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Abstract— In this paper, static analysis of functionally 

graded rectangular plates with orthotropic behavior, subjected 

to mechanical, thermal and thermo-mechanical loading is 

presented on the basis of classical plate theory (CPT). The 

boundary condition is supposed to be four simply supported 

edges. The mechanical and physical properties are varied in 

direction of thickness, while the Poisson ratios remain constant. 

The governing equilibrium equation and compatibility equation 

with plane stress assumption are solved consequently to 

consider the displacement. The influences of orthotropic ratio, 

the intensity of transverse loading and thermal gradient, Young 

modulus ratio of top and bottom faces of the plate and aspect 

ratio are studied on bending behavior of plate. In this paper, 

two samples of FG plate are considered; one is the plate which 

the lower surface is Alumina(Al2O3) and the mechanical 

properties of upper surface is the multiplier of the Alumina; the 

other is the ceramic-metal FG plate(Nickel-Alumina) with 

orthotropic characteristics of  ceramics. The results indicate 

that by increasing Young modulus ratio, the plate exhibits more 

resistance against deformation, the neutral plane moves toward 

the stronger surface and the deflection decreases. If Young 

modulus ratio increased, the deflection gets lower. In addition, 

by exposing the plate to greater positive thermal gradient, the 

sign of stress field is reversed from tensile to compressive 

distribution.  
 

Keyword: bending analysis, functionally graded material, 

Orthotropic plate, sigmoid FG function, Airy stress function. 

 

I. INTRODUCTION 

OWADAYS, during development in aerospace technology, 

the requirement for the production of modern materials, 

which can withstand severe environmental phenomena 

including high thermal gradient, is perceived. Therefore, the 

idea of making gradual changes in composition of new 

composites, from heat-resistant ceramics and metals with 

high machinery ability is formed. Particularly, in an 

environment with high temperature, the thermal expansion 

coefficient of layers of laminar composites mismatches the 

severe residual stresses applied to the layers, leading to 

failure delamination of the layers. Thus the concept of 

functionally graded materials to eliminate residual stresses 

due to gradual changes in a desired direction was introduced 

[1]-[2]. Studies reveal that the application of functionally 
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graded materials in structures can reduce the residual stress 

significantly. Two familiar FG models, namely, power law 

and exponential function are used to describe the mixture 

variation of the volumetric ratio of metal and ceramics, 

however in both functions, the stress concentration is 

observed due to rapid change in the continuity of constituent 

materials in FGMs. Chi and Chung used the sigmoid 

function, which is composed of two power-law functions, to 

model FG behavior in order to define a volume fraction that 

can reduce the stress intensity factors significantly [3].  
Due to functionally graded materials use in aerospace, 

nuclear, medical industries, several researches have been 

conducted in the field of dynamic and statics analysis. 

Herein, we introduced those are related to the present 

subject. Chi and Chung [4]-[5] investigated the static 

response of FG rectangular plate based on classical plate 

theory (CPT) when subjected to transverse loading via 

analytical method (Airy stress function) and finite element 

method (FEM). They supposed the mechanical properties 

vary continuously throughout the thickness direction 

according to the volume fraction of constituents defined by 

power-law, sigmoid, or exponential function.  

Due to the fact of inherent anisotropy of this kind of 

materials, study on this characteristics of functionally graded 

materials when exposed to severe variation in working 

environment must be noticed [6]-[9]. Morimoto and 

Tanigawa [10] proposed a linear buckling analysis for 

orthotropic inhomogeneous rectangular plates for simply 

supported edge condition under uniform in-plane 

compression with assuming Young’s modulus and shear 

modulus of elasticity which are continuously changed in the 

thickness direction according to the power law. 

Ghanndapour and Alinia[11], Alinia and Ghannadpour[12] 

proposed the large deflection analysis of rectangular 

functionally graded plates under pressure load. They 

obtained the numerical results to study the effects of material 

properties on the deflection and the stress field through the 

thickness. Chung and Chen [13] obtained the closed–form 

solution of functionally graded rectangular plates with two 

opposite edges simply supported and the other two edges 

free subjected to a uniform load. The closed-form solution to 

the problems of FGM plates subjected to transverse loads 

with two opposite edges simply supported and the other two 

edges free is not found in the literature. They assumed the 

material properties of the FGM plates to change 

continuously throughout the thickness of the plate, according 

to power-law and sigmoid functions. Zenkour and Alghamdi 

[14] studied the thermoelastic bending analysis of 

functionally graded ceramic–metal sandwich. They assumed 

the mechanical and physical properties to vary according to 

a power law distribution in terms of the volume fractions of 

the constituents. Beom[15]  proposed the linear anisotropic 
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thermoelastic in-plane problems when the solid is exposed to 

thermal loading and considered the influence of orthotropy 

parameter on the  thermoelastic stress field. Hourai et al. 

[16] examined a new higher order shear and normal 

deformation theory to simulate the thermoelastic bending of 

FG sandwich plates and investigated the effect of the 

geometrical parameter of plate and new theory 

characteristics on plate bending response.  

