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Abstract—Mechanical analysis of an additive manufacturing
(AM) fabricated viscoelastic shaft under torsion by rigid disks is
under consideration. An approach of growing solids mechanics
for the determination of the stress-strain state of a shaft is
utilized. The shaft has the form of circular cylinder with two
rigid disks attached to its end faces. The process of continuous
surface growth of such a cylinder under the influence of twisting
torques applied to the disks is studied. Dual series equations
reflecting the mathematical content of the problem of different
stages of the growing process are derived and investigated.
The results of a numerical analysis and the singularities
of the qualitative mechanical behaviour of the fundamental
characteristics are discussed.

Index Terms—additive manufacturing, shaft, shape, strength,
torsion

I. FORMULATION THE TORSION PROBLEM

WE will assume that a fairly long shaft (circular cylin-
der) of length 2l and radius b0 (the ratio of l to b0 is

fairly large) is fabricated from an ageing viscoelastic material
at zero time. Both of the shaft endfaces are in perfect contact
with circular disks with a flat bottom of radius a < b0 . At a
time τ0 a torques M(t) starts to act upon the disks, rotating
them through an angle γ = 2α(t) with respect to each other.
The shaft side surface is stress-free.

At a time τ1 substance influx to the shaft side surface
starts. The new incremental elements are not stressed and
the time of their fabrication coincides with the time of initial
body fabrication.

The law of shaft growth is given completely by the
function b(t) that characterizes the change in its radius with
time. Naturally b(τ1) = b0.

The growing ceases at a time τ2. At that time the shaft
radius takes the value b1 (b(τ2) = b1), and its side surface
is free of any action even at t ≥ τ2. The contact growing
problem is studied within the framework of a quasistatic
approximation in the absence of volumetric forces (Fig. 1).

The shaft is considered to be relatively long during the
growth process and after its cessation (the ratios l/b(t) and
l/b1 are fairly large). Taking into account the symmetric
property of the problem we consider only a half of the shaft
with one end face clamped at a rigid base and the other end
face coupled with the disk.

Let us use the general approach for the solution of growth
problems developed and used in [1–8].
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Fig. 1. AM fabricated shaft under torsion

Consider the fundamental relations of the problem in the
time interval t ∈ [τ0, τ1]. We have for the initial viscoelastic
ageing shaft

∂σrϕ
∂r

+
∂σϕz
∂z

+
2σrϕ
r

= 0 (∇ ·T = 0), (1)

z = 0, 0 ≤ r ≤ a : uϕ = α(t)r;

z = 0, a ≤ r ≤ b0 : σϕz = 0;

r = b0, 0 ≤ z ≤ l : σrϕ = 0;

z = l, 0 ≤ r ≤ b0 : uϕ = 0,

εrϕ =
1

2

(
∂uϕ
∂r
− uϕ

r

)
,

εϕz =
1

2

∂uϕ
∂z

(
ε =

1

2
[∇u + (∇u)T ]

)
,

T = 2G(t)(I + L(τ0, t))E,

(I− L(τ0, t)) = (I + N(τ0, t))
−1,

L(τ0, t)f(t) =

∫ t

τ0

f(τ)K1(t, τ) dτ,

K1(t, τ) = G(τ)
∂

∂τ

[
1

G(τ)
+ ω(t, τ)

]
,

where T and E are the stress and strain tensors with non-
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zero components σrϕ, σϕz and εrϕ, εϕz respectively, u is the
displacement vector with a single non-zero component uϕ,
K1(t, τ), ω(t, τ), and G(t) is the creep kernel, the measure
of creep, and the modulus of elastic deformation under pure
shear.

We set

T◦ = (I− L(τ0, t))TG
−1 (2)

and we act on the expression from (1) containing T and its
components with the operator (I − L(τ0, t)). Then taking
(2) into account, we obtain the following boundary-value
problem

∂σ◦rϕ
∂r

+
∂σ◦ϕz
∂z

+
2σ◦rϕ
r

= 0 (∇ ·T◦ = 0), (3)

z = 0, 0 ≤ r ≤ a : uϕ = α(t)r;

z = 0, a ≤ r ≤ b0 : σ◦ϕz = 0;

r = b0, 0 ≤ z ≤ l : σ◦rϕ = 0;

z = l, 0 ≤ r ≤ b0 : uϕ = 0,

E =
1

2
[∇u + (∇u)T ], T◦ = 2E.

