
 

 
Abstract—In this work is studied the behavior of particles 

in boundary layer on a flat plate longitudinal streamlined by 
flow of dilute suspension in the case of sufficiently lower 
volume concentrations of dispersed phase. Also is investigated 
the dynamics of nanosuspension in boundary layer taking into 
account the influence of particles concentration on suspension 
properties. 

 
Index Terms—boundary-layer, diffusion, migration, 

nanofluid, particle 
 

I. INTRODUCTION 
NTEREST in studying the behavior of a mixture flow is 
caused by their possible wide practical applications. With 

increasing performance of electronic devices and 
development of high-energy technologies is appeared a 
need for creating the effective cooling systems and 
managing large heat fluxes. One of the ways of 
intensification of heat transfer is an enhancing thermal 
conductivity of fluid by adding solid particles with high 
thermal conductivity. Nanosized particles (or nanoparticles) 
are of particular interest in the creation of such suspensions 
(called in this case by nanofluids or nanosuspensions [1]). 
In contrast to microsized particles they are deposited 
slower, they do not lead to clogging and wear of the 
channels. At the same time, nanoparticles are often subject 
to diffusion.  

Modeling and solving the problem of nanofluids flows in 
the presence of diffusion fluxes is a rather difficult task, so 
it is usually these problems are considered under the 
simplifying assumptions, such as the incompressibility of 
suspension, a dilute mixture, neglecting the influence of the 
particles on the thermal parameters of the suspension, and 
the like (see, for example, [2]–[6]). 

It should be noted that the process of mass and heat 
exchange between the wall and suspension occurs in the 
boundary layer near the wall. In connection with this, the 
study of suspension characteristics in the boundary layer it 
is urgent and is of great practical importance. 

The purpose of this work is, at first, the study of the 
behavior of particles in boundary layer on a flat plate in the 
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case of sufficiently lower volume concentrations of 
dispersed phase. In this connection the effect of liquid 
suction through the wall surface on the migration of 
particles is studied. Note that such problem in the absence 
of fluid suction was considered in [7], [8]. Secondly, we 
investigate the dynamics of nanosuspension in the boundary 
layer taking into account the influence of particle 
concentration on the thermophysical properties of the 
suspension.  

II. MIGRATION OF PARTICLES IN BOUNDARY LAYER 
Consider the process of migration of microsized particles 

in boundary layer on a flat plate streamlined by horizontal 
flow of dilute suspension. In this section assumed that 
particle volume concentrations sufficiently small so that the 
influence of dispersed phase to the fluid flow can be 
neglected. This allows to calculate the flow parameters in 
the boundary layer as usually without particles, and to 
calculate of motion of particles with taking into account of 
influence of liquid. It is assumed that particles falling to 
wall not be reflected back. Further lower indices 1, 2 
correspond to the parameters of liquid and particles, 
respectively. We introduce the Cartesian system of 
coordinates, where x axis is oriented along the plate in flow 
direction, y axis is oriented in the transversal direction 
against gravity acceleration. Components of the velocity 
vector mv  on the x and y axes denoted as mm vu , , 
respectively (m=1, 2). 

After simplifying of the Navier-Stokes equations system 
for the stationary liquid flow in the thin at wall viscous 
boundary layer is obtained the Prandtl equations system 
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where 1  is the kinematical viscosity of liquid. Consider 
the case when the plate is permeable, i.e. on the plate 
surface occurs liquid suction, for example, due to filtration. 
In this case one of formulations of boundary condition on 
the permeable plate can be written as [9] 
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11 /)2/1( xuSv  ,   (S>0),   (3) 
 

where u  is the velocity of incoming flow, S is the 
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Fig. 1.  Particles trajectories in the boundary layer for particle diameter of 
d=50 μm at the various values of suction coefficient S=0.3915 (Fig. a) and 
S=2.1464 (Fig. b). 
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coefficient, characterizing the liquid suction rate on the 
plate. Obviously, at the infinity the condition of the 
incoming flow is satisfied, so that y=∞:  uu1 . 

Introducing the stream function ψ and self-similar 
variables η, f  defined by Blasius transform [9]  
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from (2) we obtain the following equation (note equation 
(1) satisfied identically)  

 
0)2/1(  fff .                              (4) 

 
The boundary conditions for the equation (4) are (taking 
account (3)) 
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The liquid velocity components are expressed as 
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Equations of particles motion we write in framework of 

Lagrange approach  
 

22 vr  ,   gmASrm fffffv 22  .           (6) 

 
Here top dot denotes the derivation for time, 2r , 2m  are the 
radius-vector and mass of particle, Sf , Af , rf , mf , gf  are 

the Saffman’s force, Archimedes force, and the resistance, 
additional mass and gravity forces, respectively.  