In the present paper, the thermoelastic analysis of FG 

plate having orthotropic characteristics is considered by Airy 

stress function. For this purpose, the different sections of the 

present paper are organized as follows: In Section two, 

constitutive equations based on orthotropic 

nonhomogeneous characteristics are presented. In Section 

three, mathematical expressions for stress resultants and 

stress couples are rewritten by exploiting Airy stress 

function and governing equilibrium equations and 

compatibility equations are expressed in terms of 

displacement and Airy function. In Section four, the 

governing equations are solved and in Section five, the 

numerical results are validated against known data in the 

literature. This is the first attempt to use Airy stress function 

to solve thermomechanical problem of FG orthotropic 

rectangular plates. 

II. CONSTITUTIVE RELATIONS OF FG MATERIALS WITH 

SIGMOID FUNCTION 

Fig. 1 shows a rectangular FG plate of length a, width b 

and thickness h and the mechanical properties varies across 

the thickness. A coordinate system is established in which 

(x, y, z) the plane is in the middle of surface. Owing to small 

variation of Poisson ratio across the thickness, it is assumed 

to be a constant value [4]: 
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P(z) can be represented for Young modulus or thermal 

expansion coefficient. By applying the Sigmoid power-law 

function in (1) and (2), P2 and P1 is representative for 

material properties at z=-h/2 and z=h/2, upper surface and 

lower one, respectively. The values of Young modulus in the 

middle plane is the average of Young modulus in two 

surfaces. 

 
The stress-strain relation in plane-stress conditions with 

assumption of the plate is exposed to thermal gradient, 

which is expressed as follows [17]: 
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In addition, the displacement field in any arbitrary 

point(x, y, z) of plate may be written as [18]: 

   

   

   

























yxwzyxw

y

w
zyxvzyxv

x

w
zyxuzyxu

,,,

,,,

,,,

0

0

  (4) 

Where 
000 ,, wvu  denotes displacements of middle surface. 

By the assumption of small displacement, the corresponding 

strain components associated with displacement field (5) are 

determined as follows: 
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From (3) and (5), stress field is presented in terms of 

strain components in the middle surface and curvatures (6), 

as follows: 
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Fig. 2.  Variation of Young module in sigmoid model with respect to 

FG power index  

 
Fig. 1.  Schematic of FG plate 
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III. GOVERNING EQUATIONS 

The governing equilibrium equation and compatibility 

equation for small deformations are considered here in (7) 

and (8), respectively [18]: 
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   xyyxxyyx MMMNNN ,,,,,  are stress resultants and 

stress couples that may be obtained as follows: 
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By substituting (9) and (10) into (6), stress resultants and 

stress couples are obtained: 
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Substituting (13) for (11) and (12), we can derive the 

strain components in the middle surface and stress couples 

as follows: 
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Using (7) with (15) and (8) with (14), the governing 

equation is rewritten in terms of Airy stress function and 

deflection as follows: 
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Exact Solution   

Assuming being four edges of plate in simply supported 

conditions, the functions of deflection, Airy stress function, 

thermal moment and transverse loading are expressed as 

double Fourier series as follows: 
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Upon substituting (20) for (17-18), 
mnmnw , is obtained 

as follows: 
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Therefore, by substituting (18) for (14) and (6), the strain 

components and stress field for any arbitrary point across 

thickness are determined. (See appendix) 

 

IV. Numerical Results 

Convergence of Results 

In this section, using the datum in [4], the reliability and 

exactness of results are investigated. The thermoelastic 

response of isotropic FG square plate having 

2p , cma 100 , cmb 100 , cmh 2 , 3.0 , 

2

0 /1 cmkgq  , 26

1 /101.2 cmkgE   is studied.  

As table 1 reveals, increasing m, n more than 20 has no 

magnificent change to determine the stress and deflection; 

hence m and n are taken 20 to perform the numerical results. 

 
Table 1.  Convergence of numerical result 

 2/ cmkgx    cmw  nm,  

-105.868598 0.37369615898 20 

-105.892742 0.37369652377 50 

-105.891072 0.37369651982 100 

-105.891234 0.37369651994 200 

-105.891250 0.37369651994 300 

-105.891254 0.37369651994 400 

 

Validation  

In this section, in order to validate the numerical results, 

comparison is performed with [4].  

Table 2 and 3 show that good agreement is observed 

between present study and the previous studies.  

 

Table 2.  The comparison  of numerical results  

Chi and Chung[4]              Present    

0/ qx  
x  hw /  0/ qx  

x  hw /  21 / EE  

718.14199 0.0002394 0.1320263 718.14199 0.0002394 0.1320263 1 

806.76377 0.0002689 0.1618025 806.76377 0.0002689 0.1618025 1.5 

875.18041 0.0002917 0.1868481 875.18041 0.0002917 0.1868481 2 

1060.6405 0.0003535 0.2599903 1060.6405 0.0003535 0.2599903 4 

1321.2446 0.0004404 0.368543 1321.2446 0.0004404 0.368543 10 

1558.5538 0.0005195 0.4695579 1558.5538 0.0005195 0.4695579 30 
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Table 3.  The comparison of numerical results for non-dimensional displacement 

x  
w  Theory 

5/ ba  4/ ba  3/ ba  2/ ba   

-1.917719 0.0684987 0.106762 0.1870834 0.390824 Present work 

-1.963621 0.062334 0.088642 0.141810 0.270902 Houari  et al. [16]  