On the basis of (3) we determine that the displacement uϕ
satisfies the equation

Vuϕ =
∂2uϕ
∂r2

+
∂2uϕ
∂z2

+
1

r

∂uϕ
∂r
− uϕ
r2

= 0. (4)

Following [10] we take the solution of (4) in the form
(e.g., see [4])

uϕ(r, z, t) =
ld0(t)r

b0

(
1− z

l

)
+
∞∑
n=1

dn(t)

δn
J1(rδn)

sinh[δn(l − z)]
sinh(δnl)

, (5)

where dk(t) (k = 0, . . . ,∞) are unknown functions of time,
δn (n = 1, . . . ,∞) are undetermined constants, and Jν(x) is
the Bessel function of order ν.

We note that expression (5) for the displacement uϕ
satisfies the boundary condition from (3) on the clamped
endface of the shaft for z = l and enables us to write the
tensor components of the operator stresses T◦ in the form
(see (1) and (3))

σ◦ϕz(r, z, t)=−d0(t)r

b0
−
∞∑
n=1

dn(t)J1(rδn)
cosh[δn(l−z)]

sinh(δnl)
,

σ◦rϕ(r, z, t) = −
∞∑
n=1

dn(t)J2(rδn)
sinh[δn(l − z)]

sinh(δnl)
.

(6)

Utilizing the boundary condition from (3) on the shaft
side surface (r = b0) and (6) , we find a set of constants
δn. Indeed, by equating the expression for σ◦rϕ to zero for
r = b0 we obtain that δn = λnb

−1
0 , where λn are roots of

the equation J2(λn) = 0.
Finally, satisfying the boundary conditions for z = 0, we

will have the following dual series equations to seek the

sequence of functions dk(t)

ld0(t)r

b0
+
∞∑
n=1

b0dn(t)

λn
J1

(
λnr

b0

)
= α(t)r

(0 ≤ r ≤ a),

d0(t)r

b0
+
∞∑
n=1

dn(t)J1

(
λnr

b0

)
coth

λnl

b0
= 0

(a ≤ r ≤ b),

(7)

Since λn ≥ λ1 = 3.8317 and lb−10 = κ0 � 1, then
coth(b−10 λnl) can be set equal to one with a high degree of
accuracy and (7) can be investigated in the form (see [10])

uϕ(r, 0, t) = κ0d0(t)r +
∞∑
n=1

b0dn(t)

λn
J1

(
λnr

b0

)
= α(t)r

(0 ≤ r ≤ a),

σ◦ϕz(r, 0, t) =
d0(t)r

b0
+
∞∑
n=1

dn(t)J1

(
λnr

b0

)
= 0

(a ≤ r ≤ b0).

(8)

The dual series Eqs. (8) describe the formulated contact
problem in the interval t ∈ [τ0, τ1], where the time itself oc-
curs in it parametrically. We will now construct the solution
of (8) below by first obtaining the resolving equations of
the problem during continuous growth and after cessation of
growth. We merely note that the true stresses can be restored
from the formula

T(r, z, t)=G(t)

[
T◦(r, z, t)+

∫ t

τ0

T◦(r, z, τ)R1(t, τ) dτ

]
, (9)

where R1(t, τ) is the resolvent of the kernel K1(t, τ).
Let t ∈ [τ1, τ2]. Then the boundary-value problem for a

growing shaft being twisted by a disk has the form (see [5-8])
∂srϕ
∂r

+
∂sϕz
∂z

+
2srϕ
r

= 0 (∇ · S = 0), (10)

z = 0, 0 ≤ r ≤ a : vϕ = α̇(t)r;

z = 0, a ≤ r ≤ b(t) : sϕz = 0;

r = b(t), 0 ≤ z ≤ l : srϕ = 0, t = τ∗(r),

z = l, 0 ≤ r ≤ b(t) : vϕ = 0,

D =
1

2
[∇v + (∇v)T ],

S = 2D,
∂T◦

∂t
= S.

It is seen that the rate of displacement vϕ satisfies the
equation Vvϕ = 0 (see (4)) while the expression for vϕ and
the rates of the operator stresses srϕ and sϕz can be written
in the form

vϕ(r, z, t) =
ld◦0(t)r

b(t)

(
1− z

l

)
+
∞∑
n=1

d◦n(t)

ηn(t)
J1[rηn(t)]

sinh[ηn(t)(l − z)]
sinh[ηn(t)l]

,

sϕz(r, z, t) = −d
◦
0(t)r

b(t)

−
∞∑
n=1

d◦nJ1[rηn(t)]
cosh[ηn(t)(l − z)]

sinh[ηn(t)l]

srϕ(r, z, t) = −
∞∑
n=1

d◦nJ2[rηn(t)]
sinh[ηn(t)(l − z)]

sinh[ηn(t)l]
.

