without loss
of generality, we assume λ = 1 and thus the corresponding
probability density reads

pk,1(σth) = kσth
k−1 exp[−σthk] (2)

We address a question how these local critical loads dis-
tributed according to (2) combine to create an effective-
global critical load Fc. Based on our numerical simulations,
we have found that coefficient of skewness of the Fc distribu-
tion is a decreasing function of the system size which takes
negative values for systems with L > 10. For this reason we
employ two distributions for fitting our skewed data, namely:

(i) three-parameter skew normal distribution (SND) [17],
[18] defined by

p(σc) =
exp[− (σc−ξ)2

2ω2 ]erfc[−α(σc−ξ)√
2ω

]
√

2πω
(3)

where ξ, ω, α are location, scale and shape parameters,
respectively.

(ii) the Weibull distribution:

pK,Λ(σc) = (K/Λ)(σc/Λ)K−1 exp[−(σc/Λ)K ] (4)

It is worth mentioning that for the GLS rule, σc obeys
normal distribution for both Weibull and uniform distribution
of pillar-strength thresholds.

III. RESULTS AND DISCUSSION

Based on the Fibre Bundle Model and local load sharing
rule, we developed a program code for the simulation of
the loading process in two-dimensional nanopillar arrays.
Intensive numerical simulations are conducted for systems
ranging from N = 5× 5 to N = 100× 100. We have tuned
the amount of pillar-strength-threshold disorder by integer

Fig. 3. Empirical probability density functions (pdf) of σc for arrays with
L = 100: k = 2 (circles) and k = 4 (squares). The solid lines represent
Weibull distributed σc with the parameters computed from the simulations.

Fig. 4. The Q-Q plot of the quantiles of the set of computed σc vs the
quantiles of the skew normal distribution. System size N = 100×100 and
k = 7.

Fig. 5. The Q-Q plot of the quantiles of the set of computed σc vs the
quantiles of the Weibull distribution. System size N = 100 × 100 and
k = 7.
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values of k ranging from 2 to 9. In order to get reliable
statistics, each simulation was repeated 104 times.

Figures 2 and 3 show empirical probability density func-
tions of σc for chosen systems. In these plots we have also
added fitting lines of skew normal (Fig. 2) and Weibull (Fig.
3) probability density functions with parameters computed
from the samples. It can be seen that both of these theo-
retical distributions are in good agreement with empirical
distributions of σc. We also present a quantile-quantile plot
(Q-Q plot) of the quantiles of the collected data set against
the corresponding quantiles given by the SND and Weibull
probability distributions. From Figures 4 and 5, it is seen that
the result of fitting by skew normal distribution is slightly
better than the Weibull fitting. Based on simulations, we
have observed that fitting by skew normal distribution gives
better results than Weibull fitting for all analysed systems,
especially for the smaller ones. However, it should be noted
that skew normal distribution has one parameter more than
Weibull distribution. Fitting by Weibull distribution allows us
to analyse the influence of system properties on the micro-
scopic level (Weibull distributed pillar-strength thresholds)
on the macroscopic response (distribution of crical loads) in
the framework of one type of distribution. Hence, we focus
our attention on the fitting of σc distribution by Weibull
distribution.

In the case of Weibull distribution, values of the fitted
parameters K and Λ depend on system size and Weibull
index k in the original distribution characterizing the pillar’s
strength. The plots of the parameters K and Λ are shown
in Figures 6 and 7, respectively. For a fixed value of k, the
parameter K is a strictly increasing function of linear system
size L. We have found that this relation can be approximated
by the following formula

Kk(L) = a1 + a2

√
L+ a3 lnL (5)

Fitted parameter
Weibull index a1 a2 a3

k = 2 -2.505 0.019 5.916
k = 4 -0.293 -0.315 6.813
k = 6 0.534 -0.584 7.880
k = 9 2.320 -0.550 8.264

where a1, a2, a3 are fitted parameters. One can also see that
fitted curves are (increasingly) ordered according to Weibull
index k.

Contrary to K, the parameter Λ is a strictly decreasing
function of L, which can be fitted by the formula (see Fig.
7)

Λk(L) = b1 +
b2√
L

(6)

Fitted parameter
Weibull index b1 b2

k = 2 0.270 0.454
k = 4 0.371 0.463
k = 6 0.441 0.473
k = 9 0.515 0.468

where b1, b2 are matched parameters. The ordering of curves,
reported for the previous plot, is preserved.

Fig. 6. Parameter K as a function of L, formula (5), for different values
of Weibull index: k = 2 (circles), k = 4 (squares), k = 6 (diamonds),
k = 9 (triangles).