-1.764689 0.052678 0.080512 0.136798 0.273492 Zenkour & Alghamdi [14]  

 

 

The influence of orthotropic ratio  

As observed in Fig. 3 by increasing Young modulus ratio 

(Plate 1 to Plate 4), the distribution of stress across the 

thickness possesses more nonlinear form. In addition, the 

location of neutral surface moves toward the surface with 

stronger properties. In Fig. 4, the maximum w/h allocated 

for plate 1 equals 0.239 and for plate 2, plate 3 and plate 4 

equal 0.234, 0.2 and 0.167, respectively. As shown in Fig. 5, 

the variation of stress in plate 4 is pronouncedly higher than 

the other cases, due to exposing to thermal gradient. 

 
Table 4.  The material properties of Plate 1 

Material property lower surface 

P
la

te
1
 

21 5.1 xx    
21 5.1 xx EE   

21 5.1 yy    
21 5.1 yy EE   

 21 5.1 xyxy GG   

Material properties of upper surface for the 100% alumina 

surface[19] 

  16

2 105.7
  Cx  

26

2 /101861.1 cmkgEx   

  16

2 108
  Cy  26

2 /109218.0 cmkgEy   

 
26

2 /103895.0 cmkgGxy   

 

 

 

 
 

Effect of Thermal Gradient  

In order to examine the influence of thermal gradient on 

bending subjected on mechanical loading, a FG plate with 

two constituent materials Nickel as metal and Alumina 

(Al2O3) as ceramics is considered. It is assumed that Nickel 

and Alumina are isotropic and have orthotropic 

characteristics, respectively. For simplicity, Poisson ratios 

are chosen as constant values, 3.0xy , 26.0yx . The 

data used in the numerical results as sketched in Figs 7-9, 

are taken as table 5.  

z/h

D
im

en
si

o
n
le

ss
S

tr
es

s


x
/q

0

-0.4 -0.2 0 0.2 0.4
-7

00
0

-6
00

0

-5
00

0

-4
00

0

-3
00

0

-2
00

0

-1
00

0

0

10
00

Plate1
Plate2
Plate3
Plate4

 
(b) 
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Fig. 4.  Distribution of deflection along the x-direction with 

thermal gradient 
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(b) 

Fig. 3.  Variation of non-dimensional stress across the 

thickness  2

00 , 1 /T C q kg cm    
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Table 5.  Material properties of FG plate 

Material property (1) data for the 100% nickel surface 

  16

1 103.13
  Cx  26

1 /100795.2 cmkgEx   

  16

1 103.13
  Cy  26

1 /100795.2 cmkgE y   

 26

1 /107941.0 cmkgGyy   

Material property (2) data for the 100% alumina surface 

  16

2 105.7
  Cx  26

2 /101861.1 cmkgEx   

  16

2 108
  Cy  26

2 /109218.0 cmkgEy   

 
26

2 /103895.0 cmkgGxy   

 

As depicted in Fig.  6, the increasing in aspect ratio causes 

the decrease in non-dimensional central deflection. As 

observed, the deflection due to thermomechanical loading is 

the superposition of deflections of thermal gradient and 

mechanical loading, separately.  

In Fig.  7, the distribution of 
x , 

y  across the thickness 

is sketched with respect to variation of aspect ratio.  As 

observed, with increasing aspect ratio higher than 5, the 

variation of stress does not change appreciably. This trend is 

observed in Fig. 8 for the variation of 
x , 

y  with respect to 

the foregoing ratio. 

 

 

 

 

 
 

V. CONCLUSION 

In this paper, the thermoelastic response of a thin 

orthotropic FG plate when subjected to thermomechanical 

loading is discussed. The influence of the variation of aspect 

ratio and mechanical properties on deflection and stresses is 

considered. Some of the novelties of the present study are: 

With increasing Young modulus ratio of two faces of 

plate, the location of the neutral plane is changed and moves 

toward the surface having greater properties. As observed by 

adding thermal gradient to the plate, the neutral plane is 

eliminated and the sign of stresses is changed to negative 

(compression stress). 

In case of applying more intensity of mechanical loading, 

the values of 
x , 

y  are increased while the values of 
x , 

y  are decreased; whereas by adding thermal gradient, this 
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Fig. 8.  Influence of aspect ratio on distribution of plane strain at 
T=100ºC. 
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Fig. 7.  Influence of aspect ratio on distribution of non-dim-

ensional stress at T=100ºC. 
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Fig. 6.  Maximum deflection with respect to aspect ratio at 

different temperature gradients 
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trend becomes converse. 

It is noted that in orthotropic FG plate, when raising the 

working temperature of plate, by increasing aspect ratio, the 

intensity of thermal stress 
x and thermal strain 

x  are 

increased while 
y  and 

y  are diminished. For aspect ratio 

greater than 5, this trend remains almost constant. 
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