(11)
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Here d◦k(t) (k = 0, . . . ,∞) and ηn(t) (n = 1, . . . ,∞) are
sequences of functions to be determined.

By satisfying the boundary conditions from (13), taking
into account that lb−1(t) � 1 we arrive at dual series
equations for finding d◦k(t)

vϕ(r, 0, t) = κ(t)d◦0(t)r +
∞∑
n=1

b(t)d◦n(t)

λn
J1

[
λnr

b(t)

]
= α̇(t)r

(0 ≤ r ≤ a),

sϕz(r, 0, t) =
d◦0(t)r

b(t)
+
∞∑
n=1

d◦nJ1

[
rλn
b(t)

]
= 0

(a ≤ r ≤ b(t)),

ηn(t) =
λn
b(t)

, κ(t) =
l

b(t)
, τ1 ≤ t ≤ τ2.

(12)

If the d◦k(t) are found, meaning S and v also, the stress
tensor T and the displacement vector u are established
according to the formulas

T(r, z, t) = G(t)

{
T(r, z, τ0(r))

G(τ0(r))

[
1 +

∫ t

τ0(r)

R1(t, τ) dτ

]
+

∫ t

τ0(r)

[
S(r, z, τ)+

∫ τ

τ0(r)

S(r, z, ζ) dζ R1(t, τ)

]
dτ

}
,

u(r, z, t) = u(r, z, τ0(r)) +

∫ t

τ0(r)

v(r, z, τ) dτ.

(13)

The boundary-value problem for a growing shaft has the
form (10) after the cessation of growth t ≥ τ2 = τ∗(b1),
where only b(t) = b1 and the usual boundary conditions
τrϕ = 0 is specified on the shaft surface. Just as before,
it can be reduced to a boundary-value problem in the rates
of displacement and operator stresses with a solution in the
form (14) under the condition b(t) = b1. The resolving
dual series equations retain the form (15), where b(t) = b1,
κ(t) = κ1 = lb−11 , ηn(t) = ηn = λnb

−1
1 , t ≥ τ2. After

their solution, the stresses σrϕ, σϕz , and the displacement
uϕ are determined by using (16). It should be noted that the
dependence of S and v on the time t is parametric.

The condition of disk equilibrium that holds in the whole
time interval must be added to the dual series equations
obtained

M(t) = −2π

∫ a

0

σ(ρ, t)ρ2 dρ, σ(ρ, t) = σϕz(ρ, 0, t).

(14)
On the basis of (17) the following conditions can also be

obtained

M◦(t) = (I− L(τ0, t))
M(t)

G(t)
= −2π

∫ a

0

σ◦(ρ, t)ρ2 dρ

(τ0 ≤ t ≤ τ1),

(15)

∂M◦(t)

∂t
=

1

G(t)

∂M(t)

∂t
+

∫ t

τ0

∂M(τ)

∂τ

∂ω(t, τ)

∂t
dτ

+M(τ0)
∂ω(t, τ0)

∂t
= −2π

∫ a

0

s(ρ, t)ρ2 dρ

(t ≥ τ1),

(16)

which are more convenient for constructing the solution of
the contact problem in a number of cases.

II. SOLUTION OF THE TORSION PROBLEM

The resolving dual equations of the problem can be
represented in three fundamental time intervals by the single
relationships

ζϕ0x+
∞∑
n=1

ϕn
λn
J1(λnx) = ψx (0 ≤ x ≤ c),

− p(x) = ϕ0x+
∞∑
n=1

ϕnJ1(λnx) = 0 (c ≤ x ≤ 1),

(17)

where we set ζ = κ0, ϕk = dk(t) (k = 0, . . . ,∞),
p(x) = σ◦(xb0, t), ψ = α(t), c = ab−10 , x = rb−10 , for
t ∈ [τ0, τ1], we have ζ = κ(t), ϕk = d◦k(t), ψ = α̇(t),
p(x) = s(xb(t), t), c = ab−1(t), x = rb−1(t), for t ∈ [τ1, τ2]
and unlike the preceding ζ = κ1, b(t) = b1 for t ≥ τ2.