Fig. 7. Parameter Λ as a function of L, formula (6), for different values of
Weibull index: k = 2 (circles), k = 4 (squares), k = 6 (diamonds), k = 9
(triangles).

Fig. 8. Same as in Fig. 6, parameter K vs lnL for different values
of Weibull index: k = 2 (circles), k = 4 (squares), k = 6 (diamonds),
k = 9 (triangles). The dashed lines represent a linear function with fitted
parameters.
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Fig. 9. Same as in Fig. 7, parameter Λ vs 1/
√
L for different values of

Weibull index: k = 2 (circles), k = 4 (squares), k = 6 (diamonds), k = 9
(triangles). The dashed lines represent third degree polynomial with fitted
parameters.

One of the components of the formula (5) is the natural
logarithm of L. If the linear system size is logarithmized, the
parameter K can be approximated by the linear function -
it is reported in Fig. 8. In turn, Fig. 9 presents values of the
parameter Λ in the function of L−1/2 which is a part of the
function 6. In this case we applied a third degree polynomial
as an approximative formula.

Taking assumption that Fc/N follows Weibull distribution
with the parameters K and Λ, the expected value of this
distribution is given by

E[Fc/N ] =< Fc/N >= ΛΓ(1 +
1

K
) (7)

where Γ(1 + 1
K ) is the gamma function. From the fitting we

have obtained K ∈ (7.27, 33.69). Substituting limits of this
interval into the relation

Γ(1 +
1

K
)/Γ(1) (8)

we received two values 0.94 and 0.98. As it was previously
mentioned, K is a increasing function of the system size,
therefore relation (8) tends to unity with the increasing
system size. Consequently, the parameter Λ is a key factor
of the formula (7) and the mean critical load can by roughly
estimated by

< Fc/N >∼ ΛΓ(1) = Λ (9)

In the following we propose a universal formula for calcu-
lating Λ in dependence of L and k. The function (6) can be
rewritten as

Λ(L, k) = b1(k) +
b2(k)√
L

(10)

where parameters b1, b2 are replaced by their functions of k.
The plot of the parameters b1 and b2 with values obtained
from simulations is shown in Fig. 10. We have approximated
b1(k) and b2(k) by

b1(k) = c1 + c2 ln k (11)

with c1 ≈ 0.148, c2 ≈ 0.165 and

b2(k) = d1 + d2k (12)

with d1 ≈ 0.451, d2 ≈ 0.002. It can be noticed that
b2(k)/

√
L → 0 when L → ∞ and so Λ depends only on

b1(k).

Fig. 10. Parameters b1 (circles) and b2 (squares) vs index k. The dashed
lines illustrate functions (11) and (12) with fitted parameters.

Fig. 11. The Pearson correlation coefficient r between two variables Fc and
∆c versus the linear system size. Circles represent results for the systems
with k = 2, whereas squares represent systems with k = 9.

Fig. 12. Size of critical avalanche ∆c vs critical load Fc for arrays of
N = 80× 80 pillars taken from 104 samples.
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Some insight into the strength of the system can be gained
by collating, sample by sample, the critical force Fc with
the number ∆c of pillars crushed under this force, i.e., since
the load increases in a quasi-static way then ∆c + 1 pillars
bear safely the load Fc − δF which means that the average
maximal stress σmax supported by the system has an upper
bound

σmax <
Fc
∆ c

(13)

We employ Pearson correlation coefficient r to measure the
relationship between critical loads Fc and sizes of critical
avalanches ∆c. The results of r as a function of L are
illustrated in Fig. 11. For the smallest systems we obtained
positive values of the coefficient r, but as the system size
is increased the values of r decrease and become negative.
In the smallest systems there is no relationship between Fc
and ∆c whilst systems with L > 40 are characterised by a
strong negative relationship for all analysed k. For the clarity
of the plot shown in Fig. 11 we report only the results for
two values of k. An examplary scatter plot of ∆c versus Fc
is shown in Fig. 12.

In conclusion, we have studied numerically effective distri-
butions of critical loads Fc in quasi-statically loaded arrays of
nanopillars. By fitting discrete distributions of critical loads,
we have found how the random pillar-strength-thresholds
influence the macroscopic yield of the system. Valuable
results of this work involve two observations: (i) if the pillar-
strength-thresholds obey the Weibull distribution, the critical
load is also distributed according to the Weibull pdf and (ii)
the corresponding parameters K and Λ, i.e., global scale and
shape parameters, are functions of k, where the parameter k
characterizes the local property of the system.
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