Expressions for the above-mentioned forces have the 
usual forms [10]–[13] 
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where d is the particle diameter, 

1 , 
2  are the densities of 

the liquid and particle materials, dC  is a resistance 

coefficient, g is the gravity acceleration, j is the unit vector 
of y axis, Ψ is the function of Reynolds number. Initial 
conditions for the system (6) accepted as (assumed that the 
velocities of liquid and particles in the incoming flow are 
same 1u = 2u ≡ u ) 
 

:0t  0x , 0yy  ,  uu2 , 02 v .          (7) 
 
For solving the formulated boundary value problem (4), 

(5) is used the numerical shooting method. Obtained 
numerical solution is approximated by polynomial, and 
then used for integrating the system of particles motion 
equations (6) with initial conditions (7) by the numerical 
Runge-Kutta method. Some results obtained by the 
described above approach are illustrated below.  

In Fig. 1 shows trajectories of 50 μm diameter particles 
with density 2500 kg/m3 at various value of coefficient, 
characterizing the suction rate through plate surface. 
Dashed lines represent the case of absence of fluid suction 
(case of non-permeable plate). It can be seen in Fig. 1a at 
lower values of suction rate as well as in the case of absence 
of liquid suction the particles at first are lifted, then lowered 
down, and fall on the plate surface. The analysis showed 
that the particles rise in at the front edge of the plate is 
associated with the curvature of the fluid streamlines in this 
zone, and the movement of particles down the wall due to 
the combined action of gravity and Saffman forces. In the 
presence of fluid suction the particle trajectories become 
more shortened. This is explained by the fact that the 
dispersed particles carry along by the flow of liquid 
downward to the plate due to liquid suction. With the 
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increase of liquid suction rate the behavior of particles in 
the boundary layer changes significantly. For example, at 
the larger value of the suction coefficient (Fig. 1b) the 
particles starting from the leading edge, immediately move 
downward toward the plate surface. Moreover, the 
coordinate of the fall point of particles on the surface is 
significantly decreased.  

Calculations showed that the fine particles fall on the 
surface of the plate farther, than larger ones. This is due to 
a decrease in the lateral Saffman force effect with reducing 
the size of dispersed particles. Note that the particles fall 
onto the wall almost vertically. This is understandable, 
since in the vicinity of surface the horizontal speed of the 
fluid is close to zero. 

It is important to have information about the rate of 
deposition of dispersed particles on the plate surface. 
Analysis of the calculation results showed that the highest 
rate of deposition of particles is observed in the region near 
the front edge of the plate, and with increasing distance 
from the front edge the speed of particles decreases rapidly 
enough, and, as expected, the presence of liquid suction 
through the surface leads to significant increase in the fall 
speed of disperse phase to the surface. 

III. MODELING OF NANOFLUID FLOWS IN BOUNDARY LAYER 
Nanofluid (or nanosuspension) is a mixture of liquid 

(carrier) and solid (or dispersed) phase. It is believed that 
the dispersed phase consists of spherical particles. Each of 
the phases separately is incompressible. The phase and 
chemical transformations, as well as external forces are 
absent. Further, parameters of the carrier and the dispersed 
phase will be marked, as before, by the indices 1, 2, 
respectively, and the mixture parameters as a whole – 
without an index. 

Along with the parameters defining the state of the 
individual components (true and reduced densities 

m , m , 
the volume fractions m , velocities mv , m=1,2), in the 
mechanics of mixtures are entered the parameters 
characterizing the mixture as a whole, namely, the density 
of the mixture ρ and the mass-average (barycentric) velocity 
v of the mixture [10]  

 
21  , 2211 vvv  , 
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Note that so determined velocity v is the speed of the 

overall center of mass of the individual volumes 
corresponding to the different components of the mixture. 

The continuity equation for the components of the 
mixture in the presence of diffusion processes can be 
written in the form [10], [14] 

 

mm
m

t
Jv 
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)( vvJ  mmm ,   m=1, 2. 

The vectors mJ  are the diffusion flux vectors. Obviously, 
there is the relation 021  JJ . If to accept the condition 
of medium incompressibility 0 v  it is easy to verify 
that in the stationary case the divergence of the vectors of 
diffusion fluxes are also equal to zero, i.e. 0 mJ  (m=1, 
2). Thus, in this case the field of the diffusion flux vector 
represents, like as the velocity vector of mixture, a 
solenoidal field. The properties of solenoidal fields are well 
known [14]. In particular, the strength of the vector tube in 
such field, defined as the circulation along an arbitrary 
contour, embracing this tube once, is identical throughout 
this tube. In the case of an incompressible mixture, we have 
the relation 0v , which means that the surfaces of 
level of the mixture density (or surfaces of the equal 
density) at the stationary motion are stream surfaces of 
barycentric speed field of the mixture.  