Let us construct the solution of (20) by following [11].
Let

p(x) =

[
∂

∂x

∫ c

x

g(ξ)√
ξ2 − x2

dξ

]
h(c− x). (18)

The series in the second equation of (17) is a Dini
expansion [12] of the function −p(x), whose coefficients ϕk
(k = 0, . . . ,∞) are given by the formulas

ϕ0 = −4

∫ 1

0

x2p(x) dx = 8

∫ c

0

ξg(ξ) dξ,

ϕn = − 2

J2
1 (λn)

∫ 1

0

xp(x)J1(λnx) dx

=
2

J2
1 (λn)

∫ c

0

g(ξ) sin(λnξ) dξ (n = 1, . . . ,∞),

(19)

when (18) is taken into account.
Substituting (19) into the first equation of (17) and using

the technique from [11, 13-15], we obtain a Fredholm
integral equation of the second kind to determine the function
g(x)

g(x) +

∫ c

0

g(ξ)k(x, ξ) dξ =
3ψx

π
(1 ≤ x ≤ c),

k(x, ξ) =
16

π
(1− 2ζ)xξ

+
4

π2

∫ ∞
0

K2(y)

I2(y)
[8xξI2(y)− sinh(xy) sinh(ξy)] dy,

(20)

where Kν(y), Iν(y) are Bessel functions of imaginary argu-
ment of order ν.

The solution of (20) obviously yields the complete solution
of the contact problem in question also. It can be found by
using methods of [16, 17]. We consider here one method,
proposed in [10], for constructing the approximate solution
of (23). We note that for ζ ≥ 10 the deviation of the
approximate from the numerical solution does not exceed
8.5% for c = 0.7, 7% for c = 0.6, and 1% for c ≤ 0.5.

We will use the fact that the quantity ζ is fairly large and
we will limit ourselves to the first term in the expression for
the kernel k(x, ξ) (see (23))

g(x)+
16

π
(1−2ζ)x

∫ c

0

g(ξ)ξ dξ =
4ψx

π
(1 ≤ x ≤ c). (21)

Then substituting g(x) = Ax into (24) and determining
A, we will have by virtue of (21)

p(x) = − 4ψ

π+16(2ζ−1)c3/3

x√
c2−x2

(1 ≤ x ≤ c). (22)
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The dependences of the operator contact stresses and their
rates on the angle of disk

σ◦(r, t) = α(t)W (r, b0) (τ0 ≤ t ≤ τ1), (23)
s◦(r, t) = α̇(t)W (r, b(t)) (τ − 1 ≤ t ≤ τ2), (24)
s◦(r, t) = α̇(t)W (r, b1) (t ≥ τ2), (25)

W (r, ξ) = − 4

π + 16(2l/ξ − 1)a3/(3ξ3)
,

r√
d2 − r2

.

For a given angle of disk rotation σ◦(r, t), s◦(r, t) are
found at once from (23)–(25) and by using the relationships
described earlier the contact stresses σ(r, t) are restored. The
moment acting on the disk is calculated from (14). We note
that for α(t) = const the mutual influence of the initial shaft
and its newly forming unstressed part does not appear. On
the basis of (9), (15) and (23) we will have for a given torque
M(t)

σ(r, t) =
3M(t)

4πa3
r√

a2 − r2
,

α(t) = B(b0)(I− L(τ0, t))
M(t)

G(t)
(τ0 ≤ t ≤ τ1),

B(ξ) =
3

16a3
+

2l − ξ
πξ4

.

(26)

Using (16), (19), (24), and (25), we finally obtain the
relationship (26) for the contact stresses for t ≥ τ1, and
the following expressions for the angle of rotation

α̇(t) =
∂M◦(t)

∂t
B(b(t)), α(t) = α(τ1) +

∫ t

τ1

α̇(τ) dτ

(τ1 ≤ t ≤ τ2),

α̇(t) =
∂M◦(t)

∂t
B(b1), α(t) = α(τ2) +

∫ t

τ1

α̇(τ) dτ

(t ≥ τ2).

It turns out that the growth of a shaft during torsion of
a disk by a moment of forces has a slight influence on
the contact stress distribution if the disk and shaft radii are
not very close (specific ratios are given above). However, a
substantial dependence of the angle of disk rotation on the
time from when the shaft starts to grow and on the growth
rate appears in this same case.