The relative motion of the components, described by the 
diffusion rates, directly affect only on the concentration of 
the components, and determined by the diffusion 
mechanism. Diffusion laws establish the dependence of the 
instantaneous values of diffusion fluxes on the 
concentration gradient, temperature gradient, etc. The use 
of these diffusion laws assumes that the inertia of the 
relative motion of the mixture components may be 
neglected (so-called diffusive approximation) [10].  

The equation of mixture momentum conservation (or the 
Navier-Stokes equation) under diffusive approximation can 
be written in the following form (it is assumed that the 
tensor of deformation rates is determined by the field of the 
barycentric velocities of the mixture) [15] 

 
















































































j

j

ij

j
ik

i

k

k

i

k

ik

i
k

i

x
v

xx
v

x
v

x
v

x

x
p

x
vv

t
v

3
2

          (9) 

 
Here ix , iv  – spatial coordinates and corresponding 

components of velocity vector, p – pressure, μ, ζ – effective 
viscosities of mixture (μ – dynamical viscosity and ζ often 
called second or dilatational viscosity), ik  – Kronecker 
symbol, i, j, k=1, 2, 3 (by j, k summation). In (9) the 
magnitudes of μ, ζ may depend, in general, from the 
temperature T, the volume concentration of dispersed 
particles 2 , and etc. In the general case T, 2  and 
therefore, μ, ζ are not constant throughout the volume of 
the fluid, so that the parameters μ, ζ cannot be factored out 
from under the sign of the derivative. In the case of an 
incompressible medium, when 0 v , equation (9) takes 
the more compact form 
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Assuming that there is local thermodynamic equilibrium 
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(when at each point can be determined the temperature T), 
the medium is incompressible, the external forces and 
viscous dissipation of energy are absence, the energy 
equation we can write as in [2] 
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Here c is the effective heat capacity of the dispersed 
mixture, q is the heat flux vector, 2c  is the heat capacity of 
the dispersed phase material. The quantity q can be 
calculated according to the formula set by the Fourier law 

Tkq ,  where k is an effective thermal conductivity of 
a nanofluid. As seen from (11) the internal energy of the 
mixture can vary both due to conductive heat flux, and due 
to the diffusion transfer of matter. 

The relative motion of the particles in the 
nanosuspension arises under the influence of various 
factors, among which, as stated in [2], the most significant 
are the diffusion due to Brownian motion and thermal 
diffusion. They arise from the presence of gradients of 
particles concentration and the temperature, respectively, 
and in the first approximation, proportional to the 
corresponding gradients. Assumed that the total diffusion 
flux of particles consists of these flows [2], [15] 
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Here BD , TD  are the Brownian diffusion and thermal 
diffusion coefficients, respectively [16], [17], Bk  is the 
Boltzmann constant, 1  is dynamical viscosity of liquid, 

1k , 2k  are the thermal conductivity of the liquid and 
particle materials, respectively.  

It is interesting to consider the limiting case, when in the 
mixture the diffusion fluxes of the substance are lacking. 
Let’s call this limiting case, conditionally, as the state of 
“diffusion equilibrium” (DE) of the dispersed mixture. In 
order to have 2J =0 parameters T, 2  according the 
expression (12) must satisfy the equation which can be 
rewritten relatively typical values of parameters T, 2  at 
the some fixed state (for example, at the infinity) 

 















 


 11expA ,                           (13) 





2

2A ,  



T
T ,  








2

D ,  



 

B

T

D
D

D , 

 
)(   TDD BB ,  )( 2  TT DD  

 
This relationship defines the connection between the 
concentration and the temperature, which should be the 
case for absence of diffusive flux of material [15] (so the 

considered limited state of nanofluids can also be called 
"concentration-temperature equilibrium"). When A<exp(-σ) 
the state of DE is absent (since for these values the 
temperature will be negative). Thus, there is a limiting (or 
critical) value of volume concentration )exp( A   
lower which there is no other state of DE. In view of the 
σ>>1 the quantity A   is sufficiently small A <<1. Note 
that in the DE state the dispersed mixture is a non-
compressible medium ( 0 v ), so that in this case, as 
mentioned above, velocity vector forms a solenoidal field. 
At this, we have the relation vvv  21 , i.e. in this case 
coincides not only the temperatures but also the velocities 
of phases. So in this situation, the dispersed mixture 
presents a fully thermodynamically equilibrium system. 

In the framework of this approach with the diffusive flux 
the influence of the composition of the mixture directly 
manifested through physical-chemical parameters that 
determine the state of the mixture (density, effective 
coefficients of viscosity, heat capacity and heat conductivity 
of the mixture, etc.). For the density ρ and heat capacity c 
of the mixture there are the following relationships 
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where 1c , 2c  are the specific heats of fluid and a substance 
of particles. For the effective coefficients of dynamic 
viscosity μ and thermal conductivity k there exist various 
dependencies [2], [18]. At lower volume concentrations of 
particles often used the well-known Einstein’s formula for 
suspension viscosity [15] and the Maxwell’s formula for 
conductivity [19] 
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Next consider the stationary movement of nanofluids in 

the boundary layer on a flat plate streamlined longitudinally 
in the case of DE. Considering the nanofluid motion in 
framework of boundary layer approximation, and 
introducing stream function ψ and self-similar variables η, f 
(as in section II) we obtain from (8), (10), (11) the 
following system of equations (using the relation (13) 
instead three equations we have two equations) 
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where the prime denotes the derivative with respect to the 
self-similar variable η, and the point at the top is a 
derivative with respect to 2 , parameters μ, k are 
dynamical viscosity and heat conductivity of a mixture, Pr 
is a Prandtl number of a liquid, Ω is the function of θ. The 

Proceedings of the World Congress on Engineering 2017 Vol I 
WCE 2017, July 5-7, 2017, London, U.K.

ISBN: 978-988-14047-4-9 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2017



 

Fig. 2.  The distribution of nanofluid parameters depending on the self-
similar variable η in the cases of 

 TTw
 (Fig. a) and 

 TTw
 (Fig. b). 

coefficients depending from 2 , by means of (13) are 
reduced to the dependencies on θ. Thus, system (14), (15) is 
a system of differential equations for the two unknown 
functions f and θ. 

On the plate for liquid is posed the sticking condition, as 
well as is set a constant temperature. At infinity the 
conditions of the incoming flow are fulfilled. So we have 
following boundary conditions  

 
 f(0)=0, 0)0( f , w )0( ,                    (16) 

1)( f , θ(∞)=1.                             (17) 
 
The system (14), (15) with the boundary conditions (16), 

(17) was numerically integrated by the shooting method. 
The calculations were performed for water with aluminum 
particles at the temperature of the incoming flow  

K 300 T , and a constant temperature of plate  

wT =const. It were considered cases when the temperature of 
the plate is greater than the temperature of the incoming 
fluid wT > T , and when, on the contrary, wT < T . Below are 
shown the distributions of dimensionless longitudinal 

velocity fuuU  / , the relative volume concentration 
of particles A and the temperature θ in dependence of the 
self-similar variable η (see Fig. 2). The dashed curves 
correspond to the "pure" (without particles) fluid.  

In Fig. 2a shown the results of calculating at the 
diameter of particles d=1.25 nm with the volume 
concentration of the dispersed phase in the incoming flow 

2 =0.05 in the case of wT > T . It is seen that the presence 
of dispersed particles in the flow leads to a significant 
decrease of the boundary layer thickness. The relative 
volume fraction of the dispersed phase A increases with 
increasing η. The temperature of the liquid in the presence 
of particles is significantly smaller than in their absence. 

Fig. 2b corresponds to the case wT < T  at d=1 nm, and 

 2 =0.1. In this case the value of A decreases with 
increasing η. Note that the suspension velocity U, in 
contrast to the previous case, less than the velocity of pure 
liquid. Moreover, the curve U in this situation has the 
inflection point. This fact fundamentally affects problem of 
stability of nanofluid motion in the boundary layer. 
However the discussion of this problem is beyond the scope 
of this article (see more details, for example, in [15]). 

IV. CONCLUSION 
The behavior of particles and nanofluids in the boundary 

layer on the longitudinally streamlined plate was studied. It 
is showed that at first the particles are lifted and then 
lowered down and fall on the plate surface. With the 
increase of liquid suction rate through surface the behavior 
of the particles in the boundary layer changes significantly. 

We obtained the relation between the liquid temperature 
and concentration of the dispersed phase in the state of 
diffusion equilibrium (when the diffusion of the particles is 
absent, and the dispersive mixture can be regarded as 
incompressible medium). The calculations of the boundary 
layer parameters at different temperature regimes, namely, 
when the plate temperature is greater or less than the 
temperature of the free stream has been carried out. It was 
found radically different distribution of volume 
concentration of nanoparticles and nanofluids velocity in 
the boundary layer in these cases. 

Note that in the general case where there are the 
diffusion fluxes, the suspension is compressible, and 
therefore the momentum equation will have a more 
complex form. Moreover a problem of a specification of 
second viscosity for the mixture is appeared. The problem 
of the boundary layer in nanofluids in this formulation 
requires the separate consideration. 

In the future it would be interesting to consider the 
limiting case where the densities of fluid and particles 
substance are the same, so the suspension, in general, can 
be considered as incompressible medium. Although the 
diffusion fluxes of the mixture components, unlike the case 
of equilibrium diffusion discussed above, is non-zero.  

Results and conclusions of this work may be useful for 
the estimating and testing of results based on the more 
complex models. 
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