To obtain the stress-strain state of a shaft at some distance
from its edge faces (Saint-Venant’s principle) one can use
the results of [18].

III. NUMERICAL EXAMPLE

We examine the contact problem in question by consider-
ing the shaft to be fabricated from concrete with a modulus
of elastically instantaneous shear strain G(t) = G = const
and a measure of creep under shear in the form [19]

ω(t, τ) = (D0 + Fe−βτ )(1− e−γ(t−τ)).

We will make a change of variables according to the

Fig. 2. Angle of the disk rotation with respect to various growth rates in
the case of the first AM process

formulas

r∗ =
r

a
, ρ∗ =

ρ

a
, t∗ =

t

τ0
, σ∗(r∗, t∗) =

σ(r, t)

G
,

τ∗1 =
τ1
τ0
, τ∗2 =

τ2
τ0
, M∗(t∗) =

M(t)

Ga3
, α∗(t∗) = α(t),

β∗ = βτ0, γ∗ = γτ0, b∗0 =
b0
a
, b∗1 =

b1
a
,

b∗(t∗) =
b(t)

a
, l∗ =

l

a
, D∗0 = D0G, F ∗ = FG,

and omitting the asterisk in the notation, we give the follow-
ing values of the functions and parameters:

b0 =
1

0.7
, l =

290

0.7
, b(t) =

b0(t+ τ2 − 2τ1)

τ2 − τ1
,

b1 = 2b0, M(t) = 1, D0 = 0.251, F = 1.818,

β = 0.31, γ = 0.6, τ0 = 10 days.

It is seen that during the time of growth the shaft radius
doubles. The growth rate is constant and is determined only
by the times of the beginning and cessation of growth.
The torque acting on the disk does not change with time.
Moreover, the ratio of the shaft length to its radius ≥ 20
during the extent of the whole process, while the ratio of the
disk and shaft radii ≤ 0.7, i.e., formulas of the approximate
solution can be utilized.

As regards the contact stress distribution, it is sufficient to
refer to (26) to note that it (the distribution) is practically
independent of the properties of the material and growth
process in the case under consideration.

The behaviour of the angle of disks rotation with respect
to each other as a function of the fundamental characteristics
of the process of piecewise-continuous shaft growth requires
a more detailed analysis.

The curves in Fig. 2 show the change in the angle of
rotation γ = 2α in a time t for the first case of AM process.
In this case a shaft growth starts simultaneously with the
application of the torque (τ1 = 1) for different growth rates
ḃ(t): ḃ(t) = b0/9 (τ2 = 10) is the solid line ḃ(t) = b0/3
(τ2 = 4) is the dash-dot line, and ḃ(t) = b0 (τ2 = 2) is the
dashed line. The times of the growth stops are marked by
the vertical solid lines.
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Fig. 3. Angle of the disk rotation with respect to various growth rates in
the case of the second AM process

The curves in Fig. 3 correspond to dependencies of the
angle of disk rotation on the time for the second case of
AM process. In this case for a shaft loaded at the time 1
and starting to grow at the time τ1 = 2 we choose different
growth rates ḃ(t): ḃ(t) = b0/8 (τ2 = 10) the dash-dot line,
and ḃ(t) = b0/2 (τ2 = 4) the dashed line. For comparison,
the change in the angle of disk rotation that twists a shaft of
fixed radius b0 is shown by the solid line. The sections of the
curves located between the vertical solid lines characterize
the behavior of the angle of disk rotation in intervals of
continuous shaft growth.

IV. CONCLUSIONS

• The contact stresses which act on the shaft due to the
interaction with rigid disks is practically independent
of the material properties and growth process if the the
shaft is comparatively long (the ratio of the shaft length
to its radius is greater than or equal to 20), while the
disks is not too large (the ratio of the disk and shaft radii
does not exceed 0.7) during the whole AM process.

• The essential dependence of the angle of rotation γ(t)
on the growth rate. Thus the limit value of the increment
in the angle of disk rotation ∆(∞) (∆(t) = γ(t) −
γ(τ0)) during slow shaft growth can exceed the same
value for rapid growth by a factor of 5 and more.

• The limit value of the angle of disk rotation is signif-
icantly depends on the time interval between times of
the beginning of loading and the beginning of growth.

• For constant torque the characteristic time exists, start-
ing with which the influence of the AM process on
the stress-strain state of a viscoelastic shaft can be
neglected.
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